首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recombinant human interleukin-1 beta (rIL-1 beta) was chemically modified by a 10-fold molar excess (reagent:protein) of sulfosuccinimidyl 6-(biotinamido) hexanoate (sulfo-NHS-LC-biotin) or sulfosuccinimidobiotin (sulfo-NHS-biotin) under mild conditions. The primary product was purified in each case by cation exchange high performance liquid chromatography (HPLC) and digested with endoproteinase Lys C. Peptide mapping by C18 reverse phase HPLC permitted identification of three sites of biotinylation using both reagents; N-terminal alanine, lysine 93, and lysine 94. Few additional singly modified rIL-1 beta products were obtained under these conditions, despite the presence of 15 lysine residues in this protein. These data support the view that the N terminus as well as the trilysine sequence (residues 92-94) are readily susceptible to chemical modification and are exposed on the surface of the protein. Chromatography of intact biotinylated rIL-1 beta by C4 reverse phase HPLC resolved a protein modified exclusively at the N-terminal alanine from two proteins modified singly at either lysine 93 or lysine 94. In addition, a protein product modified at lysine 103 was also obtained when rIL-1 beta was similarly modified with sulfo-NHS-biotin. Since the only difference between the two biotinylation reagents relates to spacer length and its associated hydrophobicity, these data suggest that lysine 103 is not as accessible to surface modification reagents as are lysine 93, lysine 94, or alanine 1. Initial experiments indicate that none of the modifications described above decrease thymocyte proliferation by more than one order of magnitude. Therefore, these amino acid residues are not crucial for bioactivity, and we anticipate the use of these monobiotinylated proteins in structure/function analysis of IL-1 beta.  相似文献   

2.
In order to obtain information on the nature of the amino acid residues involved in the activity of ribonuclease U1 [EC 3.1.4.8], various chemical modifications of the enzyme were carried out. RNase U1 was inactivated by reaction with iodoacetate at pH 5.5 with concomitant incorporation of 1 carboxymethyl group per molecule of the enzyme. The residue specifically modified by iodoacetate was identified as one of the glutamic acid residues, as in the case of RNase T1. The enzyme was also inactivated extensively by reaction with iodoacetamide at pH 8.0 with the loss of about one residue each of histidine and lysine. When RNase U1 was treated with a large excess of phenylglyoxal, the enzymatic activity and binding ability toward 3'-GMP were lost, with simultaneous modification of about 1 residue of arginine. The reaction of citraconic anhydride with RNase U1 led to the loss of enzymatic activity and modification of about 1 residue of lysine. The inactivated enzyme, however, retained binding ability toward 3'-GMP. These results indicate that there are marked similarities in the active sites of RNases T1 and U1.  相似文献   

3.
Recombinant human interleukin-1 beta (h-IL-1 beta) was chemically modified with 4-(N,N-dimethylamino)-4'-isothiocyanatoazobenzene-2'-sulfonic acid (S-DABITC), a water-soluble color reagent specific for lysine labeling. Modified h-IL-1 beta was digested by lysyl endopeptidase. Peptides containing labeled lysines were detected at the visible wavelength (436 nm) and isolated by HPLC. The modification sites were eventually determined by sequence analysis. The results revealed that Lys103, Lys92, Lys93, and Lys94 of h-IL-1 beta reacted selectively with S-DABITC. A 1-h incubation with 1 mM S-DABITC at room temperature resulted in a quantitative modification of Lys103, 22% of Lys92, 27% of Lys93, and 18% of Lys94, respectively. This modification was accompanied by a 20-fold decrease of the protein's ability to bind to the receptor. Furthermore, a mutant of h-IL-1 beta (M9, Glu105 substituted by Lys) exhibits markedly impaired receptor binding, and the S-DABITC reactivity of its Lys103 was found to be reduced by 90%. These findings suggest that Lys103 of h-IL-1 beta might play an important role in the h-IL-1 beta/receptor interaction.  相似文献   

4.
Carbodiimide-activated coupling chemistry has been used to covalently attach 1,1'-dicarboxyferrocene (dcFc) to the epsilon-amine of surface lysine residues of horse heart cytochrome c. Conditions have been found that optimize the production of singly modified (dcFc)cytochrome c derivatives and the presence of one free carboxylate per modification site allows separation and purification of about 10 of these derivatives by cation-exchange chromatography. Reversed-phase HPLC tryptic peptide mapping techniques have been used to identify the attachment sites of eight pure (dcFc)cytochrome c derivatives (at lysines 7, 8, 13, 25, 60, 72, 73, and 100). Through-space distances from these lysines to the nearest heme edge span the 6-16 A range and these derivatives should prove useful in exploring the distance dependence of long-range intramolecular electron transfer in cytochrome c.  相似文献   

