首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
With the objective of identifying specific peptidase responsible for the processing of atrial natriuretic factor precursor pro-ANF to the circulating active form ANF (99-126), a fluorometric assay method was devised using synthetic fluorogenic substrate Boc-Ala-Gly-Pro-Arg-MCA(methylcoumarinamide) which contains the amino acid sequence immediately adjacent to the arginyl peptide bond which is cleaved in the natural processing of pro-ANF. A protease which selectively cleaves this bond and produces the natural circulating peptide was identified in the particulate fraction of rat atrial homogenate and was solubilized by 1.6 M KCl. It was partially purified by affinity chromatography heparin-agarose column and was shown to be a serine protease. Its reaction product with natural pro-ANF was identified as ANF (99-126) containing 28 amino acid residues.  相似文献   

2.
Cardiac myocytes store the 126-amino acid precursor of atrial natriuretic factor (pro-ANF), yet the mature, bioactive 28-amino acid peptide, ANF-(99-126), and the resulting N-terminal product, ANF-(1-98), are the forms of the hormone that are released by the heart and found in the circulation. Although previous studies have shown that the maturation of ANF takes place in the heart, it is not known whether it occurs in or on the myocyte concurrently with secretion, or whether cleavage takes place postsecretionally on either the myocyte surface or the surface of a nonmuscle cardiac cell. To address these questions, experiments were carried out in the present study using primary atrial cultures that had been prepared such that greater than 90% of the cells were myocytes. Reversed-phase and ion-exchange HPLC, coupled with immunoprecipitation of biosynthetically labeled ANF, showed that the stored peptide, pro-ANF, was cleaved between residues 98 and 99 such that ANF-(1-98) and (99-126) accumulated in the medium. Coupling biosynthetic labeling with timed secretion experiments showed that the extent of ANF processing was not dependent on the time after secretion; maximal levels of processing were observed at all secretion times examined. Additionally, the processing-competent myocyte-enriched cultures were unable to cleave exogenously added pro-ANF. These results indicate that the myocyte is the cell type responsible for pro-ANF maturation and that this cleavage event takes place cosecretionally.  相似文献   

3.
A radioimmunoassay was developed to measure the NH2-terminal counterpart of rat pro-atrial natriuretic factor (pro-ANF) in plasma. Synthetic rat ANF (Asp 11-Ala 37) coupled to bovine serum albumin was used to immunize New Zealand rabbits. The antiserum demonstrated good immunoreactivity towards rat ANF (Asn 1-Arg 98), (Asn 1-Tyr 126), (Asp 11-Ala 37) and even human ANF (Asn 1-Ser 30). The standard curve had an ED80 of 9.5 +/- 2.5 and ED50 of 44.0 +/- 10.5 fmol/tube. Immunoreactive ANF NH2-terminal peptide was measured directly in rat plasma without prior extraction. In fact, extraction of ANF NH2-terminal from plasma by C18 silica gel chromatography revealed inconsistent recovery and a lack of parallelism. Morphine (0.75 mg/100 g), chosen to elicit increased ANF (Ser 99-Tyr 126) secretion, elevated its plasma concentration from 54.1 +/- 3.2 to 190.8 +/- 55.8 fmol/ml after 20 min. At the same time, the immunoreactive NH2-terminal fragment rose from 378 +/- 16 to 1181 +/- 201 fmol/ml. The identity of this immunoreactive material was verified following affinity chromatography and reverse-phase high-performance liquid chromatography (HPLC) of plasma from morphine-treated rats. Molecular sieving and amino acid sequencing demonstrated that it appears to be consistent with or identical to rat ANF (Asn 1-Arg 98). The disappearance rate of ANF (Asn 1-Arg 98) was studied by injecting radioactive material into anesthetized rats. The exponential decay was analyzed by a two-compartment model in which the fast and slow components had a half-life of 2.5 +/- 0.3 and 54.8 +/- 3.9 min, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Analysis by two-dimensional gel electrophoresis and Western blotting of the atrial natriuretic factor (ANF) content of atrial granules revealed the presence of at least 15 immunoreactive spots whose molecular mass distribution ranged from 16.8 to 35 kDa and their pI values from 5.12 to 5.98. About 90% of the immunoreactive ANF material was contained within four spots (spot 1: 34.8 kDa, pI 5.67; spot 5: 16.8 kDa, pI 5.50; spot 6: 16.8 kDa, pI 5.67; spot 7: 16.8 kDa, pI 5.98). Investigation of the molecular nature of spot 1 indicated that it is a dimer of pro-ANF since it possesses the same immunoreactivity, the same charge, double its mass, and can be converted with dithiothreitol into a 16.8-kDa pro-ANF form. Alkaline phosphatase and protein kinase A treatments indicated that spots 5, 6, and 7 are probably not phosphorylated forms of pro-ANF. Carboxypeptide A and B treatments in conjunction with amino acid analysis suggested that spot 7 is ANF-(1-128); spot 6, the major one, ANF-(1-126); and spot 5, ANF-(1-123) or ANF-(1-124). Water deprivation or morphine injection, two maneuvers which are known to influence ANF secretion and atrial ANF content, failed to affect the molecular heterogeneity of pro-ANF except for spot 1. The formation of the dimer appeared to be time-dependent. These results emphasize the heterogeneity of the pro-ANF molecule stored in atrial granules. We suggest that this heterogeneity may be due, in part, to the action of some proteases, such as carboxypeptidase E or a tripeptidyl carboxyhydrolase.  相似文献   

