共查询到20条相似文献,搜索用时 15 毫秒
1.
E. Ottaviano D. Petroni M. E. Pe′ 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1988,75(2):252-258
Summary An indirect approach was adopted to select viable mutants affecting the male gametophytic generation in maize. This approach consists of a selection of endosperm defective mutants followed by a test for gametophytic gene expression, based on the distortion from mendelian segregation and on the measurement of pollen size and pollen sterility. The material used consisted of 34 endosperm defective viable mutants introgressed in B37 genetic background. Complementation tests indicated that the mutation in the collection of mutants affected different genes controlling endosperm development. The study of the segregation in F2 revealed four classes of de (defective endosperm) mutants: (1) mutants in which the mutation does not affect either gametophytic development or function; (2) mutants in which the effect on the gametophyte affects pollen development processes; (3) mutants showing effects on both pollen development and function, and (4) mutants where only pollen tube growth rate is affected. Positive and negative interactions between pollen and style were detected by means of mixed pollination (pollen produced by de/de plants and pollen from an inbred line used as a standard and carrying genes for colored aleurone), on de/de and de/ + plants. Positive interactions were interpreted as methabolic complementation between defective pollen and normal styles. 相似文献
2.
3.
Abscisic acid catabolism in maize kernels in response to water deficit at early endosperm development 总被引:10,自引:0,他引:10
To further our understanding of the greater susceptibility of apical kernels in maize inflorescences to water stress, abscisic acid (ABA) catabolism activity was evaluated in developing kernels with chirally separated (+)-[(3)H]ABA. The predominant pathway of ABA catabolism was via 8'-hydroxylase to form phaseic acid, while conjugation to glucose was minor. In response to water deficit imposed on whole plants during kernel development, ABA accumulated to higher concentrations in apical than basal kernels, while both returned to control levels after rewatering. ABA catabolism activity per gram fresh weight increased about three-fold in response to water stress, but was about the same in apical and basal kernels on a fresh weight basis. ABA catabolism activity was three to four-fold higher in placenta than endosperm, and activity was higher in apical than basal kernels. In vitro incubation tests indicated that glucose did not affect ABA catabolism. We conclude that placenta tissue plays an important role in ABA catabolism, and together with ABA influx and compartmentation, determine the rate of ABA transport into endosperms. 相似文献
4.
Physicochemical properties of endosperm and pericarp starches during maize development 总被引:4,自引:0,他引:4
Endosperm starch and pericarp starch were isolated from maize (B73) kernels at different developmental stages. Starch granules, with small size (2–4 μm diameter), were first observed in the endosperm on 5 days after pollination (DAP). The size of endosperm-starch granules remained similar until 12DAP, but the number increased extensively. A substantial increase in granule size was observed from 14DAP (diameter 4–7 μm) to 30DAP (diameter10–23 μm). The size of starch granules on 30DAP is similar to that of the mature and dried endosperm-starch granules harvested on 45DAP. The starch content of the endosperm was little before 12DAP (less than 2%) and increased rapidly from 10.7% on 14DAP to 88.9% on 30DAP. The amylose content of the endosperm starch increased from 9.2% on 14DAP to 24.2% on 30DAP and 24.4% on 45DAP (mature and dried). The average amylopectin branch chain-length of the endosperm amylopectin increased from DP23.6 on 10DAP to DP26.9 on14DAP and then decreased to DP25.4 on 30DAP and DP24.9 on 45DAP. The onset gelatinization temperature of the endosperm starch increased from 61.3 °C on 8DAP to 69.0 °C on 14DAP and then decreased to 62.8 °C on 45DAP. The results indicated that the structure of endosperm starch was not synthesized consistently through the maturation of kernel. The pericarp starch, however, showed similar granule size, starch content, amylose content, amylopectin structure and thermal properties at different developmental stages of the kernel. 相似文献
5.
Maize ( Zea mays L. cv . Pioneer 3925) endosperm development is sensitive to water deficit during rapid cell division and nuclear DNA endoreduplication. To gain insight into effects of water deficit on gene-products that are involved in these processes, we examined the accumulation of β-tubulin, a 50-kDa subunit of microtubules. Proteins extracted from endosperms were separated by SDS-PAGE and immunoblotted with antibodies to β-tubulin. In addition to the expected 50-kDa β-tubulin protein, monoclonal antibodies recognized a 35-kDa protein that predominated at early stages of development and progressively disappeared coincident with the appearance of 50-kDa β-tubulin. Various tests demonstrated that the cross-reacting 35-kDa protein was not a post-harvest artifact, but represented a group of in situ tubulin isotypes preferentially detected by the monoclonal antibodies we used. The pattern of appearance of the fragment suggested that differential expression or degradation of tubulin isotypes normally occurs during development. This expression pattern is prologed or altered during water deficit, which may affect cell division. 相似文献
6.
