首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmacytoid dendritic cells (pDCs) are versatile cells of the immune response, secreting type I IFNs and differentiating into potent immunogenic or tolerogenic APCs. pDCs can express adhesion and chemokine receptors for lymphoid tissues, but are also recruited by unknown mechanisms during tissue inflammation. We use a novel mAb specific for serpentine chemokine-like receptor 1 (CMKLR1) to evaluate its expression by circulating leukocytes in humans. We show that CMKLR1 is expressed by circulating pDCs in human blood, whereas myeloid DCs (mDCs) as well as lymphocytes, monocytes, neutrophils, and eosinophils are negative. We identify a major serum agonist activity for CMKLR1 as chemerin, a proteolytically activated attractant and the sole known ligand for CMKLR1, and we show that chemerin is activated during blood coagulation and attracts pDC but not mDC in ex vivo chemotaxis assays. We conclude that CMKLR1 expression and chemerin-mediated chemotaxis distinguish circulating pDCs from mDCs, providing a potential mechanism for their differential contribution to or regulation of immune responses at sites of bleeding or inflammatory protease activity.  相似文献   

2.
Dendritic cells (DCs) are bone marrow-derived mononuclear cells that play a central role in the initiation of immune responses. Because human lung DCs have been incompletely characterized, we enumerated and phenotyped mononuclear cell populations from excess lung tissue obtained at surgery. Myeloid DCs (MDCs) were identified as CD1c(+)CD11c(+)CD14(-)HLA-DR(+) cells and comprised approximately 2% of low autofluorescent (LAF) mononuclear cells. Plasmacytoid DCs (PDCs) were characterized as CD123(+)CD11c(-)CD14(-)HLA-DR(+) cells and comprised approximately 1.0% of the LAF mononuclear cells. Cells enriched in MDCs expressed CD86, moderate CD80, and little CD40, but cells enriched in PDCs had little to no expression of these three costimulatory molecules. CD11c(+)CD14(-) lineage-negative (MDC-enriched) LAF cells were isolated and shown to be much more potent in stimulating an alloreaction than CD11c(+)CD14(+) lineage-negative (monocyte-enriched) LAF cells. PDC-enriched cells were more capable of responding to a TLR-7 agonist by secreting IFN-alpha than MDC-enriched cells. MDC-enriched cells were either CD123(+) or CD123(-), but both subsets secreted cytokines and chemokines typical of MDC upon stimulation with a TLR-4 agonist and both subsets failed to secrete IFN-alpha upon stimulation with a TLR-7 agonist. By immunohistochemistry, we identified MDCs throughout different anatomical locations of the lung. However, our method did not allow the localization of PDCs with certainty. In conclusion, in the human lung MDCs were twice as numerous and expressed higher levels of costimulatory molecules than PDCs. Our data suggest that both lung DC subsets exert distinct immune modulatory functions.  相似文献   

3.
The lymphoid past of mouse plasmacytoid cells and thymic dendritic cells   总被引:13,自引:0,他引:13  
There has been controversy over the possible lymphoid origin of certain dendritic cell (DC) subtypes. To resolve this issue, DC and plasmacytoid pre-DC isolated from normal mouse tissues were analyzed for transient (mRNA) and permanent (DNA rearrangement) markers of early stages of lymphoid development. About 27% of the DNA of CD8(+) DC from thymus, and 22-35% of the DNA of plasmacytoid pre-DC from spleen and thymus, was found to contain IgH gene D-J rearrangements, compared with 40% for T cells. However, the DC DNA did not contain IgH gene V-D-J rearrangements nor T cell Ag receptor beta gene D-J rearrangements. The same DC lineage populations containing IgH D-J rearrangements expressed mRNA for CD3 chains, and for pre-T alpha. In contrast, little of the DNA of the conventional DC derived from spleen, lymph nodes, or skin, whether CD8(+) or CD8(-), contained IgH D-J rearrangements and splenic conventional DC expressed very little CD3 epsilon or pre-T alpha mRNA. Therefore, many plasmacytoid pre-DC and thymic CD8(+) DC have shared early steps of development with the lymphoid lineages, and differ in origin from conventional peripheral DC.  相似文献   

