首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doxorubicin (Dox) treatment is limited by severe toxicity and frequent episodes of treatment failure. To minimize adverse events and improve drug delivery efficiently and specifically in cancer cells, encapsulation of Dox with naturally obtained galactoxyloglucan polysaccharide (PST001), isolated from Tamarindus indica was attempted. Thus formed PST-Dox nanoparticles induced apoptosis and exhibited significant cytotoxicity in murine ascites cell lines, Dalton’s lymphoma ascites and Ehrlich’s ascites carcinoma. The mechanism contributing to the augmented cytotoxicity of nanoconjugates at lower doses was validated by measuring the Dox intracellular uptake in human colon, leukemic and breast cancer cell lines. PST-Dox nanoparticles showed rapid internalization of Dox into cancer cells within a short period of incubation. Further, in vivo efficacy was tested in comparison to the parent counterparts - PST001 and Dox, in ascites and solid tumor syngraft mice models. Treatment of ascites tumors with PST-Dox nanoparticles significantly reduced the tumor volume, viable tumor cell count, and increased survival and percentage life span in the early, established and prophylactic phases of the disease. Administration of nanoparticles through intratumoral route delivered more robust antitumor response than the intraperitoneal route in solid malignancies. Thus, the results indicate that PST-Dox nanoparticles have greater potential compared to the Dox as targeted drug delivery nanocarriers for loco regional cancer chemotherapy applications.  相似文献   

2.
Previous work from our laboratory has shown that coupling doxorubicin (Dox) to cell penetrating peptides (Dox–CPPs) is a good strategy to overcome Dox resistance in MDA-MB 231 breast cancer cells. We also reported that, in contrast to unconjugated Dox-induced cell death, the increase in apoptotic response does not involve the mitochondrial apoptotic pathway. In this study, we demonstrate that both Dox and Dox–CPPs can increase the density of the TRAIL receptors DR4 and DR5 at the plasma membrane and moderately sensitize MDA-MB 231 cells to exogeneously added recombinant TRAIL, as has already been shown for other chemotherapeutic drugs. Moreover, we show that Dox–CPPs, used alone, induce the clustering of TRAIL receptors into ceramide-enriched membrane lipid rafts, a property not shared by unconjugated Dox and that this process is due to the generation of ceramide during Dox–CPPs treatment. In addition, MDA-MB 231 cells were found to express TRAIL and we show that the increased apoptotic rate induced by Dox–CPPs is due to the sensitization of MDA-MB 231 cells to endogenous TRAIL. The capacity of Dox–CPPs to sensitize cancer cells to physiologic amounts of TRAIL suggests that, in addition to their efficiency in combination chemotherapy, these compounds might increase the response of tumor cells to cytotoxic lymphocyte-mediated killing via TRAIL.  相似文献   

3.
Doxorubicin (Dox) has demonstrated potent activity in treating malignant lymphomas but its therapeutic efficacy is hampered by induction of cardiotoxicity. This side effect is related to the ability of the drug to generate reactive oxygen species in cells. Previously, we demonstrated that coupling Dox to penetratin (Pen), a cell penetrating peptide, represent a valuable strategy to overcome drug resistance in CHO cells. In the present study, we evaluated the consequences of the conjugation of Dox to Pen in term of apoptosis induction. When tested on CHO cells, Dox-Pen generated a typical apoptotic phenotype but at lower dose that needed for unconjugated Dox. Cell death induction was associated with chromatin condensation, caspase activation, Bax oligomerisation and release of cytochrome c. By using reactive oxygen species and c-jun NH2-terminal kinase (JNK) inhibitors, we prevented Dox- and Dox-Pen-induced CHO cell death. The chimeric soluble DR5 receptor that inhibits TRAIL induced cell death does not prevent Dox or Dox-Pen-induced cytotoxicity. These observations indicate that conjugation of Dox to cell penetrating peptide does not impair the ability of the drug to trigger cell death through activation of the intrinsic pathway involving c-Jun NH2-terminal kinase but could exhibit less toxic side effects and could warrant its use in clinic.  相似文献   

