首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Levels of nine heavy metals were measured in the livers and salt glands of greater scaup (Aythya marila), black duck (Anas rubripes) and mallard (A. platyrhynchos) from Raritan Bay, New Jersey to determine if the functioning avian salt gland concentrates heavy metals. Heavy metals examined were cadmium, cobalt, chromium, copper, lead, mercury, manganese, nickel and zinc. Heavy metal levels varied significantly by species and tissue for chromium, copper, lead, and manganese, and by tissue for cobalt, mercury, nickel and zinc. In comparing tissues cobalt was higher in the salt glands than in livers of all three species; chromium and nickel were higher in the salt gland than liver for mallard and black duck; and lead, manganese and zinc were higher in the liver than the salt gland in greater scaup. Generally metal levels were higher in the salt gland for mallard and black duck, and in the liver for greater scaup.  相似文献   

2.
The molecular basis for the transport of manganese across membranes in plant cells is poorly understood. We have found that IRT1, an Arabidopsis thaliana metal ion transporter, can complement a mutant Saccharomyces cerevisiae strain defective in high-affinity manganese uptake (smf1). The IRT1 protein has previously been identified as an iron transporter. The current studies demonstrated that IRT1, when expressed in yeast, can transport manganese as well. This manganese uptake activity was inhibited by cadmium, iron(II) and zinc, suggesting that IRT1 can transport these metals. The IRT1 cDNA also complements a zinc uptake-deficient yeast mutant strain (zrt1zrt2), and IRT1-dependent zinc transport in yeast cells is inhibited by cadmium, copper, cobalt and iron(III). However, IRT1 did not complement a copper uptake-deficient yeast mutant (ctr1), implying that this transporter is not involved in the uptake of copper in plant cells. The expression of IRT1 is enhanced in A. thaliana plants grown under iron deficiency. Under these conditions, there were increased levels of root-associated manganese, zinc and cobalt, suggesting that, in addition to iron, IRT1 mediates uptake of these metals into plant cells. Taken together, these data indicate that the IRT1 protein is a broad-range metal ion transporter in plants.  相似文献   

3.
The concentration of trace elements in L-cells has been studied as a function of the trace metal content of the growth medium. Cells were cultured in synthetic media which contained varying trace amounts of the elements manganese, iron, cobalt, copper, zinc and molybdenum. The cellular concentration of the elements potassium, iron, copper and zinc were then determined. It was found that the cell accumulates trace metals at a different rate than they are made available. Deficiencies in zinc could be “induced” in the cell by increasing the concentration of iron, manganese and cobalt; cellular iron deficiencies were observed at larger medium concentrations of zinc, manganese, copper and cobalt. Trace metal uptake by the cell was seen to parallel the utilization by multicellular organisms.  相似文献   

4.
This study compares the seminal plasma trace metal levels of hospital workers with groups of industrial workers in a petroleum refinery, smelter, and chemical plant. The metals measured were the essential metals (copper, zinc, nickel, cobalt, and manganese) and the toxic metals (lead, cadmium, and aluminum). The group mean±SE metal level for each group (50 subjects per group) was calculated, and the statistical significance of the group mean differences of the industrial groups with the hospital group (control) was determined by the Student’s t-test. The differences observed in the smelter group were increased copper and zinc (p≤0.001) and decreased nickel, cobalt, and manganese (p≤0.001,≤0.01). The refinery group differences were increased copper, zinc, and nickel (p≤0.001) but decreased cobalt and manganese (p≤0.001). The chemical group differences were increased zinc (p≤0.001) and decreased cobalt (p≤0.001). The seminal plasma levels of the toxic metals lead and aluminum were increased in each of the industrial groups (p≤0.001). Concurrent differences were (1) decreased accumulation of nickel, cobalt, and manganese in the smelter group, (2) decreased cobalt and managanese in the refinery group, and (3) only decreased cobalt in the chemical group.  相似文献   