4.
Studies of bronchoalveolar lavage fluid (BALF) dendritic cells (DC) have been hampered by the scarcity of DC and the lack of DC-specific surface markers. Four surface Ag have been recently described as specific markers for distinct subsets of DC and have been used for the isolation and characterization of fresh noncultured DC from lung resection specimens: BDCA-1 (CD1c) and BDCA-3 for myeloid DC type 1 and type 2, respectively, and BDCA-2 and BDCA-4 for plasmacytoid DC. The aim of this study was to develop a new method for the isolation of BALF DC, using immunomagnetic separation of BDCA+ cells. Mononuclear cells were obtained from BALF after Ficoll-Paque density gradient centrifugation. Monocytes, T cells and B cells were magnetically labelled and depleted. The unlabelled cell fraction was incubated with BDCA-1, BDCA-3 and BDCA-4 beads and the total BDCA+ DC were retained. The ability of isolated DC to induce T-cell responses was evaluated by coculturing the isolated DC with immunomagnetically sorted naive T cells. The above procedure resulted in a population of viable DC that showed a strong capacity in induce T-cell responses. Functionally intact human BALF myeloid DC types 1 and 2 as well as plasmacytoid DC can be easily obtained by immunomagnetic isolation. Considering that bronchoalveolar lavage is a minimally invasive procedure, these cells are optimal candidates with which to elucidate the properties and capabilities of pulmonary DC.  相似文献   

5.
Summary A long-term stroma-dependent culture system (LTC) has been developed which continuously produces hemopoietic cells providing an in vitro system for the study of cell differentiation. These nonadherent cell populations contain a large subpopulation of dendritic cells (DC). LTC producing DC were easily generated from spleen, but could also be established from bone marrow (BM) and lymph node with less success. It was difficult to establish DC-producing LTC from thymus. The properties of splenic and thymic stroma have been compared. Spleen stroma developed more complicated networks of fibroblasts, endothelial cells, macrophages, and DC. Thymic stromal monolayers were dominated by epithelial cells and fibroblasts, with a lower proportion of macrophages and endothelial cells. They had a relatively sparse structure of cell networks compared with spleen stroma. Cells with dendritiform morphology first appeared in cultures by 2–3 wk. The majority of cells produced were large cells which expressed DC-specific cell surface markers, major histocompatibility complex (MHC) Class II molecules, and the CD80/CD86(B7) costimulator. A high proportion of cells also expressed myeloid cell markers. No T or B lymphoid cells or granulocytes were present in the cultures. LTC continued to produce nonadherent cells resembling myeloid/DC for long periods, even after passage of stromal cells and stem cells at about 3–4 mo. after culture establishment. The LTC system offers potential to study the in vitro differentiation of myeloid/DC.  相似文献   

6.
Human dendritic cells (DCs) are the main antigen presenting cells (APC) and can be divided into two main populations, myeloid and plasmacytoid DCs (pDCs), the latter being the main producers of Type I Interferon. The vast majority of pDCs can be found in lymphoid organs, where the main pool of all immune cells is located, but a minority of pDCs also circulate in peripheral blood. Human cytomegalovirus (HCMV) employs multiple mechanisms to evade the immune system. In this study, we could show that pDCs obtained from lymphoid organs (tonsils) (tpDCs) and from blood (bpDCs) are different subpopulations in humans. Interestingly, these populations react in opposite manner to HCMV-infection. TpDCs were fully permissive for HCMV. Their IFN-alpha production and the expression of costimulatory and adhesion molecules were altered after infection. In contrast, in bpDCs HCMV replication was abrogated and the cells were activated with increased IFN-alpha production and upregulation of MHC class I, costimulatory, and adhesion molecules. HCMV-infection of both, tpDCs and bpDCs, led to a decreased T cell stimulation, probably mediated through a soluble factor produced by HCMV-infected pDCs. We propose that the HCMV-mediated impairment of tpDCs is a newly discovered mechanism selectively targeting the host's major population of pDCs residing in lymphoid organs.  相似文献   