5.
Photoreactive derivatives of the Bowman-Birk trypsin-chymotrypsin inhibitor (BBI) from soybeans and of CI, the trypsin-chymotrypsin inhibitor from chick peas, were prepared by selective modification of the epsilon-amino groups of lysine residues with 2-nitro-4(5)-azidophenylsulfenyl chlorides (2,4(5)-NAPS-C1). The ultraviolet absorption spectra of the photolabeled inhibitors indicated that three out of the five lysines of BBI and one of the seven lysines of CI were modified. The inhibitory activity of the modified inhibitors towards trypsin and chymotrypsin was not reduced even after photolysis. The specific lysine residues that constitute the trypsin-inhibitory sites of BBI and CI did not react with the photoreactive reagents. Further modification of the photoreactive derivatives of BBI and CI with maleic anhydride, directed towards the trypsin-reactive sites, resulted in almost complete loss of the trypsin-inhibiting activity without reducing the ability to inhibit chymotrypsin. A pronounced potentiation effect (approximately 2x) of the chymotrypsin inhibiting activity was noted for 2,5-NAPS-CI and it was retained even after maleylation followed by photolysis, raising the possibility of exposure of an additional chymotrypsin inhibitory site in CI.  相似文献   

6.
Modification of the lysine residues in the lactose repressor protein has been carried out with trinitrobenzenesulfonate. Reaction of lysine residues at positions 33, 37, 108, 290, and 327 was observed. Inducer binding was increased by modification with this reagent, while both nonspecific DNA binding and operator DNA binding were diminished, although to differing degrees. The loss in operator DNA binding capacity was complete with modification of approximately 2 equiv of lysine per monomer. The extent of reaction was affected by the presence of both sugar and DNA ligands; binding activities of the modified protein and reaction pattern of the lysines were perturbed by these ligands. The presence of operator or nonspecific DNA during the reaction protected against specific and nonspecific DNA binding activity loss. This protection presumably occurs by steric restriction of reagent access to lysine residues which are essential for both nonspecific and operator binding interactions. Lysines-33 and -108 were protected from modification in the presence of DNA. These experiments suggest that the charge on the lysine residues is important for protein interaction with DNA and that steric constraints for operator DNA interaction with the protein are more restrictive than for nonspecific DNA binding. In contrast, inducer (isopropyl beta-D-thiogalactoside) presence partially protected lysine-290 from modification while significantly enhancing reaction at lysine-327. Conformational alterations consequent to inducer binding are apparently reflected in these altered lysine reactivities.  相似文献   

7.
Cytochrome P450IA1 (purified from hepatic microsomes of beta-naphthoflavone-treated rats) has been covalently modified with the lysine-modifying reagent acetic anhydride. Different levels of lysine residue modification in cytochrome P450IA1 can be achieved by varying the concentration of acetic anhydride. Modification of lysine residues in P450IA1 greatly inhibits the interaction of P450IA1 with NADPH-cytochrome P450 reductase. Modification of 1.0 and 3.3 mol lysine residues per mole P450IA1 resulted in 30 and 95% decreases, respectively, in 7-ethoxycoumarin hydroxylation by a reconstituted P450IA1/reductase complex. However, modification of 3.3 mol lysine residues per mole P450IA1 decreased only cumene hydroperoxide-supported P450-dependent 7-ethoxycoumarin hydroxylation by 30%. Spectral and fluorescence studies showed no indication of global conformational change of P450IA1 even with up to 8.8 mol lysine residues modified per mole P450IA1. These data suggest that at least three lysine residues in P450IA1 may be involved in the interaction with reductase. Identification of lysine residues in P450IA1 possibly involved in this interaction was carried out by [14C]acetic anhydride modification, trypsin digestion, HPLC separation, and amino acid sequencing. The lysine residue candidates identified in this manner were K97, K271, K279, and K407.  相似文献   