5.
Atrial natriuretic factor (ANF) is stored within atrial myocyte secretory granules as pro-ANF (ANF-(1-126] and is proteolytically processed co-secretionally C-terminal to a single basic amino acid to form ANF-(1-98) and the bioactive product ANF-(99-126). Pro-ANF is also expressed in certain non-cardiac neuroendocrine cell types (e.g. brain, adrenal). Although the relatively low levels of the peptide in these cell types have precluded detailed processing and secretion studies using cultured cells, some work with tissue extracts suggests that pro-ANF is pre-secretionally processed between or C-terminal to Arg101-Arg102 in such cells. In order to assess whether cultured non-cardiac endocrine cells process pro-ANF pre- or co-secretionally, and to establish whether both paired and single basic amino acids can serve as cleavage sites, transfection studies were carried out using the adrenocorticotropic hormone (ACTH)-producing pituitary tumor cell line AtT-20/D-16v. These cells normally cleave pro-ACTH/endorphin pre-secretionally at selected, but not all, pairs of basic amino acids to a variety of product peptides. A prepro-ANF expression plasmid was constructed and transfected into the AtT-20 cells. The resulting ANF/AtT-20 cell clone selected for this study expressed ACTH at levels similar to the untransfected wild type cells and secreted immunoreactive ANF-related material at a rate of approximately 1 fmol/min/10(5) cells, which was about 10% the rate of ACTH secretion. The rates of secretion of both ANF and ACTH could be increased 3-5-fold with a variety of known AtT-20 cell secretagogues including phorbol esters and the beta-adrenergic agonist, isoproterenol, thus indicating that both peptides were routed through regulated secretory pathways. Utilizing a combination of specific antisera directed against various regions of pro-ANF, size exclusion and reversed phase high performance liquid chromatography, and peptide mapping, it was shown that the ANF/AtT-20 cells contained and secreted the bioactive peptide ANF-(103-126) and -(1-97). These results indicate that the ANF/AtT-20 cells specifically cleave pro-ANF pre-secretionally at the same single basic site used by cardiac tissue; this single basic cleavage is apparently followed by removal of Arg98 by carboxypeptidase H. It is also apparent that the cells can cleave at the sole paired basic site in pro-ANF, which is the probable cleavage site used by neurons and some other endocrine cells that express low levels of the prohormone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Atrial natriuretic factor-(Asn1-Tyr126)-peptide, the 13.6 kDa propeptide of atrial natriuretic factor (ANF), is stored in the secretory granules of atrial cardiocytes. ANF-(Ser99-Tyr126)-peptide, the 28-amino-acid species, is the circulating form of this hormone in the rat. As the site of maturation of the prohormone is still unknown, the present study was undertaken to understand the contribution of the circulation to the maturation process of pro-ANF. 125I-ANF-(Asn1-Tyr126)-peptide was incubated with whole rat blood, plasma or serum for different time intervals, and the products were analysed. There was minimal activation of the propeptide in either whole blood or plasma. Incubation with serum, however, resulted in the formation of an 11 kDa and a 3 kDa peptide which corresponded respectively to the N-terminal and C-terminal parts of the propeptide. These results suggest that hydrolysis of the propeptide in serum is brought about by enzymes that may be stimulated during coagulation but which may not play a major role in the activation of pro-ANF in the circulation. Plasma analysis at different time intervals after prohormone injection indicated a non-specific hydrolysis of the pro-ANF molecule. The disappearance rate curves, obtained with radiolabelled pro-ANF, suggested the presence of two components with half-lives of 2.1 +/- 0.4 min and 52.5 +/- 8.4 min respectively. A metabolic clearance rate of 1.49 +/- 0.22 ml/min and an initial distribution volume of 47.4 +/- 8 ml were calculated. These results indicate that the maturation of pro-ANF to its active circulating form takes place before it is released into the circulation.  相似文献   