7.
Dendritic cells (DC) have an instrumental role in the activation and function of both innate and adaptive immune responses. In humans, at least two distinct DC subsets have been characterized based on phenotypic markers: the myeloid DC (MDC) and the plasmacytoid DC (PDC). Both subsets are critical producers of cytokines (IL-12 for MDC and type I/II IFNs for PDC) and are functionally different. We show in this study that HIV(+) individuals have a significant decrease in the number of the Lin(-)HLA-DR(+)CD123(+) and BDCA-2(+) PDC compared with uninfected donors (p = 0.0001). HIV(+) individuals also have a sustained impairment in viral-induced IFN-alpha production (p < 0.0001). The decrease of the PDC subsets did not correlate with CD4 count or viral load and was not reversed in subjects under virally suppressive treatment, suggesting an irreversible change after infection. By contrast, the absolute number and median frequency of MDC in HIV-infected individuals were similar to those observed in uninfected controls, while a significant decrease was present in subjects with >5000 HIV-1 copies/ml. The inverse association with viral load of the MDC number, but not of IFN-alpha secretion or the number of PDC, suggests a role for MDC in viral control. Our data suggest that DC subsets are differentially reconstituted during the immune recovery associated with antiviral therapy. The persistent impairment of certain DC subsets may result in a sustained defect in DC-mediated innate immune functions despite an effective treatment regimen.  相似文献   

8.
Activation of dendritic cells (DCs) during malaria is poorly documented and has mainly been studied in rodent models. We conducted studies in Senegal to better understand the relationship between DC subset activation and susceptibility of pregnant women to malaria. For each woman, samples were collected at delivery from peripheral (WB), placental (PB) and cord blood (CB). The ex vivo phenotypes of DCs were assessed using flow cytometry on whole blood. The percentage of total DCs was the same for malaria-infected or non-infected pregnant women, except for PB where a decrease in DCs was observed during infection. Lymphoid dendritic cells (LDC) also decreased in the three blood compartments of infected pregnant women and less differentiated DCs (ldDCs) increased. During infection, Human Leucocyte Antigen DR (HLA-DR) expression decreased on LDCs, myeloid DCs (MDCs) and ldDCs. IL-10 increased in the three blood compartments. These data demonstrate a modulation of DC sub-populations during placental malaria. A decrease in LDCs during placental malaria could trigger major alterations in the immune response and a change in the Th1/Th2 balance. However, elevated IL-10 observed during infection substantiates a normal micro-environment triggering normal production of DCs. The decrease in LDCs could thus be due to their migration towards spleen or other lymphoid organs.  相似文献   

9.
To examine the different roles of myeloid dendritic cells (M-DCs) and plasmacytoid dendritic cells (P-DCs) in the induction and regulation of immune response, we have studied chemokine secretion by freshly isolated DC subsets in response to bacterial, viral, and T cell-derived stimuli. M-DCs selectively produced very high levels of the homeostatic chemokines CC chemokine ligand (CCL)17 and CCL22, while P-DCs produced very little if any. In contrast, the proinflammatory chemokine CCL3 was secreted mostly by P-DCs, whereas CCL4 and CXC chemokine ligand 8 were produced by both subsets. The selective production of CCL17 and CCL22 by M-DCs but not P-DCs was confirmed in vivo by immunohistology on human reactive lymph node sections. The high production of CCR4 ligands by M-DCs suggests their capacity to selectively recruit at sites of inflammation T cells with regulatory properties or with a Th2 phenotype, whereas P-DCs, by preferentially secreting CCR1/CCR5 ligands, would mostly recruit effector T cells and, in particular, Th1-type cells.  相似文献   

10.
《Cell metabolism》2021,33(8):1610-1623.e5
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