4.
We studied effects of 2-chloro-N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (Cl-IB-MECA) on apoptosis induction in the K562/Dox cell line, which overexpressed P-glycoprotein (P-gp, ABCB1, MDR1). We found that the K562/Dox cell line was significantly more resistant to Cl-IB-MECA than the maternal cell line K562, which did not express P-gp. Although both cell lines expressed the A3 adenosine receptor (A3AR), cytotoxic effects of Cl-IB-MECA were not prevented by its selective antagonist MRS1523 (3-propyl-6-ethyl-5-[(ethylthio)carbonyl]-2 phenyl-4-propyl-3-pyridine carboxylate). Analysis of cell extracts revealed that the intracellular level of Cl-IB-MECA was significantly lower in the K562/Dox cell line than in the maternal cell line K562. The downregulation of P-gp expression using shRNA targeting ABCB1 gene led to increased intracellular level of Cl-IB-MECA and restored cell sensitivity to this drug. Similarly, valspodar (PSC-833), a specific inhibitor of P-gp, restored sensitivity of the K562/Dox cell line to Cl-IB-MECA with concomitant increase of intracellular level of Cl-IB-MECA in the resistant cell line, while it affected cytotoxicity of Cl-IB-MECA in the sensitive cell line only marginally. An enzyme based assay provided evidence for interaction of P-gp with Cl-IB-MECA. We further observed that cytotoxic effects of Cl-IB-MECA could be augmented by activation of extrinsic cell death pathway by Apo-2L (TRAIL) but not FasL or TNF-α. Our results revealed that Cl-IB-MECA induced an increase in expression of TRAIL receptors in K562 cells, which could sensitize cells to apoptosis induction via an extrinsic cell death pathway. Importantly, these effects were inversely related to P-gp expression. In addition, MRS1523 did not affect Cl-IB-MECA induced expression of TRAIL receptors.  相似文献   

5.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered a promising agent for medical applications because it induces apoptosis selectively in a variety of cancer cells without toxicity to normal human cells. However, its therapeutic potential has been limited by the existence of several cancer cells with TRAIL resistance. TRAIL resistance results from a variety of mechanisms, which occur at various points in the cellular signaling pathways. In this study, we demonstrate that ALS2CR7 (CDK15) can mediate resistance to TRAIL. We also demonstrate that cell viability of TRAIL sensitive HCT116 and MDA-MB-231 cells increased after TRAIL treatment in ALS2CR7 transfected cancer cells compared with vector transfected cancer cells. Furthermore, cell viability was decreased by TRAIL treatment after knockdown with ALS2CR7 siRNA in TRAIL resistant HT29 and MCF-7 cells. We also show that the activated form of apoptotic proteins such as caspase-3, -8 and -9 and PARP increased after TRAIL treatment in the control group, but decreased in the ALS2CR7 transfected group. The expression of survival proteins such as bcl2 and survivin in TRAIL sensitive cancer cells increased in the ALS2CR7 transfected group, but decreased in TRAIL resistant cancer cells treated with ALS2CR7 siRNA. Other survival proteins such as FLIP and XIAP were not affected. ALS2CR7 appears to bind with only survivin, and not bcl2. The phospho-survivin (Thr34) critical in drug resistance was increased by transfection with ALS2CR7, but the expression of death receptors such as DR4 and DR5 was not affected. ALS2CR7 did not bind with any of the death receptors in our study. In summary, our results suggest that ALS2CR7 confers TRAIL resistance to cancer cells via phosphorylation of survivin.  相似文献   

6.
7.
Ultrasmall (mean diameter, 2.7 nm) gold nanoparticles conjugated to doxorubicin (Au-Dox) are up to 20-fold more cytotoxic to B16 melanoma cells than the equivalent concentration of doxorubicin alone, and act up to six times more quickly. Ultrasmall Au-Dox enters the cell endocytic vesicles and is also seen free in the cytoplasm and nuclei. This is in distinct contrast to larger particles reported in previous studies, which are excluded from the nucleus and which show no increased toxicity over Dox alone. Cell death with Au-Dox is confirmed to be apoptotic by TUNEL staining and ultrastructural examination using transmission electron microscopy. To further explore the mechanism of action, two other cell lines were examined: HeLa cells which are highly sensitive to Dox, and HeLa cells overexpressing Bcl-2 which show impaired apoptosis and Dox resistance. Interestingly, the Dox-sensitive cells show a slightly decreased sensitivity to Au-Dox relative to Dox alone, whereas the Dox-resistant cells are not resistant to Au-Dox. These results have implications for the design of chemotherapeutic nanoparticles, suggesting that it is possible to selectively target apoptosis-resistant cancer cells while at the same time reducing cytotoxicity to normal cells.  相似文献   