5.
Zn,Cu and Co in cyanobacteria: selective control of metal availability   总被引:4,自引:0,他引:4  
Homeostatic systems for essential and non-essential metals create the cellular environments in which the correct metals are acquired by metalloproteins while the incorrect ones are somehow avoided. Cyanobacteria have metal requirements often absent from other bacteria; copper in thylakoidal plastocyanin, zinc in carboxysomal carbonic anhydrase, cobalt in cobalamin but magnesium in chlorophyll, molybdenum in heterocystous nitrogenase, manganese in thylakoidal water-splitting oxygen-evolving complex. This article reviews: an intracellular trafficking pathway for inward copper supply, the sequestration of surplus zinc by metallothionein (also present in other bacteria) and the detection and export of excess cobalt. We consider the influence of homeostatic proteins on selective metal availability.  相似文献   

6.
7.
The tripeptide H-Gly-His-Lys-OH (GHL) is a human plasma constituent which has been previously shown to modulate the growth and viability of a variety of cell types and organisms. Experimental observations presented herein indicate that GHL is complexed with the transition metal ions Cu++ and Fe++ in vivo and may exert its biological effects as a peptide-metal chelate. At physiological pH in vitro, GHL associates with ionic copper, cobalt, iron, molybdenum, manganese, nickel, and zinc, but has no affinity for calcium, manganese, potassium, and sodium. GHL acts synergistically with copper, iron, cobalt, and zinc to alter patterns of cell growth in monolayer cultures of a tumorigenic hepatoma cell line (HTC4). These transition metals induce cellular flattening and adhesion to support surfaces, and inhibit DNA synthesis and lactic acid production when growth is limited by reduction of serum concentrations in medium. These inhibitory effects are neutralized, and intercellular adhesion and growth are stimulated by GHL in medium at nanomolar concentrations. Cu and Fe are the most active metals when combined with GHL. The results suggest that the inability of HTC4 cultures to replicate without adequate concentrations of serum in medium may reflect deficiency of GHL and transition metals, which appear to form complexes prior to interaction with cells. Chelation of transition metals with GHL and, potentially, with other growth-modulating peptide factors in plasma or medium, may provide a mechanism for expression and regulation of biological activities influenced by transition metals and polypeptide growth factors. The observed effects of GHL-metal complexes, including stimulation of cellular adhesiveness to substratum (flattening) and intercellular attachment (monolayer formation), appear to satisfy requirements for growth of hepatoma cells in monolayer culture.  相似文献   

8.
Metal cofactors are required for many enzymes in anaerobic microbial respiration. This study examined iron, cobalt, nickel, copper, and zinc in cellular and abiotic phases at the single-cell scale for a sulfate-reducing bacterium (Desulfococcus multivorans) and a methanogenic archaeon (Methanosarcina acetivorans) using synchrotron X-ray fluorescence microscopy. Relative abundances of cellular metals were also measured by inductively coupled plasma mass spectrometry. For both species, zinc and iron were consistently the most abundant cellular metals. M. acetivorans contained higher nickel and cobalt content than D. multivorans, likely due to elevated metal requirements for methylotrophic methanogenesis. Cocultures contained spheroid zinc sulfides and cobalt/copper sulfides.  相似文献   

9.
We analysed the roles and distribution of metal ions in enzymatic catalysis using available public databases and our new resource Metal-MACiE (). In Metal-MACiE, a database of metal-based reaction mechanisms, 116 entries covering 21% of the metal-dependent enzymes and 70% of the types of enzyme-catalysed chemical transformations are annotated according to metal function. We used Metal-MACiE to assess the functions performed by metals in biological catalysis and the relative frequencies of different metals in different roles, which can be related to their individual chemical properties and availability in the environment. The overall picture emerging from the overview of Metal-MACiE is that redox-inert metal ions are used in enzymes to stabilize negative charges and to activate substrates by virtue of their Lewis acid properties, whereas redox-active metal ions can be used both as Lewis acids and as redox centres. Magnesium and zinc are by far the most common ions of the first type, while calcium is relatively less used. Magnesium, however, is most often bound to phosphate groups of substrates and interacts with the enzyme only transiently, whereas the other metals are stably bound to the enzyme. The most common metal of the second type is iron, which is prevalent in the catalysis of redox reactions, followed by manganese, cobalt, molybdenum, copper and nickel. The control of the reactivity of redox-active metal ions may involve their association with organic cofactors to form stable units. This occurs sometimes for iron and nickel, and quite often for cobalt and molybdenum. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
In the bakers' yeast Saccharomyces cerevisiae, high affinity manganese uptake and intracellular distribution involve two members of the Nramp family of genes, SMF1 and SMF2. In a search for other genes involved in manganese homeostasis, PHO84 was identified. The PHO84 gene encodes a high affinity inorganic phosphate transporter, and we find that its disruption results in a manganese-resistant phenotype. Resistance to zinc, cobalt, and copper ions was also demonstrated for pho84Delta yeast. When challenged with high concentrations of metals, pho84Delta yeast have reduced metal ion accumulation, suggesting that resistance is due to reduced uptake of metal ions. Pho84p accounted for virtually all the manganese accumulated under metal surplus conditions, demonstrating that this transporter is the major source of excess manganese accumulation. The manganese taken in via Pho84p is indeed biologically active and can not only cause toxicity but can also be incorporated into manganese-requiring enzymes. Pho84p is essential for activating manganese enzymes in smf2Delta mutants that rely on low affinity manganese transport systems. A role for Pho84p in manganese accumulation was also identified in a standard laboratory growth medium when high affinity manganese uptake is active. Under these conditions, cells lacking both Pho84p and the high affinity Smf1p transporter accumulated low levels of manganese, although there was no major effect on activity of manganese-requiring enzymes. We conclude that Pho84p plays a role in manganese homeostasis predominantly under manganese surplus conditions and appears to be functioning as a low affinity metal transporter.  相似文献   

