首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
Autophagy is a process to degrade and recycle cytoplasmic contents. Autophagy is required for survival in response to starvation, but has also been associated with cell death. How autophagy functions during cell survival in some contexts and cell death in others is unknown. Drosophila larval salivary glands undergo programmed cell death requiring autophagy genes, and are cleared in the absence of known phagocytosis. Recently, we demonstrated that Draper (Drpr), the Drosophila homolog of C. elegans engulfment receptor CED-1, is required for autophagy induction during cell death, but not during cell survival. drpr mutants fail to clear salivary glands. drpr knockdown in salivary glands prevents the induction of autophagy, and Atg1 misexpression in drpr null mutants suppresses salivary gland persistence. Surprisingly, drpr knockdown cell-autonomously prevents autophagy induction in dying salivary gland cells, but not in larval fat body cells following starvation. This is the first engulfment factor shown to function in cellular self-clearance, and the first report of a cell-death-specific autophagy regulator.Key words: autophagy, Draper, programmed cell death, engulfment, developmentProgrammed cell death is required for animal development and tissue homeostasis. Improper cell death leads to pathologies including autoimmunity and cancer. Several morphological forms of cell death occur during animal development, including apoptosis and autophagic cell death. Autophagic cell death is characterized by the presence of autophagosomes in dying cells that are not known to be engulfed by phagocytes. Autophagic cell death is observed during several types of mammalian developmental cell death, including regression of the corpus luteum and involution of mammary and prostate glands.During macroautophagy (autophagy), cytoplasmic components are sequestered by autophagosomes and delivered to the lysosome for degradation. Autophagy is a cellular response to stress required for survival in response to starvation. Whereas autophagy has been associated with cell death, it is unknown how autophagy is distinguished during cell death and cell survival. Autophagy is induced in Drosophila in response to starvation in the fat body where it promotes cell survival, while autophagy is induced by the steroid hormone ecdysone in salivary glands where it promotes cell death. This allows studies of autophagy in different cell types and in response to different stimuli.Drosophila larval salivary glands die with autophagic cell death morphology and autophagy is required for their degradation. Expression of the caspase inhibitor p35 enhances salivary gland persistence in Atg mutants, suggesting that caspases and autophagy function in parallel during salivary gland degradation. Either activation of caspases or Atg1 misexpression is sufficient to induce ectopic salivary gland clearance. We queried genome-wide microarray data from purified dying salivary glands and noted the induction of engulfment genes, those required for a phagocyte to consume and degrade a dying cell. We also noted few detectable changes in engulfment genes in Drosophila larvae during starvation.We found that Drpr, the Drosophila orthologue of C. elegans engulfment receptor CED-1, is enriched in dying salivary glands, and drpr null mutants have persistent salivary glands. Interestingly, whereas knockdown of drpr in phagocytic blood cells fails to influence salivary gland clearance, expression of drpr-RNAi in salivary glands prevents gland clearance. Drosophila drpr is alternatively spliced to produce three isoforms. We found that drpr-I-specific knockdown prevents salivary gland degradation and Drpr-I expression in salivary glands of drpr null mutants rescues salivary gland persistence. Therefore, drpr is autonomously required for salivary gland clearance. However, how Drpr is induced or activated during hormone-regulated cell death remains to be determined.drpr knockdown fails to influence caspase activation, and caspase inhibitor p35 expression in drpr null mutants enhances salivary gland persistence, suggesting that Drpr functions downstream or parallel to caspases in dying salivary glands. Interestingly, we found that drpr knockdown in salivary glands prevents the formation of GFP-LC3 puncta. Further, Atg1 misexpression in salivary glands of drpr null mutants suppresses salivary gland persistence. drpr is therefore required for autophagy induction in salivary glands, and Atg1 functions downstream of Drpr in this tissue. We found that several other engulfment genes are required for salivary gland degradation. However, the Drpr signaling mechanism leading to autophagy induction in salivary glands remains to be elucidated.We tested whether drpr is a general regulator of autophagy. The Drosophila fat body is a nutrient storage and mobilization organ akin to the mammalian liver, and is a well-established model to study starvation-induced autophagy. We found that drpr-RNAi expression in fat body clone cells fails to prevent GFP-Atg8 puncta formation in response to starvation. Similarly, drpr null fat body clone cells form Cherry-Atg8 puncta after starvation. Strikingly, drpr-RNAi expression in salivary gland clone cells inhibits the formation of GFP-Atg8 puncta. Therefore, drpr is cell-autonomously required for autophagy induction in dying salivary gland cells, but not for autophagy induction in fat body cells after starvation. These findings suggest that distinct signaling mechanisms regulate autophagy in response to nutrient deprivation compared to steroid hormone induction. Little is known about what distinguishes autophagy function in cell survival versus death. It is possible that varying levels of autophagy are induced during specific cell contexts and that high levels of autophagy could overwhelm a cell—leading to cell death. Autophagic degradation of specific cargo, such as cell death inhibitors, could also contribute to cell death.Given recent interest in manipulation of autophagy for therapies, it is possible that factors such as Drpr could be used as biomarkers to distinguish autophagy leading to cell death versus cell survival. While it is generally accepted that augmentation of protein clearance by autophagy during neurodegeneration would be beneficial, the role of autophagy in tumor progression is less clear. For example, monoallelic loss of the human Atg6 homolog beclin 1 is prevalent in human cancers, suggesting that autophagy is a tumorsuppressive mechanism. Thus, autophagy enhancers have been proposed for cancer prevention. However, autophagy occurs in tumor cells as a survival mechanism, and autophagy inhibitors have been proposed for anti-cancer therapies. Understanding how autophagy is regulated in different contexts is critical for appropriate therapeutic strategies.  相似文献   