7.
We have partially purified a thiol-dependent protease from bovine atrial tissue that cleaves the Arg98-Ser99 bond of rat natriuretic peptide (Gly96-Tyr126) to produce the natriuretic Ser99-Tyr126 peptide (cardionatrin I). This was the only hydrolytic product we detected. The existence of the atrial natriuretic peptide system implicates the mammalian heart as an endocrine organ which participates in the hormonal regulation of extracellular fluid volume, electrolyte balance and vascular tone. This enzyme appears to be part of that system. The atrial protease also hydrolyzes the Arg-2-Napthylamide bond of natriuretic peptide stand-in substrates; on the basis of relative Vmax/Km as a measure of substrate specificity, Bz-Leu-Arg-Arg-2-Napthylamide (NA) greater than Bz-Leu-Arg-2-NA greater than Arg-2-NA. There is little or no cleavage between the Arg-Arg pair of the first substrate. Since in the Gly96-Tyr126 peptide the Arg-Arg pair is not the principle cleavage site for this enzyme, it is very unlikely that it is a principle cleavage site for this enzyme in pro-atrial natriuretic factor. It is possible that it is a cleavage site for a different enzyme or the pair may serve as a signal for cleavage at Arg98.  相似文献   

8.
The atrial natriuretic factor (ANF) is comprised of a 126-amino-acid precursor (pro-ANF) and its biologically active fragments. Partially purified pro-ANF and its larger fragments (greater than 10,000 daltons) have been referred to as high-molecular-weight (Mr) ANF, the partially purified smaller fragments (less than 10,000 daltons) as low Mr ANF. In vitro, mild proteolysis of high Mr ANF yielded low Mr ANF and enhanced biological activity. In the rat, pro-ANF was the predominant atrial form; however, low Mr ANF was largely released from isolated perfused hearts, which suggests that conversion of pro-ANF to low Mr ANF occurred immediately before or during secretion. High Mr ANF was also found in the perfusate of isolated rat hearts and in the plasma of rats, which suggests that some pro-ANF was secreted with low Mr ANF. Evidence for extraatrial conversion and activation of pro-ANF comes from two studies. 1) Intra-renal-arterial injection of high Mr ANF had little renal vascular action, whereas its i.v. injection caused renal vascular dilation, which suggests that the renal vasodilatory action of high Mr ANF became activated during circulation. 2) When high Mr ANF was incubated with rat blood or rat platelets in vitro, its natriuretic activity was converted to low Mr ANF within minutes; the platelet-induced conversion was associated with enhanced activity in relaxing aortic smooth muscle.  相似文献   