11.
Transition metals are common components of cellular proteins and the detailed study of metalloproteins necessitates the identification and quantification of bound metal ions. Screening for metals is also an informative step in the initial characterization of the numerous unknown and unclassified proteins now coming through the proteomic pipeline. We have developed a high-performance liquid chromatography method for the quantitative determination of the most prevalent biological transition metals: manganese, iron, cobalt, nickel, copper, and zinc. The method is accurate and simple and can be adapted for automated high-throughput studies. The metal analysis involves acid hydrolysis to release the metal ions into solution, followed by ion separation on a mixed-bead ion-exchange column and absorbance detection after postcolumn derivatization with the metallochromic indicator 4-(2-pyridylazo)resorcinol. The potential interferences by common components of protein solutions were investigated. The metal content of a variety of metalloproteins was analyzed and the data were compared to data obtained from inductively coupled plasma-atomic emission spectroscopy. The sensitivity of the assay allows for the detection of 0.1-0.8 nmol, depending on the metal. The amount of protein required is governed by the size of the protein and the fraction of protein with metal bound. For routine analysis 50 microg was used but for many proteins 10 microg would be sufficient. The advantages, disadvantages, and possible applications of this method are discussed.  相似文献   

12.
Cobalt is an important element with magnetic properties used in various industrial applications, but is also needed for biological activity. Very little is known about the cellular response of living systems to cobalt stress. Towards investigating this mechanism, we isolated individual Saccharomyces cerevisiae cells resistant to high cobalt concentrations up to 8 mmol l−1, by employing four different ‘in vivo’ evolutionary engineering strategies: selection under constant or gradually increasing stress levels, and selection under continuous or pulse exposure to cobalt stress. Selection under continuous exposure to gradually increasing cobalt stress levels yielded the most resistant cell population to cobalt. However, the resistance was highly heterogeneous within the mutant populations ranging from 3- to 3700-fold survival rate of isolated individuals to 8 mmol l−1 CoCl2 in the most resistant population. Moreover, cobalt-resistant individual colonies were associated with 2–4-times lower intracellular cobalt contents as compared to wild-type, and with cross-resistance to metals such as nickel, zinc, manganese, but not to copper and chromium ions. Contrary to mutants evolved under continuous exposure to cobalt, those isolated by pulse exposure strategy also exhibited resistance to heat shock and hydrogen peroxide stress. Taken together, this study reinforced the fact that evolutionary engineering is useful in selecting strains with very specific phenotypes, and further illustrated the importance of the strategy chosen to isolate the best evolved strain.  相似文献   