11.
In this study, we analyzed the phenotypic and physiological consequences of the interaction of plasmacytoid dendritic cells (pDCs) with human immunodeficiency virus type 1 (HIV-1). pDCs are one cellular target of HIV-1 and respond to the virus by producing alpha/beta interferon (IFN-alpha/beta) and chemokines. The outcome of this interaction, notably on the function of bystander myeloid DC (CD11c+ DCs), remains unclear. We therefore evaluated the effects of HIV-1 exposure on these two DC subsets under various conditions. Blood-purified pDCs and CD11c+ DCs were exposed in vitro to HIV-1, after which maturation markers, cytokine production, migratory capacity, and CD4 T-cell stimulatory capacity were analyzed. pDCs exposed to different strains of infectious or even chemically inactivated, nonreplicating HIV-1 strongly upregulated the expression of maturation markers, such as CD83 and functional CCR7, analogous to exposure to R-848, a synthetic agonist of toll-like receptor-7 and -8. In addition, HIV-1-activated pDCs produced cytokines (IFN-alpha and tumor necrosis factor alpha), migrated in response to CCL19 and, in coculture, matured CD11c+ DCs, which are not directly activated by HIV. pDCs also acquired the ability to stimulate na?ve CD4+ T cells, albeit less efficiently than CD11c+ DCs. This HIV-1-induced maturation of both DC subsets may explain their disappearance from the blood of patients with high viral loads and may have important consequences on HIV-1 cellular transmission and HIV-1-specific T-cell responses.  相似文献   

12.
CD1d-restricted invariant NK T (iNKT) cells and dendritic cells (DCs) have been shown to play crucial roles in various types of immune responses, including TLR9-dependent antiviral responses initiated by plasmacytoid DCs (pDCs). However, the mechanism by which this occurs is enigmatic because TLRs are absent in iNKT cells and human pDCs do not express CD1d. To explore this process, pDCs were activated with CpG oligodeoxyribonucleotides, which stimulated the secretion of several cytokines such as type I and TNF-alpha. These cytokines and other soluble factors potently induced the expression of activation markers on iNKT cells, selectively enhanced double-negative iNKT cell survival, but did not induce their expansion or production of cytokines. Notably, pDC-derived factors licensed iNKT cells to respond to myeloid DCs: an important downstream cellular target of iNKT cell effector function and a critical contributor to the initiation of adaptive immune responses. This interaction supports the notion that iNKT cells can mediate cross-talk between DC subsets known to express mutually exclusive TLR and cytokine profiles.  相似文献   

13.
Activation of plasmacytoid dendritic cells   总被引:3,自引:0,他引:3  
Four years after the discovery of mouse plasmacytoid dendritic cells (pDC), pDC are still very much an 'enigmatic' cell type. It is clear that pDC are potent producers of type I IFN in response to viral, bacterial and even mammalian nucleotides. The role that they play in vivo before and after activation is still under scrutiny. This review concentrates on the pathways to activation of pDC, examining the activating ligands, receptors and signalling molecules that are known to be involved, and the relevance of these activation pathways to human disease.  相似文献   

14.
Langerhans cell histiocytosis (LCH), previously known as histiocytosis X, is a reactive proliferative disease of unknown pathogenesis. Current therapies are based on nonspecific immunosuppression. Because multiple APCs, including Langerhans cells and macrophages, are involved in the lesion formation, we surmised that LCH is a disease of myeloid blood precursors. We found that lin(-) HLA-DR(+)CD11c-+ precursors of dendritic cells, able to give rise to either Langerhans cells or macrophages, are significantly (p = 0.004) increased in the blood of LCH patients. The analysis of serum cytokines in 24 patients demonstrated significantly elevated levels of hemopoietic cytokines such as fms-like tyrosine kinase ligand (FLT3-L, a dendritic cell-mobilizing factor, approximately 2-fold) and M-CSF ( approximately 4-fold). Higher levels of these cytokines correlated with patients having more extensive disease. Serum levels of FLT3-L and M-CSF were highest in high risk patients with extensive skin and/or multisystem involvement. Finally, patients with bone lesions had relatively higher levels of M-CSF and of stem cell factor. Thus, early hemopoietic cytokines such as FLT3-L, stem cell factor, and M-CSF maybe relevant in LCH pathogenesis and might be considered as novel therapeutic targets.  相似文献   