9.
Immunoreactive atrial natriuretic factor (ANF) was localized by immunochemistry and radioimmunoassay in mouse and rat testes. The analyses of acid extracts of testes by gel filtration and reverse phase high pressure liquid chromatography (HPLC) revealed the presence of a processed 31-residues peptide and the precursor form of 126-residues pro-ANF molecule corresponding to a molecular weights (Mr) of 3,300 and 18,000, respectively. The concentration of ANF in mice testis averaged 12 +/- 3 ng and in rat testis 8 +/- 2 ng per g of tissue. Specific immunochemical staining was localized in the spermatids and elongating spermatozoa of mammalian testis. The demonstration of immunoreactive ANF in testis and specific localization in spermatids reveals a new site at which ANF may be actively synthesized and regulate paracrine and/or autocrine function(s) during spermiogenesis, suggesting a broader spectrum of ANF action in addition to its known regulatory role in the control of blood pressure homeostasis.  相似文献   

10.
Summary We examined the possibility that rat atrial granules may contain a pro-ANF processing protease. Isolated atrial granules were lysed either by detergent, osmotic shock or sonication and incubated at 37° C. Pro-ANF processing and/or degradation were followed by radioimmunoassays and Western blotting using three antibodies which are specific either to the N-terminus, the C-terminus or the processing site (98–99) of pro-ANF. Whatever the method used for the lysis of the granules, we failed to detect any production of ANF (99–I26) and ANF (1–98). However, slight degradation of pro-ANF was recorded probably due to contamination by lysosomal proteases. The in vitro system was validated by addition of thrombin to lysed granules which resulted in a rapid disappearance of the immunoreactivity related to the processing site. These results suggest that the rat atrial granules do not contain any active processing enzyme unless adequate incubation conditions were not met to express its enzymatic activity. The atrial granules may not be directly involved in the maturation of pro-ANF.  相似文献   

11.
The atrial natriuretic factor (ANF) receptor of bovine adrenal cortex was solubilized with Triton X-100 and purified by sequential chromatography on ANF-(99-126)-agarose, GTP-agarose, and wheat germ agglutinin-Sepharose. Two subtypes of ANF receptors were isolated, both of which showed specific ANF binding, whereas one of the ANF receptor subtypes also possessed significant cyclase activity. Both of the receptors showed high capacities (Bmax = 5.7-6.8 nmol/mg of protein) and high affinities (Kd = 54-68 pM) for ANF-(99-126). The cyclase-free receptor had high affinity (Ki = 150-220 pM) to C-terminal truncated ANF analogs, whereas the cyclase-containing receptor had a much weaker affinity (Ki = 10(6)-10(7) pM). When treated with dithiothreitol, the purified cyclase-containing and cyclase-free ANF receptors migrated as a single band at Mr 135,000 and 62,000, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified cyclase-free receptor is not a product derived from the cyclase-containing receptor because (i) two proteins with Mr of 135,000 and 62,000 were specifically labeled with 4-azidobenzoyl 125I-ANF-(102-126) in nonsolubilized intact membranes; (ii) the truncated ANF analogs (10(4) pM) prevented the photolabeling of the 62,000-dalton protein but not that of the 135,000-dalton protein; and (iii) two-dimensional peptide mapping showed more than 90% difference between the profiles of the two purified ANF receptor subtypes. This study provides first direct evidence for the existence of two distinct ANF receptors which are different not only in their pharmacological properties but also in their primary structure.  相似文献   