13.
Many reports have documented wetlands removing a wide variety of contaminants in mine drainage, including aluminum, arsenic, cadmium, cobalt, copper, cyanide, iron, lead, manganese, nickel, selenium, uranium, and zinc. This article reviews biogeochemical processes responsible for their ability to transform and retain metals into insoluble forms. Shallow depth and large inputs of organic matter are key characteristics of wetlands that promote chemical and biological processes effecting metal removal. Aquatic macrophytes play an essential role in creating and maintaining this environment, but their uptake of metals usually accounts for a minor proportion of the total mass removed. Sorption onto organic matter is important in metal removal, particularly for copper, nickel, and uranium. Aluminum, iron, and manganese are often removed by hydrolysis, with the resulting acidification of water buffered by alkalinity produced in wetland sediments by anaerobic bacteria. Bacterial sulfate reduction accounts for much of this alkalinity. It can also contribute significantly to metal removal by formation of insoluble sulfides. Other important processes include the formation of insoluble carbonates, reduction to nonmobile forms, and adsorption onto iron oxides and hydroxides. Examples from field studies are presented throughout the review to illustrate these processes.  相似文献   

14.
15.
Binary and ternary systems involving adenosine 5′-triphosphate (ATP), 2,2′-dipyridylamine (DPA) and magnesium, calcium, strontium, manganese, cobalt, copper, and zinc(II) metal ions have been investigated in aqueous media by potentiometric titrations. The analysis of the titration curves shows the existence of M(ATP)2−, M(ATP)(H), and M(ATP)2(H)24− species for alkaline-earth metal ions, while no ternary complex can be detected. For transition metal ions both binary and ternary species are found. Binary M(ATP)2(H)24− complexes are present in solutions containing manganese and cobalt(II) metal ions but these species cannot be revealed in the case of copper and zinc(II). Ternary complexes as M(ATP)(DPA)2− and M(ATP)(DPA)(H) are common to all transition metals. Binuclear and hydroxo complexes as M2(ATP)(OH) and M(ATP)(OH)3− are found only for copper and zinc(II). A hypothesis on the possible role of the species M-ATP in 1:2 ratio in the dephosphorylation mechanism is advanced on the basis of a comparison between the equilibrium data in the solution phase and the solid state structures of the magnesium, calcium, and manganese(II)- ATP-DPA systems.  相似文献   

16.
TRACE-ELEMENT TOXICITIES IN OAT PLANTS   总被引:4,自引:0,他引:4  
Excessive amounts of nickel, cobalt, chromium, copper, zinc, manganese, molybdenum and aluminium in nutrient solutions supplied to oat plants in sand culture produce ( a ) chlorosis and ( b ) other symptoms specific to the element involved. The specific symptoms are distinct for each metal, although those of cobalt and nickel might be confused.
The toxic effects of nickel, cobalt, copper, zinc, manganese and molybdenum are associated with high concentrations of the element in the leaf tissue, but this is not always so with chromium and aluminium.
The toxic effects of nickel, chromium, copper and molybdenum are associated with a reduced nitrogen content of the plant. Nickel, cobalt, chromium, zinc and manganese increase the concentration of phosphorus in the tissue whilst aluminium decreases it, probably to a deficiency level.
Aluminium reduces the intensity of toxic symptoms produced by nickel—probably by reducing the uptake of nickel and phosphorus. Copper effectively reduces the leaf necrosis produced by nickel, but not the nickel content of the leaf tissue; it is suggested that one factor in nickel toxicity may be inhibition of one or more functions of copper. The other elements slightly increase chlorosis and some increase necrosis.
The order of activitjl of the elements in producing chlorosis is found to be Ni>Cu>Co>Cr>Zn>Mo>Mn. This order, which is related to that giving yield reduction and is similar to the order of stability of metal complexes, is discussed in relation to induced iron deficiency.  相似文献   

17.
Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ~40, 30, and 0.09 μM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1.  相似文献   

18.
The many highways for intracellular trafficking of metals   总被引:3,自引:0,他引:3  
Metal ions such as copper and manganese represent a unique problem to living cells in that these ions are not only essential co-factors for metalloproteins, but are also potentially toxic. To aid in the homeostatic balance of essential but toxic metals, cells have evolved with a complex network of metal trafficking pathways. The object of such pathways is two-fold: to prevent accumulation of the metal in the freely reactive form (metal detoxification pathways) and to ensure proper delivery of the ion to target metalloproteins (metal utilization pathways). Much of what we currently know regarding these complex pathways of metal trafficking has emerged from molecular genetic studies in baker's yeast, Saccharomyces cerevisiae. In this review, we shall briefly highlight the current understanding of factors that function in the trafficking and handling of copper, including copper detoxification factors, copper transporters and copper chaperones. In addition, very recent findings on the players involved in manganese trafficking will be presented. The goal is to provide a paradigm for the intracellular handling of metals that may be applied in a more general sense to metals that serve essential functions in biology.Electronic Supplementary Material Supplementary material is available in the online version of this article Abbreviations CTR cell surface transporter - GSH glutathione - MCF mitochondrial carrier family - mito mitochondria - MT metallothionein - SOD superoxide dismutase  相似文献   