3.
The larvae of the common green bottle fly Lucilia sericata (Diptera: Calliphoridae) have been used for centuries to promote wound healing, but the molecular basis of their antimicrobial, debridement and healing functions remains largely unknown. The analysis of differential gene expression in specific larval tissues before and after immune challenge could be used to identify key molecular factors, but the most sensitive and reproducible method qRT-PCR requires validated reference genes. We therefore selected 10 candidate reference genes encoding products from different functional classes (18S rRNA, 28S rRNA, actin, β-tubulin, RPS3, RPLP0, EF1α, PKA, GAPDH and GST1). Two widely applied algorithms (GeNorm and Normfinder) were used to analyze reference gene candidates in different larval tissues associated with secretion, digestion, and antimicrobial activity (midgut, hindgut, salivary glands, crop and fat body). The Gram-negative bacterium Pseudomonas aeruginosa was then used to boost the larval immune system and the stability of reference gene expression was tested in comparison to three immune genes (lucimycin, defensin-1 and attacin-2), which target different pathogen classes. We observed no differential expression of the antifungal peptide lucimycin, whereas the representative targeting Gram-positive bacteria (defensin-1) was upregulated in salivary glands, crop, nerve ganglion and reached its maximum in fat body (up to 300-fold). The strongest upregulation in all immune challenged tissues (over 50,000-fold induction in the fat body) was monitored for attacin-2, the representative targeting Gram-negative bacteria. Here we identified and validated a set of reference genes that allows the accurate normalization of gene expression in specific tissues of L. sericata after immune challenge.  相似文献   

4.
5.
Proteasome inhibitors induce cell death and are used in cancer therapy, but little is known about the relationship between proteasome impairment and cell death under normal physiological conditions. Here, we investigate the relationship between proteasome function and larval salivary gland cell death during development in Drosophila. Drosophila larval salivary gland cells undergo synchronized programmed cell death requiring both caspases and autophagy (Atg) genes during development. Here, we show that ubiquitin proteasome system (UPS) function is reduced during normal salivary gland cell death, and that ectopic proteasome impairment in salivary gland cells leads to early DNA fragmentation and salivary gland condensation in vivo. Shotgun proteomic analyses of purified dying salivary glands identified the UPS as the top category of proteins enriched, suggesting a possible compensatory induction of these factors to maintain proteolysis during cell death. We compared the proteome following ectopic proteasome impairment to the proteome during developmental cell death in salivary gland cells. Proteins that were enriched in both populations of cells were screened for their function in salivary gland degradation using RNAi knockdown. We identified several factors, including trol, a novel gene CG11880, and the cop9 signalsome component cop9 signalsome 6, as required for Drosophila larval salivary gland degradation.  相似文献   

6.
7.
8.
9.

Background

Invasion of the mosquito salivary glands by Plasmodium is a critical step for malaria transmission. From a SAGE analysis, we previously identified several genes whose expression in salivary glands was regulated coincident with sporozoite invasion of salivary glands. To get insights into the consequences of these salivary gland responses, here we have studied one of the genes, PRS1 (Plasmodium responsive salivary 1), whose expression was upregulated in infected glands, using immunolocalization and functional inactivation approaches.