12.
We previously reported the discovery and partial characterization of bovine atrial granule serine proteinase, a candidate processing enzyme of pro-atrial natriuretic factor, which is associated with atrial granule membranes. We now report the physicochemical properties of electrophoretically homogeneous enzyme purified by a series of chromatography steps from a subcellular fraction enriched for atrial granules. The enzyme tends to associate during purification to higher molecular weight species, but SDS-PAGE analysis reveals a single polypeptide chain of molecular weight 70,000. The enzyme is activated 2-3 fold by Ca+2 and 1.5-fold by Mg+2 and is nearly 100% inhibited by Zn+2 or Co+2. Thus, the enzyme can be considered a calcium activated, neutral pH, serine proteinase. Based on the hydrolysis of numerous synthetic peptide substrates, the recognition sequence for the enzyme within the pro-hormone has been mapped to A96PRSLRR102; cleavage occurs at the Arg98-Ser99 bond yielding bioactive atrial natriuretic peptide directly from the pro-hormone. The doublet of basic amino acids is part of the recognition sequence but is not the primary cleavage site. It is our hypothesis that the processing site sequence acts as a recognition element for the endoproteinase and resides at the surface of the pro-hormone and thus contributes to the molecular basis for limited proteolysis.  相似文献   

13.
At least three enzymes have been identified in atrial tissue homogenates that are capable of processing pro-atrial natriuretic factor to active atrial peptides. The atrial peptides possess potent natriuretic, diuretic, vasorelaxant, and hemodynamic properties, and their existence has implicated the mammalian heart as an endocrine organ. We have purified and characterized a serine proteinase (Mr approximately equal to 70,000) associated with atrial granules that preferentially hydrolyzes the Arg-Ser bond in the synthetic substrates Gly-Pro-Arg-Ser-Leu-Arg, benzoyl-Gly-Pro-Arg-Ser-Leu-Arg, and benzoyl-Gly-Pro-Arg-Ser-Leu-Arg-Arg-2-naphthylamide, the Arg-2-naphthylamide bond in the substrate benzoyl-Gly-Pro-Arg-2-naphthylamide, and the Arg-Ser bond in a 31-residue substrate (Gly96-Tyr126 peptide) corresponding to residues Arg98-Ser99 in pro-atrial natriuretic factor. The Gly96-Tyr126 peptide contains the putative processing site in pro-atrial natriuretic factor and the sequence for the bioactive peptides. Our results indicate that the minimum processing site sequence is -Gly-Pro-Arg-Ser-Leu-Arg-Arg- and that the Ser99-Tyr126 natriuretic peptide is the predominant hydrolytic product. After prolonged incubation or at high enzyme concentrations, the Ser103-Tyr126 natriuretic peptide may also be formed. The Ser103-Arg125 natriuretic peptide was only a very minor product. The doublet of basic amino acids is not the primary processing site in pro-atrial natriuretic factor, but their presence may influence cleavage at the single Arg residue "upstream." Our findings are consistent with the idea that the pro-protein and the processing enzymes are packaged into the secretory granule and in response to the proper stimulus, the pro-protein is processed to the active peptides, probably during the process of secretion. The processing pathway of pro-atrial natriuretic factor is discussed.  相似文献   

14.
Immunoreactive atrial natriuretic factor (IR-ANF) in human plasma   总被引:4,自引:0,他引:4  
A direct radioimmunoassay for ANF in human plasma was developed. A synthetic alpha-human atrial peptide (Ser 99-Tyr 126) was used for preparation of the iodinated tracer and the standards. The sensitivity of the method is 1.9 pg/ml. Concentration of immunoreactive ANF (IR-ANF) in plasma of 59 clinically normal subjects was 65.3 +/- 2.5 pg/ml (mean +/- SE). In two patients who underwent atrial pacing an increase of about 100 percent in circulating IR-ANF was observed. IR-ANF was extracted from human plasma by Vycor glass and purified by HPLC. The main immunoreactive isolated peak contained a low molecular weight peptide.  相似文献   

