首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alpine ecosystems are particularly susceptible to disturbance due to their short growing seasons, sparse vegetation and thin soils. Increased nitrogen deposition in wetfall and changes in climate currently affect Green Lakes Valley within the Colorado Front Range. Research conducted within the alpine links chronic nitrogen inputs to a suite of ecological impacts, resulting in increased nitrate export. The atmospheric nitrogen flux decreased by 0.56 kg ha?1 year?1 between 2000 and 2009, due to decreased precipitation; however alpine nitrate yields increased by 40 % relative to the previous decade (1990–1999). Long term trends indicate that weathering products such as sulfate, calcium, and silica have also increased over the same period. The geochemical composition of thawing permafrost, as indicated by rock glacial and blockfield meltwater, suggests it is the source of these weathering products. Furthermore, mass balance models indicate the high ammonium loads within glacial meltwater are rapidly nitrified, contributing ~0.5–1.4 kg N ha?1 to the growing season nitrate flux from the alpine watershed. The sustained export of these solutes during dry, summer months is likely facilitated by thawing cryosphere providing hydraulic connectivity late into the growing season. This mechanism is further supported by the lack of upward weathering or nitrogen solute trends in a neighboring catchment which lacks permafrost and glacial features. These findings suggest that reductions of atmospheric nitrogen deposition alone may not improve water quality, as cryospheric thaw exposes soils to biological and geochemical processes that may affect alpine nitrate concentrations as much as atmospheric deposition trends.  相似文献   

2.
1. Knowledge of synchrony in trends is important to determining regional responses of lakes to disturbances such as atmospheric deposition and climate change. We explored the temporal coherence of physical and chemical characteristics of two series of mostly alpine lakes in nearby basins of the Colorado Rocky Mountains. Using year‐to‐year variation over a 10‐year period, we asked whether lakes more similar in exposure to the atmosphere be‐haved more similarly than those with greater influence of catchment or in‐lake processes. 2. The Green Lakes Valley and Loch Vale Watershed are steeply incised basins with strong altitudinal gradients. There are glaciers at the heads of each catchment. The eight lakes studied are small, shallow and typically ice‐covered for more than half the year. Snowmelt is the dominant hydrological event each year, flushing about 70% of the annual discharge from each lake between April and mid‐July. The lakes do not thermally stratify during the period of open water. Data from these lakes included surface water temper‐ature, sulphate, nitrate, calcium, silica, bicarbonate alkalinity and conductivity. 3. Coherence was estimated by Pearson's correlation coefficient between lake pairs for each of the different variables. Despite close geographical proximity, there was not a strong direct signal from climatic or atmospheric conditions across all lakes in the study. Individual lake characteristics overwhelmed regional responses. Temporal coherence was higher for lakes within each basin than between basins and was highest for nearest neighbours. 4. Among the Green Lakes, conductivity, alkalinity and temperature were temporally coherent, suggesting that these lakes were sensitive to climate fluctuations. Water tem‐perature is indicative of air temperature, and conductivity and alkalinity concentrations are indicative of dilution from the amount of precipitation flushed through by snowmelt. 5. In Loch Vale, calcium, conductivity, nitrate, sulphate and alkalinity were temporally coherent, while silica and temperature were not. This suggests that external influences are attenuated by internal catchment and lake processes in Loch Vale lakes. Calcium and sulphate are primarily weathering products, but sulphate derives both from deposition and from mineral weathering. Different proportions of snowmelt versus groundwater in different years could influence summer lake concentrations. Nitrate is elevated in lake waters from atmospheric deposition, but the internal dynamics of nitrate and silica may be controlled by lake food webs. Temperature is attenuated by inconsistently different climates across altitude and glacial meltwaters. 6. It appears that, while the lakes in the two basins are topographically close, geologically and morphologically similar, and often connected by streams, only some attributes are temporally coherent. Catchment and in‐lake processes influenced temporal patterns, especially for temperature, alkalinity and silica. Montane lakes with high altitudinal gradients may be particularly prone to local controls compared to systems where coherence is more obvious.  相似文献   

3.
We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term trends in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.  相似文献   