8.
Binding studies were performed with bovine adrenal cortex membranes, human 125I-labelled high-density lipoprotein (HDL) and modified photoactivable derivatives of 125I-labelled HDL, namely 125I-labelled HDL-amidinophenylazide and 125I-labelled HDL-amidopropionyldithiophenylazide. The purity of the apolipoprotein composition of the 125I-labelled HDL and photoactivable 125I-labelled HDL used in the binding studies was determined by Coomassie blue and silver staining, and by measuring 125I-labelled cpm after SDS-polyacrylamide gel electrophoresis. About 45% of the 125I-labelled HDL binding to the membranes occurred in the presence of excess EDTA and only unlabelled HDL competed for the binding site. The 125I-labelled interaction with this binding site on the membranes did not require calcium. In addition, 40% of the 125I-labelled HDL binding was to an EDTA-sensitive site, and unlabelled HDL and low-density lipoprotein (LDL) competed for the binding site. Consequently, adrenal cortex membranes have binding sites which show cross reactivity for both HDL and LDL. Modification of 58% of the apolipoprotein lysine residues of 125I-labelled HDL with methylazidophenylimidate, a reagent which maintains the positive charge at lysine residues, had little affect on binding to EDTA-sensitive and insensitive sites. In contrast, modification of 35% of apolipoprotein lysine residues of 125I-labelled HDL with N-succinimidyl(4-azidophenyldithio)propionate, a reagent which converts charged amino lysines to amide bonds, showed binding properties which were almost totally inhibited by EDTA.  相似文献   

9.
A basic (pI = 10.2) phospholipase A2 of the venom of the snake Agkistrodon halys blomhoffii is one of a few phospholipases A2 capable of hydrolyzing the phospholipids of Escherichia coli killed by a bactericidal protein purified from human or rabbit neutrophil granules. We have shown that modification of as many as 4 mol of lysine per mole of the phospholipase A2, either by carbamylation or by reductive methylation [Forst, S., Weiss, J., & Elsbach, P. (1982) J. Biol. Chem. 257, 14055-14057], had no effect on catalytic activity toward extracted E. coli phospholipids or the phospholipids of autoclaved E. coli. In contrast, modification of 1 mol of lysine per mole of enzyme substantially reduced activity toward the phospholipids of E. coli killed by the neutrophil protein. To explore further the role of lysines in the function of this phospholipase A2, we determined the amino acid sequence of the enzyme and the incorporation of [14C]cyanate into individual lysines when, on average, 1 lysine per molecule of enzyme had been carbamylated. After incorporation of approximately 1 mol of [14C]cyanate per mole of protein, the phospholipase A2 was reduced, alkylated, and exhaustively carbamylated with unlabeled cyanate. The amino acid sequence was determined of the NH2-terminal 33 amino acids of the holoprotein and of peptides isolated after digestion with trypsin and Staphylococcus aureus V-8 protease. The protein contains 122 amino acid residues, 17 of which are lysines. The NH2-terminal region is unique among more than 30 phospholipases A2 previously sequenced because of its high content of basic residues (His-1, Arg-6, and Lys-7, -10, -11, and -15).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, the mechanisms of lysine selection are not clearly understood. The positioning of lysine(s) toward the E2/E3 active site and residues proximal to lysines are critical in their selection. We investigated determinants of lysine specificity of the ubiquitin-conjugating enzyme Cdc34, toward substrate and Ub lysines. Evaluation of the relative importance of different residues positioned −2, −1, +1 and +2 toward ubiquitination of its substrate, Sic1, on lysine 50 showed that charged residues in the −1 and −2 positions negatively impact on ubiquitination. Modeling suggests that charged residues at these positions alter the native salt-bridge interactions in Ub and Cdc34, resulting in misplacement of Sic1 lysine 50 in the Cdc34 catalytic cleft. During polyubiquitination, Cdc34 showed a strong preference for Ub lysine 48 (K48), with lower activity towards lysine 11 (K11) and lysine 63 (K63). Mutating the −2, −1, +1 and +2 sites surrounding K11 and K63 to mimic those surrounding K48 did not improve their ubiquitination, indicating that further determinants are important for Ub K48 specificity. Modeling the ternary structure of acceptor Ub with the Cdc34~Ub complex as well as in vitro ubiquitination assays unveiled the importance of K6 and Q62 of acceptor Ub for Ub K48 polyubiquitination. These findings provide molecular and structural insight into substrate lysine and Ub K48 specificity by Cdc34.  相似文献   

11.
The ability of the scavenger receptor of human monocyte macrophages to recognize human low density lipoproteins (LDL) progressively modified by three lysine-specific reagents, malondialdehyde, acetic anhydride, or succinic anhydride, has been investigated. Regardless of the reagent utilized, receptor-mediated uptake was dependent upon modification of greater than 16% of the peptidyl lysines rather than upon the net negative charge of derivatized LDL. Rates of lysosomal hydrolysis of acetyl-LDL and succinyl-LDL increased as a function of progressive modification and reflected the amount of derivatized LDL binding to the receptor. Succinylation or acetylation of greater than 60% of the lysines was necessary to attain maximal ligand binding, internalization, and degradation. In contrast, modification of only 16% of the peptidyl lysines by malondialdehyde resulted in maximal levels of binding, uptake, and hydrolysis. The expression of receptor recognition site(s) appears to depend upon the charge modification of critical lysine residues of the LDL protein rather than the net negative charge of the lipoprotein complex. Malondialdehyde, a bifunctional reactant, may modify surface and sequestered lysines concomitantly and thus promote efficient formation of the recognition site(s).  相似文献   