Relationship between development of endosperm transfer cells and grain mass in maize 总被引:1,自引:0,他引:1
The most basal endosperm cells of maize (Zea mays L.) began differentiating into transfer cells in 10 days after pollination
(DAP). The thickening and ingrowths forming in the transfer cell wall were slow during 10 and 15 DAP. There were many vesicles,
silky and string ball objects in cytoplasm, and the number of mitochondria and rough endoplasm reticulum increased. After
15 DAP, the wall thickening and ingrowths forming in the transfer cells sped up. By 20 DAP, the transfer cell zone had developed,
there appeared 65 - 70 rows of cells in width and 3 - 4 layers of cell in depth, the obvious cell wall ingrowths presented
strong positive reaction with periodic acid Schiff's reagent. After 20 DAP, no significant change appeared in the shape and
structure of the transfer cells, and the transfer cells entered function stage. In the mature kernels (53 DAP), the most basal
transfer cells were filled with ingrowths, however, dense cytoplasm was also found in these cells. The nuclei had quite irregular
shapes in these cells. Some transfer cells contained black grains and crystals. A black layer formed in the pericarp tissue
adjacent to the transfer cell zone. Full development of endosperm transfer cells was important for reduction of kernel abortion
and increase of kernel mass.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
7.
Positional cues specify and maintain aleurone cell fate in maize endosperm development 总被引:1,自引:0,他引:1
A genetic analysis of maize aleurone development was conducted. Cell lineage was examined by simultaneously marking cells with C1 for anthocyanin pigmentation in the aleurone and wx1 for amylose synthesis in the starchy endosperm. The aleurone and starchy endosperm share a common lineage throughout development indicating that positional cues specify aleurone fate. Mutants in dek1 block aleurone formation at an early stage and cause peripheral endosperm cells to develop as starchy endosperm. Revertant sectors of a transposon-induced dek1 allele showed that peripheral endosperm cells remain competent to differentiate as aleurone cells until late in development. Ds-induced chromosome breakage was used to generate Dek1 loss-of-function sectors. Events occurring until late development caused aleurone cells to switch fate to starchy endosperm indicating that cell fate is not fixed. Thus, positional cues are required to specify and maintain aleurone fate and Dek1 function is required to respond to these cues. An analysis of additional mutants that disrupt aleurone differentiation suggests a hierarchy of gene functions to specify aleurone cell fate and then control aleurone differentiation. These mutants disrupt aleurone differentiation in reproducible patterns suggesting a relationship to endosperm pattern formation. 相似文献
8.
9.
We will describe gene expression patterns in the maize caryopsis, which provide clues to developmental decisions and questions in the embryo and endosperm. The emphasis will be on the development of the root/shoot axis, which is the main achievement of plant embryogenesis. Data obtained in the vegetative seedling are included as far as they may be relevant to the elaboration of the shoot/root axis. Development of the embryo will be briefly compared to endosperm as both seed compartment exhibit pronounced differences. 相似文献
10.
The absolute activities of sucrose-UDP glucosyltransferase, glucose-6-phosphate ketoisomerase and soluble and bound ADPG-starch glucosyltransferase have been studied in normal and Opaque-2 maize endosperms during development. In general, the activities of these enzymes except sucrose-UDP glucosyltransferase were higher up to 20 days post-pollination and lower at the 30 day stage in Opaque-2 than in normal maize endosperms. However, sucrose-UDP glucosyltransferase activity was higher in normal maize endosperm up to the 20 day stage while it was lower at subsequent stages than in Opaque-2. It is suggested that the lower level of these enzymes, except sucrose-UDP glucosyltransferase, might be responsible for the reduced accumulation of starch in Opaque-2 endosperm during later stages of endosperm development. 相似文献
11.
Changes in the zein composition of protein bodies during maize endosperm development. 总被引:15,自引:13,他引:15 下载免费PDF全文
Zeins, the seed storage proteins of maize, are synthesized during endosperm development by membrane-bound polyribosomes and transported into the lumen of the endoplasmic reticulum, where they assemble into protein bodies. To better understand the distribution of the various zeins throughout the endosperm, and within protein bodies, we used immunolocalization techniques with light and electron microscopy to study endosperm tissue at 14 days and 18 days after pollination. Protein bodies increase in size with distance from the aleurone layer of the developing endosperm; this reflects a process of cell maturation. The protein bodies within the subaleurone cell layer are the smallest and contain little or no alpha-zein; beta-zein and gamma-zein are distributed throughout these small protein bodies. The protein bodies in cells farther away from the aleurone layer are progressively larger, and immunostaining for alpha-zein occurs over locules in the central region of these protein bodies. In the interior of the largest protein bodies, the locules of alpha-zein are fused. Concomitant with the appearance of alpha-zein in the central regions of the protein bodies, most of the beta- and gamma-zeins become peripheral. These observations are consistent with a model in which specific zeins interact to assemble the storage proteins into a protein body. 相似文献
12.
13.
14.