15.
Secretion of atrial natriuretic factor-(1-98) by primary cardiac myocytes   总被引:1,自引:0,他引:1  
Previous studies have demonstrated that primary cultures of cardiac myocytes maintained in a complete serum-free medium contain a precursor to atrial natriuretic factor (ANF-(1-126]. The cultured cells secrete this precursor unless maintained in the presence of glucocorticoids wherein the known circulating form derived from the C-terminal of ANF (ANF-(99-126] is secreted. The present study was designed to determine the fate of the N-terminal region of the ANF precursor during secretion from myocytes maintained in glucocorticoids. A radioimmunoassay (RIA) was developed using synthetic ANF-(1-16); the antiserum demonstrated cross-reactivity toward ANF-(1-126) and ANF-(1-98)-like peptides but did not cross-react with ANF-(99-126). Coupling this RIA with an ANF-(99-126)-specific RIA and reversed phase, size exclusion, and ion exchange high performance liquid chromatography (HPLC), it was shown that primary cultures of atrial myocytes maintained in dexamethasone contained ANF-(1-126) and secreted ANF-(99-126) and a peptide that was chromatographically indistinguishable from ANF-(1-98). Isolated perfused rat hearts were also shown by RIA and HPLC to secrete similar peptides. The primary cells were labeled with [35S]methionine, and the secreted N-terminal ANF-related material was immunoprecipitated with the ANF-(1-16) antiserum. HPLC, tryptic peptide mapping, and radiosequencing demonstrated that this peptide possessed an N-terminal structure identical to that of ANF-(1-126). When the cells were labeled with [3H] leucine and the secreted N-terminal ANF-related material was immunoprecipitated and analyzed by tryptic mapping, it was shown to possess labeled tryptic peptides consistent with the structure of ANF-(1-98). Tryptic mapping of [3H]arginine-labeled N-terminal ANF-related material demonstrated the presence of all peptides consistent with the ANF-(1-98) structure, including ANF-(92-98). These studies demonstrate that primary atrial myocytes contain ANF-(1-126) and in the presence of dexamethasone secrete both ANF-(1-98) and ANF-(99-126), the two major circulating forms of the hormone.  相似文献   

16.
Primary cultures of neonatal rat atrial myocytes were maintained in two different serum-free media for up to 25 days. Reversed-phase high performance liquid chromatography coupled with atrial natriuretic factor (ANF)-specific radioimmunoassay demonstrated that the cultures maintained in our previously described serum-free medium (Glembotski, C.C., and Gibson, T. R. (1985) Biochem. Biophys. Res. Commun. 132, 1008-1017) secreted primarily ANF-(1-126)-like material, whereas those cultures maintained in a different formulation of medium secreted mostly ANF-(99-126)-like material. Cultures that secreted ANF(99-126)-like material were biosynthetically labeled with [35S]cysteine followed by immunoprecipitation of secreted ANF and analysis by reversed-phase, size exclusion, and ion-exchange high performance liquid chromatography. The labeled ANF-(99-126)-like peptide was shown to be chromatographically indistinguishable from other synthetic peptides related to ANF-(99-126). Labeled ANF purified from extracts of the cultured cells was chromatographically indistinguishable from authentic ANF-(1-126), and could be cleaved specifically by thrombin into labeled ANF-(99-126)-like material. These results indicate that primary atrial myocytes maintained under certain serum-free conditions are capable of secreting ANF-related material that is chromatographically indistinguishable from ANF-(99-126), the known circulating form of the hormone. Additional preliminary studies suggest that the presence of glucocorticoids in the culture medium may confer ANF processing ability on cultured myocytes.  相似文献   

17.
Three distinct ANF receptor subtypes have been identified and characterized from cultured canine kidney tubular (MDCK) cells and rat thoracic aortic smooth muscle (RTASM) cells. These three ANF receptor subtypes include; (1) a disulfide-linked 140 kDa protein found in RTASM cells which was reduced by sulfhydryl reagent dithiothreitol (DTT) to a 70 kDa band, (2) a disulfide-unlinked 120 kDa protein, specific to MDCK cells whose Mr was not reduced by DTT and (3) a 68-70 kDa protein prevalent in both RTASM and MDCK cells whose Mr was not reduced by DTT. The non-reducible 68-70 kDa and the reducible 140 kDa proteins showed strong affinities to the full-length ANF (99-126) and truncated ANF (103-123) peptides, however, non-reducible 120 kDa protein showed strong affinity only to the full length ANF (99-126) but negligible or very weak affinity to truncated ANF (103-123). These findings suggest that distinct ANF receptor subtypes are present in renal and vascular cells which might be linked to diverse physiological functions of ANF such as natriuresis and diuresis in kidney and vasorelaxation in vascular smooth muscle cells.  相似文献   