4.
Climate-induced changes in high elevation stream nitrate dynamics   总被引:1,自引:0,他引:1  
Mountain terrestrial and aquatic ecosystems are responsive to external drivers of change, especially climate change and atmospheric deposition of nitrogen (N). We explored the consequences of a temperature-warming trend on stream nitrate in an alpine and subalpine watershed in the Colorado Front Range that has long been the recipient of elevated atmospheric N deposition. Mean annual stream nitrate concentrations since 2000 are higher by 50% than an earlier monitoring period of 1991–1999. Mean annual N export increased by 28% from 2.03 kg N ha−1 yr−1 before 2000 to 2.84 kg N ha−1 yr−1 in Loch Vale watershed since 2000. The substantial increase in N export comes as a surprise, since mean wet atmospheric N deposition from 1991 to 2006 (3.06 kg N ha−1 yr−1) did not increase. There has been a period of below average precipitation from 2000 to 2006 and a steady increase in summer and fall temperatures of 0.12 °C yr−1 in both seasons since 1991. Nitrate concentrations, as well as the weathering products calcium and sulfate, were higher for the period 2000–2006 in rock glacier meltwater at the top of the watershed above the influence of alpine and subalpine vegetation and soils. We conclude the observed recent N increases in Loch Vale are the result of warmer summer and fall mean temperatures that are melting ice in glaciers and rock glaciers. This, in turn, has exposed sediments from which N produced by nitrification can be flushed. We suggest a water quality threshold may have been crossed around 2000. The phenomenon observed in Loch Vale may be indicative of N release from ice features such as rock glaciers worldwide as mountain glaciers retreat.  相似文献   

5.
High elevation alpine and subalpine Rocky Mountain lakes in Colorado and southeastern Wyoming were examined to determine regional variability in water chemistry and their sensitivity to atmospheric deposition. Acid neutralizing capacity, pH, conductivity and concentrations of major anions and cations were compared. Regional differences in water chemistry are evident. The south-eastern most lakes have significantly higher pH, conductivity, ANC, and sums of acid and base concentrations than lakes in the other regions of the state. In contrast the north-western most lakes are significantly more dilute than those from other regions. Despite these two regional differences, most regions are similar in having a wide range of variability in potential sensitivity of their lakes to acidification and nitrogen export. Many wilderness areas in western and eastern regions contains lakes that are extremely sensitive and other lakes not susceptible to deposition. Overall, 70% of the Colorado lakes are sensitive to acidification and 15% are extremely sensitive to acidification. All of the regions had lakes that are classified as susceptible or sensitive to acidification, with 12 of the 17 areas having all of their sampled lakes susceptible or sensitive. Generally NO concentration in surface waters decreased from mid-season to late season; yet a large number of the lakes export NO late in the season, suggesting nitrogen saturation. The results confirm the sensitivity of high elevation wilderness aquatic ecosystems in all regions of Colorado to acidification and nitrogen deposition.  相似文献   

6.
Chemical limnology of soft water lakes in the Upper Midwest   总被引:2,自引:0,他引:2  
Water samples from 36 lakes in northern Minnesota, Wisconsin, and Michigan were collected and analyzed during 1983–1984. All study lakes were dilute and had total alkalinities of less than 150 eq · L–1. Minnesota lakes have hydrologic inputs from the watershed and inputs of base cations derived from the watershed. Study lakes in Minnesota had higher total alkalinities, dissolved organic carbon, and noncarbonate alkalinity as a result of watershed inputs. Lakes in Michigan and Wisconsin were precipitation-dominated seepage lakes that have lower concentrations of base cations than lakes in Minnesota. All of the study lakes have lower sulfate concentrations than expected, based on atmospheric wet deposition and evapotranspiration.Pore water samples collected from one of the study lakes—Little Rock Lake—in Wisconsin were used to calculate diffusive fluxes between the sediment and water column. According to these calculations, the sediments were a source of total alkalinity and Ca2+ and a sink for SO4 2–. The sediment-water exchange of total alkalinity, Ca2+, and SO4 2– appears to be important in the whole-lake budgets of these ions for Little Rock Lake.  相似文献   

7.
Lake Notasha, near the crest of the Oregon Cascade mountain range, is the most dilute lake known. The measured conductivity during two visits was 1.3 and 1.6 µS cm–1 with a sum of base cations of 9 and 18 µeq L–1; bicarbonate was the dominant anion. Most of the cations in the lake can be accounted for by evapoconcentration of precipitation, although input of weathering products cannot be excluded as a source. The topographic watershed has a mixed coniferous forest, but the physical setting of the lake apparently minimizes hydrologic and ionic contributions from the watershed. This feature makes lakes such as Notasha appropriate receptors for monitoring atmospheric contaminants.  相似文献   