12.
Maleylation of lysine residues, nitration of tyrosine residues or modification with 2,3-butanedione or 1,2-cyclohexanedione of arginine residues on actin resulted in a loss of polymerizability of the modified actin. However, only lysine modification produced a complete loss of the deoxyribunuclease I inhibitory ability of actin at low degrees of modification. By the level of one modified lysine per actin monomer, the samples completely lost polymerizability and lost 65% of their inhibitory power against deoxyribonuclease I-catalysed hydrolysis of DNA. By two lysines modified per actin, all inhibitory activity was lost. One lysine residue on actin apparently overlaps both an actin action contact site and an actin-deoxyribnuclease 1 contact site, offering a suggestion as to how deoxyribonuclease I blocks actin polymerization.  相似文献   

13.
14.
The lysine residues were modified to varying degrees (50-91%) with citraconic anhydride to determine the extent of conformational change in ovalbumin. Major findings included: 1. Sixteen of the 20 lysine residues are located on the protein surface, while the remaining four are buried. 2. The tertiary structure changed progressively with the degree of modification. 3. However, the secondary structure was disrupted only after one or more of the four buried lysines had been citraconylated. 4. Although the secondary structure was unaltered, the alpha-helix was nevertheless progressively destabilized as the surface 16 lysine residues were modified. This destabilization was due to electrostatic repulsions introduced by the entering citraconyl groups.  相似文献   

15.
Ribonuclease A has been used as a model protein for studying the specificity of glycation of amino groups in protein under physiological conditions (phosphate buffer, pH 7.4, 37 degrees C). Incubation of RNase with glucose led to an enhanced rate of inactivation of the enzyme relative to the rate of modification of lysine residues, suggesting preferential modification of active site lysine residues. Sites of glycation of RNase were identified by amino acid analysis of tryptic peptides isolated by reverse-phase high pressure liquid chromatography and phenylboronate affinity chromatography. Schiff base adducts were trapped with Na-BH3CN and the alpha-amino group of Lys-1 was identified as the primary site (80-90%) of initial Schiff base formation on RNase. In contrast, Lys-41 and Lys-7 in the active site accounted for about 38 and 29%, respectively, of ketoamine adducts formed via the Amadori rearrangement. Other sites reactive in ketoamine formation included N alpha-Lys-1 (15%), N epsilon-Lys-1 (9%), and Lys-37 (9%) which are adjacent to acidic amino acids. The remaining six lysine residues in RNase, which are located on the surface of the protein, were relatively inactive in forming either the Schiff base or Amadori adduct. Both the equilibrium Schiff base concentration and the rate of the Amadori rearrangement at each site were found to be important in determining the specificity of glycation of RNase.  相似文献   

16.
17.
D A Ellis  V Coffman  J B Ifft 《Biochemistry》1975,14(6):1205-1210
The buoyant density titration curves of native and carbamylated bovine serum mercaptalbumin were measured throughout the pH range 5.3-12.7. Large increments in the buoyant density were observed above pH 10, with inflection pH values of 11.2 and 11.4 for native and carbamylated bovine serum mercaptalbumin, respectively. For the modified protein in which 25 out of 58 lysine residues were carbamylated, the buoyant densities were 0.048 g/ml higher at neutral pH and 0.024 g/ml higher at the extrapolated pH 13. The carbamyl groups apparently produce a larger residual density at pH 13 than they did in the case of ovalbumin. Homopolymer buoyant density titration data were demonstrated to be of value in calculating the contributions of titratable residues to the buoyant density of both proteins. The buoyant density increment at high pH was due largely to the deprotonation of the lysines as indicated by the diminished change in buoyant density between pH 10 and 12.7 for the modified protein. These density changes were attributable primarily to a gain of cesium ions. The limited modification of the lysine residues under mild reaction conditions and the rather high intrinsic dissociation constant of tyrosine residues in mercaptalbumin may indicate a preferential modification of easily accessible lysine residues. Phenolic deprotonation is facilitated by the neutralization of normally charged lysine residues and demonstrates ionic interactions between internal lysines and certain carboxyl and tyrosine residues thereby stabilizing the native state of the protein.  相似文献   