8.
Drug resistance is a major challenge to the effective treatment of cancer. We have developed two nanoparticle formulations, cationic liposome-polycation-DNA (LPD) and anionic liposome-polycation-DNA (LPD-II), for systemic co-delivery of doxorubicin (Dox) and a therapeutic small interfering RNA (siRNA) to multiple drug resistance (MDR) tumors. In this study, we have provided four strategies to overcome drug resistance. First, we formed the LPD nanoparticles with a guanidinium-containing cationic lipid, i.e. N,N-distearyl-N-methyl-N-2-(N′-arginyl) aminoethyl ammonium chloride, which can induce reactive oxygen species, down-regulate MDR transporter expression, and increase Dox uptake. Second, to block angiogenesis and increase drug penetration, we have further formulated LPD nanoparticles to co-deliver vascular endothelial growth factor siRNA and Dox. An enhanced Dox uptake and a therapeutic effect were observed when combined with vascular endothelial growth factor siRNA in the nanoparticles. Third, to avoid P-glycoprotein-mediated drug efflux, we further designed another delivery vehicle, LPD-II, which showed much higher entrapment efficiency of Dox than LPD. Finally, we delivered a therapeutic siRNA to inhibit MDR transporter. We demonstrated the first evidence of c-Myc siRNA delivered by the LPD-II nanoparticles down-regulating MDR expression and increasing Dox uptake in vivo. Three daily intravenous injections of therapeutic siRNA and Dox (1.2 mg/kg) co-formulated in either LPD or LPD-II nanoparticles showed a significant improvement in tumor growth inhibition. This study highlights a potential clinical use for the multifunctional nanoparticles with an effective delivery property and a function to overcome drug resistance in cancer. The activity and the toxicity of LPD- and LPD-II-mediated therapy are compared.  相似文献   

9.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to exhibit therapeutic activity in cancer. However, many tumors remain resistant to treatment with TRAIL. Therefore, small molecules that potentiate the cytotoxic effects of TRAIL could be used for combinatorial therapy. Here we found that the ionophore antibiotic salinomycin acts in synergism with TRAIL, enhancing TRAIL-induced apoptosis in glioma cells. Treatment with low doses of salinomycin in combination with TRAIL augmented the activation of caspase-3 and increased TRAIL-R2 cell surface expression. TRAIL-R2 upmodulation was required for mediating the stimulatory effect of salinomycin on TRAIL-mediated apoptosis, since it was abrogated by siRNA-mediated TRAIL-R2 knockdown. Salinomycin in synergism with TRAIL exerts a marked anti-tumor effect in nude mice xenografted with human glioblastoma cells. Our results suggest that the combination of TRAIL and salinomycin may be a useful tool to overcome TRAIL resistance in glioma cells and may represent a potential drug for treatment of these tumors. Importantly, salinomycin+TRAIL were able to induce cell death of well-defined glioblastoma stem-like lines.  相似文献   

10.
TRAIL is a member of the TNF super family and has been shown to induce apoptosis in many cancer cell lines but not in normal cells. Breast cancers can be divided into different subgroups on the basis of the expression of estrogen and progesterone receptors, HER-2 amplification, or the lack of these three markers (known as triple-negative or basal-type breast cancer). Our group and others have shown previously that triple-negative breast cancer cell lines are sensitive to TRAIL whereas others are relatively resistant. In an earlier study, we reported that inhibition of WEE1, a cell-cycle checkpoint regulator, causes increased cell death in breast cancer cell lines. In this study, we tested the effects of WEE1 inhibition on TRAIL-mediated apoptosis in breast cancer cell lines. Pretreatment with WEE1 inhibitor or knockdown of WEE1 increased the toxicity of TRAIL in the basal/triple-negative breast cancer cell lines compared with WEE1 inhibitor or TRAIL treatment alone. The enhanced cell death is attributed to increased surface expression of death receptors, increased caspase activation which could be blocked by the pan-caspase inhibitor, Z-VAD-FMK, thereby rescuing cells from caspase-mediated apoptosis. The cell death was initiated primarily by caspase-8 because knockdown of caspase-8 and not of any other initiator caspases (i.e., caspase-2, -9, or -10) rescued cells from WEE1 inhibitor-sensitized TRAIL-induced cell death. Taken together, the data suggest that the combination of WEE1 inhibitor and TRAIL could provide a novel combination for the treatment of basal/triple-negative breast cancer.  相似文献   