8.
An increasing number of studies forecast that anthropogenic climate change poses serious consequences for the biodiversity and ecosystem functioning of high-elevation mountain lakes, through a series of both direct and indirect effects. The impacts of future climate warming on alpine ecosystems are of particular concern, given that warming is expected to be most pronounced at high elevations around the globe. Here, we evaluate the limnological and ecological sensitivity of high-elevation lakes in the Rwenzori Mountains (Uganda-D. R. Congo) to climate change. This is done by comparing the species assemblages of larval chironomid remains deposited recently in lake sediments with those deposited at the base of short cores (dated to within or shortly after the Little Ice Age) in 16 lakes. Chironomid-based reconstructions of mean annual air temperature (MATemp) are made using a variety of inference models (with transfer functions based on weighted averaging, weighted-averaging partial least squares, and a weighted modern analogue technique), and two different calibration data sets, one covering the full regional temperature gradient and one comprising only high-elevation Rwenzori lakes and ponds. The reconstructed historical temperature change ranges between a cooling of −2.03°C and a warming of +3.22°C (with n = 16 lakes × 3 models × 2 calibration data sets). However, excluding the atypical mid-elevation lake Mahoma (2,990 m altitude), we find a three-to-one ratio of cases of inferred warming against inferred cooling, and of the 24 Δ MATemp values exceeding 0.60°C, 23 are positive and only one is negative. Chironomid-inferred temperature changes mostly fall within the error range of the regional temperature inference models. A generalized linear mixed model analysis of the combined result from all lakes (except Mahoma) nevertheless indicates significantly warmer MATemp (on average +0.38 ± 0.11°C) at present compared to between ~85 and ~645 years ago. Inferred temperature changes are independent of whether lakes are located in glaciated or non-glaciated catchments, and of the age of the core base, suggesting that at least part of the signal is due to relatively recent, anthropogenic warming. The direction of faunal change at the lakes in relation to established species–environment relationships suggests that part of the observed shifts in species composition reflect lake-specific evolution in habitat features other than temperature, such as nutrients, pH or oxygen regime, which in our present calibration data set co-vary with temperature to a greater or lesser extent. The fairly uniform and marked historical warming trend in Rwenzori lakes documented by this study highlights their ecological vulnerability and their value as early warning systems for detecting the limnological and ecological effects of global warming.  相似文献   

9.
Terrestrial ecosystems in the southern United States (SUS) have experienced a complex set of changes in climate, atmospheric CO2 concentration, tropospheric ozone (O3), nitrogen (N) deposition, and land-use and land-cover change (LULCC) during the past century. Although each of these factors has received attention for its alterations on ecosystem carbon (C) dynamics, their combined effects and relative contributions are still not well understood. By using the Dynamic Land Ecosystem Model (DLEM) in combination with spatially explicit, long-term historical data series on multiple environmental factors, we examined the century-scale responses of ecosystem C storage and flux to multiple environmental changes in the SUS. The results indicated that multiple environmental changes shifted SUS ecosystems from a C source of 1.20?±?0.56?Pg (1?Pg?=?1015?g) during the period 1895 to 1950, to a C sink of 2.00?±?0.94?Pg during the period 1951 to 2007. Over the entire period spanning 1895–2007, SUS ecosystems were a net C sink of 0.80?±?0.38?Pg. The C sink was primarily due to an increase in the vegetation C pool, whereas the soil C pool decreased during the study period. The spatiotemporal changes of C storage were caused by changes in multiple environmental factors. Among the five factors examined (climate, LULCC, N deposition, atmospheric CO2, and tropospheric O3), elevated atmospheric CO2 concentration was the largest contributor to C sequestration, followed by N deposition. LULCC, climate, and tropospheric O3 concentration contributed to C losses during the study period. The SUS ecosystem C sink was largely the result of interactive effects among multiple environmental factors, particularly atmospheric N input and atmospheric CO2.  相似文献   