19.
Acid mine drainage (AMD), an acidic metal-bearingwastewater, poses a severe pollution problem attributedto post mining activities. The metals usuallyencountered in AMD and considered of concern for riskassessment are arsenic, cadmium, iron, lead, manganese,zinc, copper and sulfate. The pollution generated byabandoned mining activities in the area of Butte, Montanahas resulted in the designation of the Silver Bow Creek–ButteArea as the largest Superfund (National Priorities List) sitein the U.S. This paper reports the results of bench-scalestudies conducted to develop a resource recovery basedremediation process for the clean up of the Berkeley Pit.The process utilizes selective, sequential precipitation (SSP)of metals as hydroxides and sulfides, such as copper, zinc,aluminum, iron and manganese, from the Berkeley Pit AMDfor their removal from the water in a form suitable foradditional processing into marketable precipitates and pigments.The metal biorecovery and recycle process is based on completeseparation of the biological sulfate reduction step and themetal precipitation step. Hydrogen sulfide produced in the SRBbioreactor systems is used in the precipitation step to forminsoluble metal sulfides. The average metal recoveries usingthe SSP process were as follows: aluminum (as hydroxide) 99.8%,cadmium (as sulfide) 99.7%, cobalt (as sulfide) 99.1% copper(as sulfide) 99.8%, ferrous iron (sulfide) 97.1%, manganese(as sulfide) 87.4%, nickel (as sulfide) 47.8%, and zinc (as sulfide)100%. The average precipitate purity for metals, copper sulfide,ferric hydroxide, zinc sulfide, aluminum hydroxide and manganesesulfide were: 92.4, 81.5, 97.8, 95.6 , 92.1 and 75.0%, respectively.The final produced water contained only calcium and magnesiumand both sulfate and sulfide concentrations were below usablewater limits. Water quality of this agriculturally usable watermet the EPA's gold standard criterion.  相似文献   

20.
Exposure of bovine estrogen receptor to the metal chelators EDTA and 1,10-phenanthroline results in a loss of nonspecific DNA binding, presumably because of the removal of "zinc finger" zinc. Nonspecific DNA binding, as measured by a DNA-cellulose binding assay, can be restored by dialysis of the aporeceptor against buffer containing zinc, cadmium, and cobalt but not with buffer containing copper or nickel. More detailed studies were carried out using a bacterially expressed polypeptide encompassing the DNA binding domain of the human estrogen receptor. Apopolypeptide fails to bind DNA specifically, as measured by mobility shift assay using a consensus estrogen response element hexamer containing oligonucleotide, but DNA binding was restored by dialysis of the apopolypeptide against buffer containing zinc, cadmium, and cobalt but not with buffer containing copper or nickel. Dissociation constants of zinc- and cadmium-reconstituted polypeptide for the estrogen response element hexamer (66 and 48 nM, respectively) are virtually indistinguishable from native polypeptide (Kd = 48 nM) whereas cobalt-reconstituted polypeptide has a lower affinity (Kd = 720 nM). However, native, zinc-, cadmium-, and cobalt-reconstituted polypeptides gave identical results in a methylation interference assay. Competition experiments with zinc and copper or nickel suggest that copper and nickel are able to bind to zinc finger residues but do so nonproductively. The relative affinities copper greater than cadmium greater than zinc greater than cobalt greater than nickel for the polypeptide were determined by a zinc blot competition assay. The ability of cadmium and cobalt to substitute for zinc in the zinc fingers demonstrates a structural "flexibility" in the DNA binding domain as each of these metals has slightly different ionic radii. On the other hand, subtle differences in DNA binding affinity and/or specificity could exist, which may not be detectable here. Also, the ability of metals to substitute for zinc in the DNA binding domain suggests that metal substitution in these zinc fingers in vivo may be of relevance to the toxicity and/or carcinogenicity of some of these metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号