18.
The presence of biologically active atrial natriuretic factor (ANF)-like peptides was demonstrated in rat anterior pituitary. ANF-like immunoreactivity was detected in rat anterior pituitary by specific radioimmunoassay and was extracted from rat anterior pituitary homogenates by heat-activated Vycor glass beads; extracts were purified by reverse-phase high performance liquid chromatography. Two peaks containing ANF immunoreactive material were obtained. The first peak was eluted from the C18 mu Bondapak column at a position similar to the 28-amino acid carboxy terminal peptide (Ser99-Tyr126)-ANF of prohormone. The second peak had the same pattern of elution as the 126-amino acid prohormone, (Asn1-Tyr126)-ANF. The biological activity of the smaller molecular weight peptide (28 amino acid) was assessed by its inhibitory effect on 10(-8) M ACTH-stimulated aldosterone secretion in rat zona glomerulosa cell suspension. This ANF-like material also displaced I125-labelled ANF from rat glomerular receptors with a potency similar to synthetic (Arg101-Tyr126)-ANF. Immunocytochemical localization revealed a distribution of ANF-stained cells similar in pattern and location to that of gonadotrophs. These results suggest the existence of biologically active ANF-like peptides and ANF prohormone within the anterior pituitary. However, their role remains to be elucidated.  相似文献   

19.
Degradation of atrial natriuretic factor in the rat.   总被引:4,自引:3,他引:1       下载免费PDF全文
The biologically active circulating form of atrial natriuretic factor (ANF) in the rat is the 28-amino-acid peptide ANF-(Ser-99-Tyr-126). Degradation of this peptide in vivo as well as in vitro, in whole blood, in plasma and by the isolated mesenteric artery was investigated. Studies in vivo in the rat demonstrated that the elimination and degradation of ANF was extremely fast: within 3 min more than 95% of the injected immunoreactive material was eliminated from circulation. The production of a short C-terminal peptide was detected on injection of 125I-ANF-(Ser-99-Tyr-126) into the rat. This peptide increased proportionately with incubation time. Experiments in vitro in the presence of whole blood or plasma did not cause any major destruction of ANF even after incubation for 60 min. After this prolonged incubation in plasma, ANF-(Ser-99-Tyr-126) was partially converted into ANF-(Ser-103-Tyr-126), a less potent peptide. Isolated mesenteric-artery preparation appeared to degrade ANF in a manner very similar to the system in vivo. These results suggest that degradation of ANF may occur either after internalization in the vascular cells or by a membrane-bound enzyme in the vasculature.  相似文献   

20.
A newly recognized peptidase, designated proteinase yscJ, was purified from the yeast Saccharomyces cerevisiae. The enzyme is of non-vacuolar origin and cleaves the Tyr-Lys bond of the synthetic peptide substrate Cbz-Tyr-Lys-Arg-NH-Ph (Cbz, benzyloxycarbonyl; NH-Ph, 4-nitroanilide) and the Glu-Lys bond of the substrate Boc-Glu-Lys-Lys-NH-Mec (Boc, butoxycarbonyl; Mec, 4-methylcoumarinyl) with high efficiency. Optimum pH for cleavage of Cbz-Tyr-Lys-Arg-NH-Ph is in the range 7.0-7.5. The purified enzyme has a molecular mass of approximately 58 kDa, as judged by gel filtration on a Superose 12 FPLC column. Mercury compounds and EDTA were found to be potent inhibitors of proteinase yscJ activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号