10.
1. Within a lake district of relatively homogeneous geomorphology, the responses of lakes to climate are influenced by the complexity of the hydrogeologic setting, position in the landscape, and lake‐specific biological and physical features. We examined lake chemical responses to drought in surface water‐ and groundwater‐dominated districts to address two general questions. (1) Are spatial patterns in chemical dynamics among lakes uniform and synchronous within a lake district, suggesting broad geomorphic controls; variable in a spatially explicit pattern, with synchrony related to landscape position, suggesting hydrologic flowpath controls; or spatially unstructured and asynchronous, suggesting overriding control by lake‐specific factors? (2) Are lake responses to drought a simple function of precipitation quantity or are they dictated by more complex interactions among climate, unique lake features, and hydrologic setting? 2. Annual open‐water means for epilimnetic concentrations of chloride, calcium, sulfate, ANC, DOC, total nitrogen, silica, total phosphorus, and chlorophyll a measured between 1982 and 1995 were assembled for lakes in the Red Lake and ELA districts of north‐western Ontario, the Muskoka – Dorset district in south‐central Ontario, and the Northern Highland district of Wisconsin. Within each district, we compared responses of lakes classified by landscape position into highland or lowland, depending on relative location within the local to regional hydrologic flow system. Synchrony, defined as a measure of the similarity in inter‐annual dynamics among lakes within a district, was quantified as the Pearson product‐moment correlation (r) between two lakes with observations paired by year. To determine if solute concentrations were directly related to interannual variations in precipitation quantity, we used regression analysis to fit district‐wide slopes describing the relationship between each chemical variable and annual (June to May) and October to May (Oct–May) precipitation. 3. Among lakes in each of the three Ontario districts, the pattern of chemical response to interannual shifts in precipitation was spatially uniform. In these surface water‐ dominated districts, solute concentrations were generally a simple function of precipitation. Conservative solutes, like calcium and chloride, tended to be more synchronous and were negatively related to precipitation. Solutes such as silica, total phosphorus, and chlorophyll a, which are influenced by in‐lake processes, were less synchronous and relationships with precipitation tended to be positive or absent. 4. In the groundwater‐dominated Northern Highland lakes of Wisconsin, we observed spatial structure in drought response, with lowland lakes more synchronous than highland lakes. However, there was no evidence for a direct relationship between any solute and precipitation. Instead, increases in the concentration of the conservative ion calcium during drought were not followed by a symmetrical return to pre‐drought conditions when precipitation returned to normal or above‐average values. 5. For calcium, time lags in recovery from drought appeared related to hydrologic features in a complex way. In the highland Crystal Lake, calcium concentrations tracked lake stage inversely, with a return to pre‐drought concentrations and lake stage five years after the drought. This pattern suggests strong evaporative controls. In contrast, after five years of normal precipitation, calcium in the lowland Sparkling Lake had not returned to pre‐drought conditions despite a rebound in lake stage. This result suggests that calcium concentrations in lowland lakes were controlled more by regional groundwater flowpaths, which track climatic signals more slowly. 6. Temporal dynamics driven by climate were most similar among lakes in districts that have a relatively simple hydrology, such as ELA. Where hydrologic setting was more complex, as in the groundwater‐dominated Northern Highland of Wisconsin, the expression of climate signals in lakes showed lags and spatial patterns related to landscape position. In general, we expect that landscape and lake‐specific factors become increasingly important in lake districts with more heterogeneous hydrogeology, topography or land use. These strong chemical responses to climate need to be considered when interpreting the responses of lakes to other regional disturbances.  相似文献   

11.
Background: Long-term climate trends in mountain systems often vary strongly with elevation.

Aims: To evaluate elevation dependence in long-term precipitation trends in subalpine forest and alpine tundra zones of a mid-continental, mid-latitude North American mountain system and to relate such dependence to atmospheric circulation patterns.

Methods: We contrasted 59-year (1952–2010) precipitation records of two high-elevation climate stations on Niwot Ridge, Colorado Front Range, Rocky Mountains, USA. The sites, one in forest (3022 m a.s.l.) and the other in alpine tundra (3739 m), are closely located (within 7 km horizontally, ca. 700 m vertically), but differ with respect to proximity to the mountain-system crest (the Continental Divide).