11.
Identification of mechanisms of modulation of the TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis is important for its potential use in anticancer therapy. Ethanol can induce cell death in vitro and in vivo by different signalling pathways. Its effect in combination with death ligands is unknown. We investigated how ethanol modulates the effects of TRAIL in colon cancer cells. After combined TRAIL and ethanol treatment, a potentiation of caspase-8, -9, -3 activation, a proapoptotic Bid protein cleavage, a decrease of mitochondrial membrane potential, a complete poly(ADP)ribose polymerase cleavage, and disappearance of antiapoptotic Mcl-1 protein were demonstrated. Ethanol acts as a potent agent sensitizing colon cancer cells to TRAIL-induced apoptosis.  相似文献   

12.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers tumor-specific apoptosis. However, some tumors and cancer cell lines are resistant to TRAIL. Here, the effect of the non-steroidal anti-inflammatory drug aspirin on sensitization of human cervical cancer cells to TRAIL and the underlying mechanism(s) of the effect were explored. Combination treatment with aspirin and TRAIL markedly enhanced apoptotic cell death, as assessed by lactate dehydrogenase (LDH) assay and analysis of cell cycle sub-G1 phase. The two agents together activated the several caspases and mitochondrial signaling pathway. Whereas Mcl-1 protein level was increased and extracellular signal-related kinase (ERK)1/2 was activated in cells treated with TRAIL alone, combination treatment dramatically inhibited ERK1/2 activation and down-regulated Mcl-1 protein level. An inhibitor of ERK1/2 activation, PD98059, also augmented TRAIL-induced apoptosis. Combination treatment with PD98059 and TRAIL showed the activation of caspases and mitochondrial pathway, and the down-regulation of Mcl-1 level. These results suggest that cancer cells can be sensitized to TRAIL-induced apoptosis by pre-treatment with aspirin via suppression of ERK1/2 activation. These findings provide a basis for further exploring the potential applications of this combination approach for the treatment of cancer, including cervical cancer.  相似文献   

13.
Chemotherapy is one of the standard strategies for treatment of breast cancer. Adriamycin (Dox) is a first‐line chemotherapy agent for breast cancer. However, the gastrointestinal reactions, myocardial toxicity and other side effects caused by Dox due to its un‐specific cytotoxicity limit the clinical treatment effect. To address this need, aptamer has been regarded as an ideal target molecular carrier. In the present study, we selected an aptamer 5TR1 that can specifically bind to the MUC1 protein which has been regarded as an important tumor biomarker, as well as a potential target in anticancer therapies. Dox was loaded on the modified 5TR1‐GC, which specifically targets breast cancer cell MDA‐MB‐231. Cell viability and apoptosis assays demonstrated that the 5TR1‐GC‐Dox exhibited target specificity of cytotoxicity in MDA‐MB‐231. Moreover, in vivo xenograft study also confirmed that 5TR1‐GC‐Dox had a more effective effect on tumor growth inhibition and induced the apoptosis of malignant tumor cells compared to Dox. We provided a novel experimental and theoretical basis for developing an aptamer targeted drug system, thus to promote the killing effect of drugs on breast cells and to reduce the damage to normal cells and tissues for breast cancer.  相似文献   

14.
Hepatocellular carcinoma (HCC) is the third leading cause of death due to cancer worldwide with over 500,000 people affected annually. Although chemotherapy has been widely used to treat patients with HCC, alternate modalities to specifically deliver therapeutic cargos to cancer cells have been sought in recent years due to the severe side effects of chemotherapy. In this respect, aptamer-based tumor targeted drug delivery has emerged as a promising approach to increase the efficacy of chemotherapy and reduce or eliminate drug toxicity. In this study, we developed a new HepG2-specific aptamer (HCA#3) by a procedure known as systematic evolution of ligands by exponential enrichment (SELEX) and exploited its role as a targeting ligand to deliver doxorubicin (Dox) to HepG2 cells in vitro. The selected 76-base nucleotide aptamer preferentially bound to HepG2 hepatocellular carcinoma cells but not to control cells. The aptamer HCA#3 was modified with paired CG repeats at the 5′-end to carry and deliver a high payload of intercalated Dox molecules at the CG sites. Four Dox molecules (mol/mol) were fully intercalated in each conjugate aptamer-Dox (ApDC) molecule. Biostability analysis showed that the ApDC molecules are stable in serum. Functional analysis showed that ApDC specifically targeted and released Dox within HepG2 cells but not in control cells, and treatment with HCA#3 ApDC induced HepG2 cell apoptosis but had minimal effect on control cells. Our study demonstrated that HCA#3 ApDC is a promising aptamer-targeted therapeutic that can specifically deliver and release a high doxorubicin payload in HCC cells.  相似文献   