Methodology/Principal Findings

PRS1 belongs to a novel insect superfamily of genes encoding proteins with DM9 repeat motifs of uncharacterized function. We show that PRS1 is induced in response to Plasmodium, not only in the salivary glands but also in the midgut, the other epithelial barrier that Plasmodium has to cross to develop in the mosquito. Furthermore, this induction is observed using either the rodent parasite Plasmodium berghei or the human pathogen Plasmodium falciparum. In the midgut, PRS1 overexpression is associated with a relocalization of the protein at the periphery of invaded cells. We also find that sporozoite invasion of salivary gland cells occurs sequentially and induces intra-cellular modifications that include an increase in PRS1 expression and a relocalization of the corresponding protein into vesicle-like structures. Importantly, PRS1 knockdown during the onset of midgut and salivary gland invasion demonstrates that PRS1 acts as an agonist for the development of both parasite species in the two epithelia, highlighting shared vector/parasite interactions in both tissues.

Conclusions/Significance

While providing insights into potential functions of DM9 proteins, our results reveal that PRS1 likely contributes to fundamental interactions between Plasmodium and mosquito epithelia, which do not depend on the specific Anopheles/P. falciparum coevolutionary history.  相似文献   

10.
The insect steroid hormone ecdysone triggers programmed cell death of obsolete larval tissues during metamorphosis and provides a model system for understanding steroid hormone control of cell death and cell survival. Previous genome-wide expression studies of Drosophila larval salivary glands resulted in the identification of many genes associated with ecdysone-induced cell death and cell survival, but functional verification was lacking. In this study, we test functionally 460 of these genes using RNA interference in ecdysone-treated Drosophila l(2)mbn cells. Cell viability, cell morphology, cell proliferation, and apoptosis assays confirmed the effects of known genes and additionally resulted in the identification of six new pro-death related genes, including sorting nexin-like gene SH3PX1 and Sox box protein Sox14, and 18 new pro-survival genes. Identified genes were further characterized to determine their ecdysone dependency and potential function in cell death regulation. We found that the pro-survival function of five genes (Ras85D, Cp1, CG13784, CG32016, and CG33087), was dependent on ecdysone signaling. The TUNEL assay revealed an additional two genes (Kap-α3 and Smr) with an ecdysone-dependent cell survival function that was associated with reduced cell death. In vitro, Sox14 RNAi reduced the percentage of TUNEL-positive l(2)mbn cells (p<0.05) following ecdysone treatment, and Sox14 overexpression was sufficient to induce apoptosis. In vivo analyses of Sox14-RNAi animals revealed multiple phenotypes characteristic of aberrant or reduced ecdysone signaling, including defects in larval midgut and salivary gland destruction. These studies identify Sox14 as a positive regulator of ecdysone-mediated cell death and provide new insights into the molecular mechanisms underlying the ecdysone signaling network governing cell death and cell survival.  相似文献   

11.
12.
13.
14.
《Insect Biochemistry》1986,16(2):313-318
Malaria sporozoites invade only the medial lobe and the distal portions of the lateral lobes of the salivary glands of vector mosquitoes. Because surface characteristics of these tissues may mark their identity, we determined whether particular lobes bear unique carbohydrates. A preliminary screen using fluorescein labeled lectins indicated that the salivary glands of female Aedes aegypti differed from other organs tested in their affinity for DBA but not UEA I. By means of electron microscopy, a panel of seven biotin-labeled lectins were used to describe the carbohydrates of the basal lamina. Binding of CON A and to a lesser extent RCA 120 was distributed over each lobe of the salivary glands. Other lectins, however, were specific to certain lobes. The lateral distal lobe bound CON A, DBA, PNA, RCA 120, UEAI and WGA. The lateral proximal lobes bound only CON A and DBA. In addition, the basal lamina possesses a net negative charge as indicated by the binding of cationic ferritin. Thus, the basal lamina over the various regions of the salivary glands is characterized by unique carbohydrates and this suggests that surface receptors may provide the specificity that limits invasion by sporozoites to particular lobes of the salivary glands.  相似文献   

15.
16.