Results: The sites exhibited significant differences in annual and seasonal precipitation trends, which depended strongly on their elevation and distance from the Continental Divide. Annual precipitation increased by 60 mm (+6%) per decade at the alpine site, with no significant change at the subalpine site. Seasonally, trends at the alpine site were dominated by increases in winter, which we suggest resulted from an increase in orographically generated precipitation over the Divide, driven by upper-air (700 hPa) north-westerly flow. Such a change was not evident at the subalpine site, which is less affected by orographic precipitation on north-westerly flow.

Conclusions: Elevation dependence in precipitation trends appears to have arisen from a change in upper-air flow from predominantly south-westerly to north-westerly. Dependence of precipitation trends on topographic position and season has complex implications for the ecology and hydrology of Niwot Ridge and adjacent watersheds, involving interactions among physical processes (e.g. snowpack dynamics) and biotic responses (e.g. in phenologies and ecosystem productivity).  相似文献   

12.
We investigated concentrations of monomethylmercury (MMHg) at the base of benthic food webs in six lakes from polar desert (biologically poor and low annual precipitation) on Cornwallis Island (Nunavut, Canada, ~75°N latitude). Anthropogenic mercury emissions reach the Arctic by long-range atmospheric transport, and information is lacking on processes controlling MMHg entry into these simple lake food webs, despite their importance in determining transfer to lake-dwelling Arctic char. We examined the influences of diet (using carbon and nitrogen stable isotopes), water depth, and taxonomic composition on MMHg bioaccumulation in benthic invertebrates (Chironomidae and Trichoptera). We also estimated MMHg biomagnification between benthic algae and invertebrates. Similar MMHg concentrations of chironomid larvae in nearshore and offshore zones suggest that benthic MMHg exposure was homogeneous within the lakes. Chironomid δ13C values were also similar in both depth zones, suggesting that diet items with highly negative δ13C, specifically methanogenic bacteria and planktonic organic matter, were not important food (and therefore mercury) sources for profundal larvae. MMHg concentrations were significantly different among two subfamilies of chironomids (Diamesinae, Chironominae) and Trichoptera. Higher MMHg concentrations in Diamesinae were likely related to predation on other chironomids. We found high MMHg biomagnification between benthic algae and chironomid larvae compared with literature estimates for aquatic ecosystems at lower latitudes; thus, benthic processes may affect the sensitivity of polar desert lakes to mercury. Information on benthic MMHg exposure is important for evaluating and tracking impacts of atmospheric mercury deposition and environmental change in this remote High Arctic environment.  相似文献   

13.
Global warming has accelerated glacial retreat in high-elevation and high-latitude ecosystems, exposing new terrain that can undergo predictable patterns of ecosystem succession, especially in coastal areas with relatively mild climates. However, little work has been done in harsher high-elevation and inland areas where the rate of plant and microbial succession may be greatly slowed by dryness and low temperatures. The present study is the first to address microbial succession at a major glacial foreland (the Middle Fork Toklat Glacier) in the interior of Alaska. We used a spatially nested sampling regime to reveal the landscape patterns in microbial activity and biogeochemical pools during the pre-plant stage of primary succession along this high-elevation and high-latitude chronosequence. Recently deglaciated soils (0–10 years) were colonized by a diverse microbial community that included many chemoautotrophs that likely subsist on high levels of un-weathered minerals (for example, pyrite) found at this site. Rates of N-fixation and extracellular enzyme activities were very low in the youngest soils sampled, but increased during the first 20 years of succession coinciding with a decrease in TOC and C:N levels. In older soils (20–54 years), TOC and TON increased and IN became undetectable perhaps indicating N limitation. Indicators of microbial activity stopped increasing 20 years post de-glaciation and remained at levels well below those seen at lower elevation and lower latitude sites, perhaps indicating severe nutrient limitations. Stoichiometric analyses also indicated phosphorus and nitrogen limitation across the entire chronosequence, with no indication of carbon limitation of microbial activity. These results indicate that nutrient limitation, rather than the constraints of a severe climate, may be the dominant factor slowing the rate of succession at high-latitude and high-altitude glacial forelands.  相似文献   