15.
We have developed a high-throughput screen (HTS) to search for novel molecules that can synergize with TRAIL, thus promoting apoptosis of ACHN renal tumor cells in a combinatorial fashion. The HTS detects synthetic compounds and pure natural products that can pre-sensitize the cancer cells to TRAIL-mediated apoptosis, yet have limited toxicity on their own. We have taken into account the individual effects of the single agents, versus the combination, and have identified hits that are synergistic, synergistic-toxic, or additive when combined with TRAIL in promoting tumor cell death. Preliminary mechanistic studies indicate that a subset of the synergistic TRAIL sensitizers act very rapidly to promote cleavage and activation of caspase-8 following TRAIL binding. Caspase-8 is an apical enzyme that initiates programmed cell death via the extrinsic apoptotic pathway. Thus, these TRAIL sensitizers may potentially reduce resistance of tumor cells to TRAIL-mediated apoptosis. Two representative sensitizers were found to increase levels of p53 but did not inhibit the proteasome, suggesting that early DNA damage-sensing pathways may be involved in their mechanisms of action.  相似文献   

16.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent because of its tumor selectivity. TRAIL is known to induce apoptosis in cancer cells but spare most normal cells. In this study, we examined whether treatment of docetaxel (DTX) can enhance apoptotic cell death by TRAIL against androgen-independent prostate cancer (AIPC). The cell death effect of combinations of TRAIL and docetaxel on prostate cancer cell lines (androgen-dependent LNCaP and its derived androgen-independent, metastatic C4-2B) was evaluated by synergisms of apoptosis. Western blot assay and DNA fragmentation assay were used to study the underlying mechanisms of cell death and search for any mechanisms of enhancement of TRAIL induced apoptosis in the presence of docetaxel. In addition, we investigated the in vitro anti-tumor effects of combined docetaxel and TRAIL using MAP kinase inhibitors. Docetaxel itself could not induce apoptotic cell death in 24 h even in high concentration. Apoptotic cell death, however, was drastically enhanced by pretreatment of docetaxel 20 h before TRAIL treatment. Docetaxel enhanced the PARP-1 cleavage and caspases activation by TRAIL especially in androgen-independent, metastatic C4-2B cell line, mainly by phosphorylation of Bcl-2 by JNK activation. It appears that apoptotic cell death was protected by the JNK inhibitor SP600125. The results of our study show that pretreatment of docetaxel is able to enhance the apoptosis produced by TRAIL in prostate cancer cells, especially in hormone-refractory prostate cancer (HRPC).  相似文献   

17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) holds great potential as an anticancer drug, since it induces selective cell death in cancer cells but not in normal ones. However, cancer cells often acquire resistance to TRAIL, which hinders its clinical efficacy. We previously demonstrated that progesterone triggers apoptosis in human ovarian cancer (OCa) cells. In the present study, we evaluated the prospect of utilizing progestins in combination with TRAIL to enhance cell death in TRAIL-sensitive (OVCA 420, OVCA 429, and OVCA 433) and -resistant (OVCA 432) OCa cell lines. TRAIL sensitivity (60-80% cell kill) bore no correlation with expression of the TRAIL receptors (DR4, DR5) or their decoys (DcR1 and DcR2), but was associated with activation of caspase-8 and -3, and downregulation of the long isoform of FLICE-like inhibitory protein (c-FLIP(L)), an anti-apoptosis mediator. Small interfering RNA-mediated knockdown of c-FLIP(L) expression restored TRAIL sensitivity in OVCA 432 cells. Induction of c-FLIP(L) overexpression increased TRAIL resistance in TRAIL-sensitive lines. Thus, persistent high level of c-FLIP(L) expression likely mediates TRAIL resistance in OCa cells. Treatment of OCa cells with progesterone enhanced TRAIL-induced cell death (>85%), but only in TRAIL-sensitive cell lines. Combined treatment with two progestins was superior to single progestin treatment, with progesterone plus medroxyprogesterone acetate (MPA) achieving over 85% cell kill in both TRAIL-sensitive and -resistant OCa cell lines. Significantly, unlike TRAIL, progestin-induced cell death did not involve c-FLIP(L) downregulation. Hence, combined progestin regimens, with or without TRAIL, may serve as an effective therapy for OCa by circumventing the anti-apoptotic action of c-FLIP(L).  相似文献   

