共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang C Liu F Liu YY Zhao CH You Y Wang L Zhang J Wei B Ma T Zhang Q Zhang Y Chen R Song H Yang Z 《Cell research》2011,21(11):1534-1550
It is of great interest to identify new neurons in the adult human brain, but the persistence of neurogenesis in the subventricular zone (SVZ) and the existence of the rostral migratory stream (RMS)-like pathway in the adult human forebrain remain highly controversial. In the present study, we have described the general configuration of the RMS in adult monkey, fetal human and adult human brains. We provide evidence that neuroblasts exist continuously in the anterior ventral SVZ and RMS of the adult human brain. The neuroblasts appear singly or in pairs without forming chains; they exhibit migratory morphologies and co-express the immature neuronal markers doublecortin, polysialylated neural cell adhesion molecule and βIII-tubulin. Few of these neuroblasts appear to be actively proliferating in the anterior ventral SVZ but none in the RMS, indicating that neuroblasts distributed along the RMS are most likely derived from the ventral SVZ. Interestingly, no neuroblasts are found in the adult human olfactory bulb. Taken together, our data suggest that the SVZ maintains the ability to produce neuroblasts in the adult human brain. 相似文献
2.
Limitations of the scrape-loading/dye transfer technique to quantify inhibition of gap junctional intercellular communication 总被引:5,自引:0,他引:5
Gap junctional intercellular communication (GJIC) is recognized as playing an important role in normal cell proliferation and development. Chemically induced alteration of GJIC has been proposed to be associated with abnormal cellular growth and/or tumor promotion. Several in vitro assays are currently used to determine the effects of chemicals on GJIC between cultured mammalian cells. One of these assays, the scrape-loading dye transfer (SLIDT) technique, is based on monitoring the transfer of the fluorescent dye Lucifer yellow from one cell into adjacent cells via functional gap junctions. The objective of our study was to evaluate and compare various approaches for quantifying results obtained with the SL/DT technique. Confluent cultures of either WB rat liver epithelial cells or LC-540 rat leydig cells were exposed to the animal tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), solvent (0.1% ethanol), or culture medium for one hour at 37° C prior to analysis of GJIC. Inhibition of dye transfer was clearly evident following TPA exposure. Quantification of this dye transfer was assessed via four approaches: manually counting the number of labeled cells; measuring the distance of dye travel from the scrape line; quantifying the amount of cellular dye uptake; and determining the distribution of dye away from the scrape line. Our results suggest that while the SL/DT technique can be effectively used as a tool to determine the qualitative presence or absence of GJIC, its use in quantifying changes in GJIC following chemical exposure is limited. Since concentration-dependent responses are critical in chemical testing, application of the SLIDT method should be restricted to a screening assay for qualitatively assessing the presence or absence of GJIC. Another assay (e.g., electrical coupling, microinjection, metabolic cooperation, radioactive metabolite transfer, or fluorescence redistribution after photobleaching) should be considered to quantify changes in GJIC and construct chemical concentration-response curves.Abbreviations FBS,
fetal bovine serum
- GJIC,
gap junctional intercellular communication
- HBSS,
Hank's balanced saline solution
- SL/DT,
scrape-loading/dye transfer
- TPA,
12-O-tetradecanoylphorbol-13-acetate. 相似文献
3.
Raceková E Martoncíková M Mitrusková B Cízková D Orendácová J 《Cellular and molecular neurobiology》2005,25(7):1093-1105
Summary Accumulating evidence confirms that nitric oxide (NO), a versatile diffusible signaling molecule, contributes to controling
of adult neurogenesis. We have previously shown the timing of NADPH-diaphorase (NADPH-d) positivity within the rat rostral
migratory stream (RMS) during the first postnatal month. The present study was designed to describe further age-related changes
of NO presence in this neurogenic region. The presence of NO synthesizing cells in the RMS was shown by NADPH-d histochemistry
and neuronal nitric oxide synthase (nNOS) immunohistochemistry. The phenotypic identity of nitrergic cells was examined by
double labeling with GFAP and NeuN. Systematic qualitative and quantitative analysis of NADPH-d-positive cells was performed
in the neonatal (P14), adult(5 months) and aging (20 months) rat RMS.
1. Nitrergic cells with different distribution pattern and morphological characteristics were present in the RMS at all ages
examined. In neonatal animals, small, moderately stained NADPH-d-positive cells were identified in the RMS vertical arm and
in the RMS elbow. In adult and aging rats a few labeled cells could be also detected in the RMS horizontal arm. NADPH-d-positive
cells in adult and aging rats were characterized by long varicose processes and displayed dark labeling in comparison to the
neonatal group.