Ketose reductase activity in developing maize endosperm 总被引:5,自引:5,他引:0
Doehlert DC 《Plant physiology》1987,84(3):830-834
Ketose reductase (NAD-dependent polyol dehydrogenase EC 1.1.1.14) activity, which catalyzes the NADH-dependent reduction of fructose to sorbitol (d-glucitol), was detected in developing maize (Zea mays L.) endosperm, purified 104-fold from this tissue, and partially characterized. Product analysis by high performance liquid chromatography confirmed that the enzyme-catalyzed reaction was freely reversible. In maize endosperm, 15 days after pollination, ketose reductase activity was of the same order of magnitude as sucrose synthase activity, which produces fructose during sucrose degradation. Other enzymes of hexose metabolism detected in maize endosperm were present in activities of only 1 to 3% of the sucrose synthase activity. CaCl2, MgCl2, and MnCl2 stimulated ketose reductase activity 7-, 6-, and 2-fold, respectively, but had little effect on NAD-dependent polyol dehydrogenation (the reverse reaction). The pH optimums for ketose reductase and polyol dehydrogenase reactions were 6.0 and 9.0, respectively. Km values were 136 millimolar fructose and 8.4 millimolar sorbitol. The molecular mass of ketose reductase was estimated to be 78 kilodaltons by gel filtration. It is postulated that ketose reductase may function to metabolize some of the fructose produced during sucrose degradation in maize endosperm, but the metabolic fate of sorbitol produced by this reaction is not known. 相似文献
15.
Lysine-ketoglutarate reductase activity was detected and characterized in the developing endosperm of maize (Zea mays L.). The enzyme showed specificity for its substrates: lysine, α-ketoglutarate, and NADPH. Formation of the reaction product saccharopine was demonstrated. The pH optimum of the enzyme was close to 7, and the Km for lysine and α-ketoglutarate were 5.2 and 1.8 millimolar, respectively. 相似文献
16.
Crosses involving certain B-A translocations produce a reduced size of endosperm when those regions of the A chromosomes are missing in the sperm that fertilizes the polar nuclei. Previous studies involving the long arm of chromosome 10 showed that additional copies of this segment introduced through the maternal side could not rescue the reduced size phenotype conditioned by the corresponding deficiency in the paternal gamete. In this paper, experiments are described showing that other segments introduced maternally produce an even smaller kernel when fertilized by a sperm missing the same A chromosome segment or other ones that carry factors affecting endosperm size.—The example analyzed in detail involves reciprocal crosses between TB-4Sa and TB-10L19. Extra doses of 4S enhance the small kernel effect normally produced by TB-10L19. The additional copies of 4S have no effect on kernel mass when the 10L segment is present in the paternal contribution to the endosperm. The maternal enhancement by 4S is also effective with crosses by TB-1La but not by TB-1Sb. A survey of inter se crosses of B-A translocations shows that, when the maternal enhancement occurs, it is confined to those regions that themselves give a small kernel effect when used as a male. This correlation is strengthened by the observations that TB-10L19 enhances the small kernel effect of TB-1Sb, but TB-10L32 will not. Since these two B-10L translocations span the best localized small kernel effect region, this result supports the correlation of maternal enhancement regions with the paternal small kernel effect ones.—Because the enhancement can be attributed to a dosage effect and because the enhancement regions are coincident with the small kernel segments, it is postulated that this interacting system is analogous to aneuploid effects in diploid tissues but exhibits unique properties because of the evolutionary history and triploid condition of the endosperm. 相似文献
17.
Hexokinase from maize endosperm and scutellum 总被引:1,自引:6,他引:1
Hexokinase (EC 2.7.1.1) was isolated from endosperm and scutellum of developing and germinating maize (Zea mays) seeds. With fructose as the variable substate, Michaelis constant values for the scutellum enzyme were about onethird those of the endosperm enzyme (0.05 versus 0.15 mm), and no developmental differences were observed. With glucose as the variable substrate, Michaelis constant values were all in the range 0.1 to 0.2 mm. The enzyme preparation from germinating scutellum was studied further; when glucose was varied over a wide range, a Michaelis constant of 3.4 mm was observed in addition to the much lower Michaelis constant noted above. This low affinity binding of glucose may have regulatory significance and may indicate the presence of a glucokinase in addition to hexokinase. 相似文献
18.
eEF1A isoforms change in abundance and actin-binding activity during maize endosperm development 下载免费PDF全文
Lopez-Valenzuela JA Gibbon BC Hughes PA Dreher TW Larkins BA 《Plant physiology》2003,133(3):1285-1295
Eukaryotic elongation factor 1A (eEF1A) appears to be a multifunctional protein because several biochemical activities have been described for this protein, in addition to its role in protein synthesis. In maize (Zea mays) endosperm, the synthesis of eEF1A is increased in o2 (opaque2) mutants, and its concentration is highly correlated with the protein-bound lysine content. To understand the basis of this relationship, we purified eEF1A isoforms from developing endosperm and investigated their accumulation and their functional and structural properties. Formation of three isoforms appears to be developmentally regulated and independent of the o2 mutation, although one isoform predominated in one high lysine o2 inbred. The purified proteins differ in their ability to bind F-actin in vitro, suggesting that they are functionally distinct. However, they share similar aminoacyl-tRNA-binding activities. Tandem mass spectrometry revealed that each isoform is composed of the four same gene products, which are modified posttranslationally by methylation and phosphorylation. The chemical differences that account for their different actin-binding activities could not be determined. 相似文献
19.
ADP glucose pyrophosphorylase from maize endosperm 总被引:24,自引:0,他引:24