18.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis in tumor cells without toxicity to normal cells, but some recombinant versions of TRAIL caused hepatocyte death. We generated fully human monoclonal antibodies (mAbs) that bind specifically to TRAIL receptor 1 (TRAIL-R1) and TRAIL receptor 2 (TRAIL-R2), which mediate apoptosis signal when they ligate with TRAIL, to investigate the contribution of each receptor to induce tumor cell apoptosis and hepatocyte toxicity. All of mAbs to TRAIL-R1 and TRAIL-R2 induced cell death in several cancer cell lines susceptible to TRAIL but not in human umbilical vein endothelial cells in vitro. Both anti-TRAIL-R1 mAbs and anti-TRAIL-R2mAbs also caused cell death in hepatocytes. However, a subset of mAbs to TRAIL-R2, which was characterized by the TRAIL blocking activity, did not show strong hepatocyte toxicity. These results indicate that human normal hepatocytes are susceptible to both TRAIL-R1- and TRAIL-R2-mediated apoptosis signal.Cell Death and Differentiation (2004) 11, 203-207. doi:10.1038/sj.cdd.4401331 Published online 24 October 2003  相似文献   

19.

Background

We have recently shown that curcumin (a diferuloylmethane) inhibits growth and induces apoptosis, and also demonstrated that TRAIL induces apoptosis by binding to specific cell surface death receptors in prostate cancer cells. The objectives of this paper were to investigate the molecular mechanisms by which curcumin enhanced the apoptosis-inducing potential of TRAIL in prostate cancer cells.

Results

Curcumin enhanced the apoptosis-inducing potential of TRAIL in androgen-unresponsive PC-3 cells and sensitized androgen-responsive TRAIL-resistant LNCaP cells. Curcumin inhibited the expressions of Bcl-2, Bcl-XL, survivin and XIAP, and induced the expressions Bax, Bak, PUMA, Bim, and Noxa and death receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5) in both cell lines. Overexpression of dominant negative FADD inhibited the interactive effects of curcumin and TRAIL on apoptosis. Treatment of these cells with curcumin resulted in activation of caspase-3, and caspase-9, and drop in mitochondrial membrane potential, and these events were further enhanced when combined with TRAIL. Curcumin inhibited capillary tube formation and migration of HUVEC cells and these effects were further enhanced in the presence of MEK1/2 inhibitor PD98059.

Conclusion

The ability of curcumin to inhibit capillary tube formation and cell migration, and enhance the therapeutic potential of TRAIL suggests that curcumin alone or in combination with TRAIL can be used for prostate cancer prevention and/or therapy.  相似文献   

20.
In this study we investigated E6 and E7 oncogenes from the Human Papilloma Virus as targets for siRNA knockdown in order to boost the efficacy of the anti-cancer drug ‘tumor necrosis factor-related apoptosis inducing ligand’ (TRAIL). SiHa cells were treated with TRAIL following transfection with E6/E7 siRNA and the expression of death receptors DR4 and DR5, cell viability, apoptosis, senescence and cell cycle analysis were undertaken using flow cytometry, MTT viability assay and cellular β-galactosidase activity assays. E6/E7 siRNA resulted in significant upregulation of death receptors DR4 and DR5 but did not result in an enhanced sensitivity to TRAIL. Our results indicate that E6/E7-siRNA induces senescence rather than apoptosis in SiHa cells. The occurrence of senescence in drug resistant cervical cancer cells such as the SiHa cell line by E6/E7 siRNA, among other factors, may prevent TRAIL induced activation of extrinsic and intrinsic pathways that lead to apoptotic cell death. Our findings are significant for combinatorial strategies for cancer therapy since the induction of senescence can preclude apoptosis rendering cells to be recalcitrant to TRAIL treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号