14.
About 200 lakes in Southern Alps (Italy and Switzerland) were studied in order to quantify their acidification. Although samplings were carried out in summer, long after the acid shock caused by snowmelt, some lakes were found to be acidic and 47% of them show alkalinity values of below 50 μeq 1-1. Losses in alkalinity (acidification levels) were evaluated using a titration model with variable F-factor. Factor analysis shows that the main factors influencing water chemistry are related to rock weathering and nitrate uptake by vegetation. In watersheds containing carbonatic rocks the weathering of calcite is responsible for the most of the alkalinity production. We therefore focused on a set of 19 low-alkalinity lakes in the Maggia Valley lying in watersheds containing mainly acidic rocks. Results show that the weathering of silicate and calcite (present in small quantities, but highly soluble) and nitrate uptake account for most of the alkalinity production. Other watershed and in-lake processes may be important in some cases, but they never account for more than 27 % of the alkalinity production in these lakes.  相似文献   

15.
Solid phase Fe and S fractions were examined in an acid sulfate soil (ASS) wetland undergoing remediation via tidal inundation. Considerable diagenetic enrichment of reactive Fe(III) oxides (HCl- and dithionite-extractable) occurred near the soil surface (0?C0.05 m depth), where extremely large concentrations up to 3534 ??mol/g accounted for ~90% of the total Fe pool. This major source of reactive Fe exerts a substantial influence on S cycling and the formation, speciation and transformation of reduced inorganic S (RIS) in tidally inundated ASS. Under these geochemical conditions, acid volatile sulfide (AVS; up to 57 ??mol/g) and elemental sulfur (S0; up to 41 ??mol/g) were the dominant fractions of RIS in near surface soils. AVS?CS to pyrite?CS ratios exceeded 2.9 near the surface, indicating that abundant reactive Fe favoured the accumulation of AVS minerals and S0 over pyrite. This is supported by the significant correlation of poorly crystalline Fe with AVS?CS and S0?CS contents (r = 0.83 and r = 0.85, respectively, P < 0.01). XANES spectroscopy provided direct evidence for the presence of a greigite-like phase in AVS?CS measured by chemical extraction. While the abundant reactive Fe may limit the transformation of AVS minerals and S0 to pyrite during early diagenesis (~5 years), continued sulfidisation over longer time scales is likely to eventually lead to enhanced sequestration of S within pyrite (with a predicted 8% pyrite by mass). These findings provide an important understanding of sulfidisation processes occurring in reactive Fe-enriched, tidally inundated ASS landscapes.  相似文献   

16.
CO2 consumption by silicate weathering has exerted a major control on atmospheric CO2 over geologic time. In order to assess plant impact on this process, the study compared water geochemistry and CO2 consumption rates by silicate weathering in watersheds covered by bamboos and other forests. Our study showed that SiO2 concentrations (80?~?150 μmol/L, average 105 μmol/L) in water from pure bamboo forest watersheds were higher than that (15?~?85 μmol/L, average 60 μmol/L) from other watersheds. Si/(Nasilicate?+?Ksilicate) ratios in water draining from bamboo watersheds (2.0?~?4.0, average 2.9) were higher than that from other watersheds ?>(0.7?~?2.7, average 2.2). CO2 consumption rates by silicate weathering in bamboo watersheds (1.8?~?3.4 105 mol/km2/yr, average 2.5 105 mol/km2/yr) were higher than that in other watersheds (1.5?~?2.6 105 mol/km2/yr, average 2.0 105 mol/km2/yr). Therefore, bamboo-enhanced silicate weathering is a potential biogeochemical remediation approach for atmospheric CO2.  相似文献   

17.
Ecosystem Responses to Nitrogen Deposition in the Colorado Front Range   总被引:11,自引:2,他引:9  
We asked whether 3–5 kg N y−1 atmospheric N deposition was sufficient to have influenced natural, otherwise undisturbed, terrestrial and aquatic ecosystems of the Colorado Front Range by comparing ecosystem processes and properties east and west of the Continental Divide. The eastern side receives elevated N deposition from urban, agricultural, and industrial sources, compared with 1–2 kg N y−1 on the western side. Foliage of east side old-growth Englemann spruce forests have significantly lower C:N and lignin:N ratios and greater N:Mg and N:P ratios. Soil % N is higher, and C:N ratios lower in the east side stands, and potential net N mineralization rates are greater. Lake NO3 concentrations are significantly higher in eastern lakes than western lakes. Two east side lakes studied paleolimnologically revealed rapid changes in diatom community composition and increased biovolumes and cell concentrations. The diatom flora is now representative of increased disturbance or eutrophication. Sediment nitrogen isotopic ratios have become progressively lighter over the past 50 years, coincident with the change in algal flora, possibly from an influx of isotopically light N volatilized from agricultural fields and feedlots. Seventy-five percent of the increased east side soil N pool can be accounted for by increased N deposition commensurate with human settlement. Nitrogen emissions from fixed, mobile, and agricultural sources have increased dramatically since approximately 1950 to the east of the Colorado Front Range, as they have in many parts of the world. Our findings indicate even slight increases in atmospheric deposition lead to measurable changes in ecosystem properties. Received 16 November 1999; accepted 8 February 2000.  相似文献   