Background

Protein-tyrosine sulfation is a post-translational modification of an unknown number of secreted and membrane proteins mediated by two known Golgi tyrosylprotein sulfotransferases (TPST-1 and TPST-2). We reported that Tpst2-/- mice have mild-moderate primary hypothyroidism, whereas Tpst1-/- mice are euthyroid. While using magnetic resonance imaging (MRI) to look at the thyroid gland we noticed that the salivary glands in Tpst2-/- mice appeared smaller than in wild type mice. This prompted a detailed analysis to compare salivary gland structure and function in wild type, Tpst1-/-, and Tpst2 -/- mice.

Methodology/Principal Findings

Quantitative MRI imaging documented that salivary glands in Tpst2-/- females were 30% smaller than wild type or Tpst1-/- mice and that the granular convoluted tubules in Tpst2-/- submandibular glands were less prominent and were almost completely devoid of exocrine secretory granules compared to glands from wild type or Tpst1-/- mice. In addition, pilocarpine–induced salivary flow and salivary α-amylase activity in Tpst2-/- mice of both sexes was substantially lower than in wild type and Tpst1-/- mice. Anti-sulfotyrosine Western blots of salivary gland extracts and saliva showed no differences between wild type, Tpst1-/-, and Tpst2-/- mice, suggesting that the salivary gland hypofunction is due to factor(s) extrinsic to the salivary glands. Finally, we found that all indicators of hypothyroidism (serum T4, body weight) and salivary gland hypofunction (salivary flow, salivary α-amylase activity, histological changes) were restored to normal or near normal by thyroid hormone supplementation.

Conclusions/Significance

Our findings conclusively demonstrate that low body weight and salivary gland hypofunction in Tpst2-/- mice is due solely to primary hypothyroidism.  相似文献   

17.
18.

Background

Commensal and symbiotic microbes have a considerable impact on the behavior of many arthropod hosts, including hematophagous species that transmit pathogens causing infectious diseases to human and animals. Little is known about the bacteria associated with mosquitoes other than the vectorized pathogens. This study investigated Wolbachia and cultivable bacteria that persist through generations in Ae. albopictus organs known to host transmitted arboviruses, such as dengue and chikungunya.

Methodology/Principal Findings

We used culturing, diagnostic and quantitative PCR, as well as in situ hybridization, to detect and locate bacteria in whole individual mosquitoes and in dissected tissues. Wolbachia, cultivable bacteria of the genera Acinetobacter, Comamonas, Delftia and Pseudomonas co-occurred and persisted in the bodies of both males and females of Ae. albopictus initially collected in La Réunion during the chikungunya outbreak, and maintained as colonies in insectaries. In dissected tissues, Wolbachia and the cultivable Acinetobacter can be detected in the salivary glands. The other bacteria are commonly found in the gut. Quantitative PCR estimates suggest that Wolbachia densities are highest in ovaries, lower than those of Acinetobacter in the gut, and approximately equal to those of Acinetobacter in the salivary glands. Hybridization using specific fluorescent probes successfully localized Wolbachia in all germ cells, including the oocytes, and in the salivary glands, whereas the Acinetobacter hybridizing signal was mostly located in the foregut and in the anterior midgut.

Conclusions/Significance

Our results show that Proteobacteria are distributed in the somatic and reproductive tissues of mosquito where transmissible pathogens reside and replicate. This location may portend the coexistence of symbionts and pathogens, and thus the possibility that competition or cooperation phenomena may occur in the mosquito vector Ae. albopictus. Improved understanding of the vectorial system, including the role of bacteria in the vector''s biology and competence, could have major implications for understanding viral emergences and for disease control.  相似文献   

19.
20.
The Drosophila embryonic salivary gland is a migrating tissue that undergoes a stereotypic pattern of migration into the embryo. We demonstrate that the migratory path of the salivary gland requires the PDGF/VEGF pathway. The PDGF/VEGF receptor, Pvr, is strongly expressed in the salivary glands, and Pvr mutations cause abnormal ventral curving of the glands, suggesting that Pvr is involved in gland migration. Although the Pvr ligands, Pvf1 and Pvf2, have distinct expression patterns in the Drosophila embryo, mutations for either one of the ligands result in salivary gland migration defects similar to those seen in embryos that lack Pvr. Rescue experiments indicate that the PDGF/VEGF pathway functions autonomously in the salivary gland. The results of this study demonstrate that the Drosophila PDGF/VEGF pathway is essential for proper positioning of the salivary glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号