18.
Enterobacter aerogenes glycerol dehydrogenase (G1DH EC 1.1.1.6), a tetrameric NAD+ specific enzyme catalysing the interconversion of glycerol and dihydroxyacetone, was inactivated on reaction with pyridoxal 5-phosphate (PLP) and o-phthalaldehyde (OPA). Fluorescence spectra of PLP-modified, sodium borohydride-reduced G1DH indicated the specific modification of epsilon-amino groups of lysine residues. The extent of inhibition was concentration and time dependent. NAD+ and NADH provided complete protection against enzyme inactivation by PLP, indicating the reactive lysine is at or near the coenzyme binding site. Modification of G1DH by the bifunctional reagent OPA, which reacts specifically with proximal epsilon-NH2 group of lysines and -SH group of cysteines to form thioisoindole derivatives, inactivated the enzyme. Molecular weight determinations of the modified enzyme indicated the formation of intramolecular thioisoindole formation. Glycerol partially protected the enzyme against OPA inactivation, whereas NAD+ was ineffective. These results show that the lysine involved in the OPA reaction is different from the PLP-reactive lysine, which is at or near the coenzyme binding site. DTNB titration showed the presence of only a single cysteine residue per monomer of G1DH. This could be participating with a proximal lysine residue to form a thioisoindole derivative observed as a result of OPA modification.  相似文献   

19.
Role of lysines in ion selectivity of bacterial outer membrane porins   总被引:3,自引:0,他引:3  
The epsilon-amino groups of available lysine residues of the OmpC, OmpF and PhoE porin proteins of Escherichia coli and of the protein P porin of Pseudomonas aeruginosa, were modified by the bulky reagent trinitrobenzenesulphonic acid. Approximately 78% of the lysines of the anion-selective protein P and PhoE porins were modified whereas only 40-50% of the lysines of the cation selective OmpF and OmpC porins were altered. After modification, the three E. coli porins had very similar high selectivities for cations over anions, in contrast to the native porins which varied 86-fold in ion selectivity. Despite the large size of the trinitrophenyl group attached to modified lysines (i.e., a disc of approx. 0.86 nm diameter X 0.36 nm high) relative to the reported size of the constrictions of the E. coli porins (1.0-1.2 nm diameter), only the anion-selective PhoE porin was substantially blocked after trinitrophenylation. The protein P porin channel was relatively unaffected by trinitrophenylation, in contrast to previous data showing dramatic effects of acetylation of lysines on protein P conductance and selectivity. This favoured a model in which the critical lysines involved in anion binding by protein P were present in a constriction of the channel that was too small for trinitrobenzenesulphonic acid to enter. Overall, the data suggest that both the number and relative position of charged lysines are major determinants of ion selectivity.  相似文献   

20.
Effect of phosphate on the kinetics and specificity of glycation of protein   总被引:1,自引:0,他引:1  
The glycation (nonenzymatic glycosylation) of several proteins was studied in various buffers in order to assess the effects of buffering ions on the kinetics and specificity of glycation of protein. Incubation of RNase with glucose in phosphate buffer resulted in inactivation of the enzyme because of preferential modification of lysine residues in or near the active site. In contrast, in the cationic buffers, 3-(N-morpholino)propane-sulfonic acid and 3-(N-tris(hydroxymethyl)methyl-amino)-2-hydroxypropanesulfonic acid, the kinetics of glycation of RNase were decreased 2- to 3-fold, there was a decrease in glycation of active site versus peripheral lysines, and the enzyme was resistant to inactivation by glucose. The extent of Schiff base formation on RNAse was comparable in the three buffers, suggesting that phosphate, bound in the active site of RNase, catalyzed the Amadori rearrangement at active site lysines, leading to the enhanced rate of inactivation of the enzyme. Phosphate catalysis of glycation was concentration-dependent and could be mimicked by arsenate. Phosphate also stimulated the rate of glycation of other proteins, such as lysozyme, cytochrome c, albumin, and hemoglobin. As with RNase, phosphate affected the specificity of glycation of hemoglobin, resulting in increased glycation of amino-terminal valine versus intrachain lysine residues. 2,3-Diphosphoglycerate exerted similar effects on the glycation of hemoglobin, suggesting that inorganic and organic phosphates may play an important role in determining the kinetics and specificity of glycation of hemoglobin in the red cell. Overall, these studies establish that buffering ions or ligands can exert significant effects on the kinetics and specificity of glycation of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号