18.
Symbiotic nitrogen (N)‐fixing trees can drive N and carbon cycling and thus are critical components of future climate projections. Despite detailed understanding of how climate influences N‐fixation enzyme activity and physiology, comparatively little is known about how climate influences N‐fixing tree abundance. Here, we used forest inventory data from the USA and Mexico (>125,000 plots) along with climate data to address two questions: (1) How does the abundance distribution of N‐fixing trees (rhizobial, actinorhizal, and both types together) vary with mean annual temperature (MAT) and precipitation (MAP)? (2) How will changing climate shift the abundance distribution of N‐fixing trees? We found that rhizobial N‐fixing trees were nearly absent below 15°C MAT, but above 15°C MAT, they increased in abundance as temperature rose. We found no evidence for a hump‐shaped response to temperature throughout the range of our data. Rhizobial trees were more abundant in dry than in wet ecosystems. By contrast, actinorhizal trees peaked in abundance at 5–10°C MAT and were least abundant in areas with intermediate precipitation. Next, we used a climate‐envelope approach to project how N‐fixing tree relative abundance might change in the future. The climate‐envelope projection showed that rhizobial N‐fixing trees will likely become more abundant in many areas by 2080, particularly in the southern USA and western Mexico, due primarily to rising temperatures. Projections for actinorhizal N‐fixing trees were more nuanced due to their nonmonotonic dependence on temperature and precipitation. Overall, the dominant trend is that warming will increase N‐fixing tree abundance in much of the USA and Mexico, with large increases up to 40° North latitude. The quantitative link we provide between climate and N‐fixing tree abundance can help improve the representation of symbiotic N fixation in Earth System Models.  相似文献   

19.
Bacterial sulfate reduction is significant for the karst development and pyrite formation within the Ordovician weathering crust in the Ordos Basin of China. Bacterial communities were studied to determine their potential geomicrobiological functioning by constructing 16S rRNA clone library for in situ samples. The results showed that 147 positive clones sequenced were divided into 23 operational taxonomic units (OTUs), 8 OTUs accouting for 80% of all the selected clones belonged to the genus Desulfosporosinus. Bacterial sulfate reduction has been demonstrated to take place in the Ordovician by the classical hydrogeological information together with the stable sulfur isotope analysis from both the pyrite in the weathering crust and the products of the laboratory experiments on the dissolution of sulfate rock. The H2S produced by bacterial sulfate reduction combined with iron to form pyrite, resulting in the development of hypogenic karst in the weathering crust. This process provided a reasonable interpretation for karst development in the vicinity of sulfur deposits in the Ordos Basin.  相似文献   

20.
Riverine transport of organic carbon (OC) to the ocean is a significant component in the global carbon (C) cycle and the concentration of total organic carbon (TOC) in rivers and lakes is vital for ecosystem properties and water quality for human use. By use of a large dataset comprising chemical variables and detailed catchment information in ~1000 Norwegian pristine lakes covering a wide climatic range, we were able to predict TOC concentrations with high accuracy. We further predict, using a ‘space‐for‐time’ approach and a downscaled, moderate, climate change scenario, that northern, boreal regions likely will experience strong increases in OC export from catchments to surface waters. Median concentrations of OC in these lakes will increase by 65%, from the current median of 2.0–3.3 mg C L?1. This is a long‐term effect, primarily mediated by increased terrestrial vegetation cover in response to climate change. This increase OC will have severe impacts on food‐webs, productivity and human use. Given the robustness of the estimates and the general applicability of the parameters, we suggest that these findings would be relevant to boreal areas in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号