15.
Plasmacytoid dendritic cells (pDC) are a specialized sensor of viral and bacterial nucleic acids and a major producer of IFN-α that promotes host defense by priming both innate and acquired immune responses. Although synthetic Toll-like receptor (TLR) ligands, pathogenic bacteria and viruses activate pDC, there is limited investigation of non-pathogenic microbiota that are in wide industrial dietary use, such as lactic acid bacteria (LAB). In this study, we screened for LAB strains, which induce pDC activation and IFN-α production using murine bone marrow (BM)-derived Flt-3L induced dendritic cell culture. Microbial strains with such activity on pDC were absent in a diversity of bacillary strains, but were observed in certain spherical species (Lactococcus, Leuconostoc, Streptococcus and Pediococcus), which was correlated with their capacity for uptake by pDC. Detailed study of Lactococcus lactis subsp. lactis JCM5805 and JCM20101 revealed that the major type I and type III interferons were induced (IFN-α, -β, and λ). IFN-α induction was TLR9 and MyD88-dependent; a slight impairment was also observed in TLR4(-/-) cells. While these responses occurred with purified pDC, IFN-α production was synergistic upon co-culture with myeloid dendritic cells (mDC), an interaction that required direct mDC-pDC contact. L. lactis strains also stimulated expression of immunoregulatory receptors on pDC (ICOS-L and PD-L1), and accordingly augmented pDC induction of CD4(+)CD25(+)FoxP3(+) Treg compared to the Lactobacillus strain. Oral administration of L. lactis JCM5805 induced significant activation of pDC resident in the intestinal draining mesenteric lymph nodes, but not in a remote lymphoid site (spleen). Taken together, certain non-pathogenic spherical LAB in wide dietary use has potent and diverse immunomodulatory effects on pDC potentially relevant to anti-viral immunity and chronic inflammatory disease.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) infection of dendritic cells (DCs) plays an important role in HIV-1 transmission and pathogenesis. Here, we studied the susceptibility of ex vivo-isolated CD11c+ myeloid DCs (MDCs) and CD123+ plasmacytoid DCs (PDCs) to HIV-1 infection and the function of these cells early after infection. Both DC subsets were susceptible to CCR5- and CXCR4-using HIV-1 isolates (BaL and IIIB, respectively). However, MDCs were more susceptible to HIV-1(BaL) infection than donor-matched PDCs. In addition, HIV-1(BaL) infected MDCs more efficiently than HIV-1(IIIB), whereas PDCs were equally susceptible to both isolates. While exposure to HIV-1 alone resulted in only weak maturation of DCs, Toll-like receptor 7/8 ligation induced full maturation in both infected and uninfected DCs. Maturation did not increase HIV-1 replication in infected DCs, and infected DCs retained their ability to produce tumor necrosis factor alpha after stimulation. Both HIV-1 isolates induced alpha interferon production exclusively in PDCs, irrespective of productive infection. In conclusion, PDCs and MDCs were susceptible to HIV-1 infection, but neither displayed functional defects as a consequence of infection. The difference in susceptibility of PDCs and MDCs to HIV-1 may have implications for HIV-1 transmission and DC-mediated transfer of HIV-1 to T cells.  相似文献   

17.
1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is an immunomodulatory agent inducing dendritic cells (DCs) to become tolerogenic. To further understand its mechanisms of action, we have examined the effects of 1,25(OH)(2)D(3) on tolerogenic properties of blood myeloid (M-DCs) and plasmacytoid (P-DCs) human DC subsets. Exposure of M-DCs to 1,25(OH)(2)D(3) up-regulated production of CCL22, a chemokine attracting regulatory T cells, whereas production of CCL17, the other CCR4 ligand, was reduced. 1,25(OH)(2)D(3) also decreased IL-12p75 production by M-DCs, as expected, and inhibited CCR7 expression. 1,25(OH)(2)D(3) treatment markedly increased CD4(+) suppressor T cell activity while decreasing the capacity of M-DCs to induce Th1 cell development. Surprisingly, 1,25(OH)(2)D(3) did not exert any discernible effect on tolerogenic properties of P-DCs, and even their high production of IFN-alpha was not modulated. In particular, the intrinsically high capacity of P-DCs to induce CD4(+) suppressor T cells was unaffected by 1,25(OH)(2)D(3). Both DC subsets expressed similar levels of the vitamin D receptor, and its ligation by 1,25(OH)(2)D(3) similarly activated the primary response gene cyp24. Interestingly, 1,25(OH)(2)D(3) inhibited NF-kappaB p65 phosphorylation and nuclear translocation in M-DCs but not P-DCs, suggesting a mechanism for the inability of 1,25(OH)(2)D(3) to modulate tolerogenic properties in P-DCs.  相似文献   

18.
Islet Ag-specific CD4(+) T cells receive antigenic stimulation from MHC class II-expressing APCs. Herein, we delineate the direct in vivo necessity for distinct subsets of macrophages and dendritic cells (DC) in type 1 diabetes mellitus of the NOD mouse by using diphtheria toxin-mediated cell ablation. The ablation of macrophages had no impact on islet Ag presentation or on the induction of insulitis or diabetes in either transfer or spontaneous models. However, the ablation of CD11b(+)CD11c(+) DC led to the loss of T cell activation, insulitis, and diabetes mediated by CD4(+) T cells. When the specific myeloid DC subset was "added-back" to mice lacking total DC, insulitis and diabetes were restored. Interestingly, when NOD mice were allowed to progress to the insulitis phase, the ablation of DC led to accelerated insulitis. This accelerated insulitis was mediated by the loss of plasmacytoid DC (pDC). When pDC were returned to depleted mice, the localized regulation of insulitis was restored. The loss of pDC in the pancreas itself was accompanied by the localized loss of IDO and the acceleration of insulitis. Thus, CD11c(+)CD11b(+) DC and pDC have countervailing actions in NOD diabetes, with myeloid DC providing critical antigenic stimulation to naive CD4(+) T cells and pDC providing regulatory control of CD4(+) T cell function in the target tissue.  相似文献   

19.

Background

Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs) stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs) and plasmacytoid (pDCs) are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown.

Methods

Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d) prior to transplanting into C57BL/6 mice (H-2b), followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+).

Results

Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production.

Conclusion

Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.  相似文献   

20.
A reciprocal activating interaction between NK cells and dendritic cells (DC) has been suggested to play a role in the functional regulation of these cells in immunity, but it has been studied only using in vitro generated bone marrow- or monocyte-derived DC. We report that human peripheral blood plasmacytoid DC (pDC) and myeloid DC are necessary to induce NK cell function depending on the type of microbial stimulus. pDC and myeloid DC are required for strongly increased NK cytolytic activity and CD69 expression, in response to inactivated influenza virus or CpG-containing oligonucleotides and poly(I:C), respectively. Secreted type I IFN is required and sufficient for the augmentation of NK cell cytolytic activity in the coculture with pDC or myeloid DC, whereas CD69 expression is dependent on both type I IFN and TNF. In addition, in response to poly(I:C), myeloid DC induce NK cells to produce IFN-gamma through a mechanism dependent on both IL-12 secretion and cell contact between NK cells and myeloid DC, but independent of type I IFN. IL-2-activated NK cells have little to no cytolytic activity for immature myeloid DC and pDC, but are able to induce maturation of these cells. Moreover, IL-2-activated NK cells induce, in the presence of a suboptimal concentration of CpG-containing oligonucleotides, a strong IFN-alpha and TNF production. These data suggest that the reciprocal functional interaction between NK cells and either pDC or myeloid DC may play an important physiological role in the regulation of both innate resistance and adaptive immunity to infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号