2. Double immunolabeling has revealed that nNOS-immunoreactivity co-localized with that of NeuN. This indicates that nitrergic
cells within the RMS are neurons.
3. Quantitative analysis showed that the number of NADPH-d-positive cells increases with advancing age.
The presence of NO producing cells in the RMS of neonatal adult and aging rats indicates, that this proliferating and migratory
area is under the influence of NO throughout the entire life of the animals. 相似文献
4.
Cell Proliferation in the Adult Rat Rostral Migratory Stream Following Exposure to Gamma Irradiation
Bálentová S Raceková E Martoncíková M Misúrová E 《Cellular and molecular neurobiology》2006,26(7-8):1129-1137
Summary One of the few areas of the adult CNS, that are known to be competent for neuronal proliferation, is the subventricular zone (SVZ) lining the brain lateral ventricles. Cells proliferating in the SVZ migrate along a defined pathway, the rostral migratory stream (RMS), where their proliferation continues until reaching the olfactory bulb.1. In relation to the fact that brain is, in general, regarded as a radioresistant organ composed from non dividing cells, the aim of the present study was to investigate effect of ionizing radiation on proliferating cell numbers in the RMS of adult rats.2. Male Wistar rats were investigated 25 and 80 days after whole body gamma irradiation with the dose of 3 Gy. Dividing cells were labeled by bromodeoxyuridine (BrdU). BrdU-positive cells were counted by Disector program. The mean number of BrdU+ cells in the whole RMS and in its individual parts (vertical arm, elbow, and horizontal arm) was evaluated.3. Temporary increase in proliferating cell number (by 30%) was seen in the whole RMS at the 25th day after irradiation.4. The most expressive increase occurred in the vertical arm (by 60%) and elbow (about 37%). The values reduced till the 80th day after exposure.Our results show that ionizing irradiation significantly influences the extent of cell proliferation and migration in the adult rat RMS. 相似文献
5.
Valero J Weruaga E Murias AR Recio JS Curto GG Gómez C Alonso JR 《Developmental neurobiology》2007,67(7):839-859
Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available. 相似文献
6.
Prasanti Kotagiri Steven A. Chance Francis G. Szele Margaret M. Esiri 《Developmental neurobiology》2014,74(1):25-41
Autism is thought to be a neurodevelopmental disorder with symptoms developing during neonatal neurogenesis in the subventricular zone (SVZ). Autism associated genes alter SVZ proliferation and cytoarchitecture, yet the response of the human SVZ in autism is unknown. Epilepsy drives neurogenesis in rodents, but it is unclear how epilepsy interacts with autism in SVZ responses. The striatal and septal SVZ derive from separate lineages in rodents and generate different interneuron types. Yet it is unclear if autism unevenly regulates the striatal and septal SVZ. The human SVZ was immunohistochemically examined post‐mortem from individuals with autism (n = 11) and controls (n = 11). Autism showed a lower cell density in the septal, but not striatal, SVZ hypocellular gap only in the absence of epilepsy. There was a decline in septal hypocellular gap cells with age in autism, but no correlation with age in controls. In contrast, PCNA+ cell numbers increased only in autism with epilepsy both in the hypocellular gap and in the ependymal layer on the septal but not striatal side. Ependymal cells also became GFAP immunoreactive in autism irrespective of epilepsy co‐morbidity; however, this only occurred on the striatal side. In examining these questions we also discovered a subset of ependymal, astrocyte ribbon and RMS cells which express PCNA and Ki67, PLP, and α‐tubulin. These results are the first example of a neuropsychiatric disease differentially affecting the septal and striatal SVZ. Altered cell density in the hypocellular gap and proliferation marker expression suggest individuals with autism may follow a different growth‐trajectory. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 25–41, 2014 相似文献
7.
Blake SM Strasser V Andrade N Duit S Hofbauer R Schneider WJ Nimpf J 《The EMBO journal》2008,27(22):3069-3080
Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), and Dab1 are the main components of the Reelin signalling cascade. Reelin is the sole ligand defined so far in signalling through this pathway. Postnatal migration of neuronal precursors from the subventricular zone (SVZ) to the olfactory bulb (OB), however, depends on ApoER2 and Dab1, but functions independently of Reelin. Here, we show that thrombospondin-1 (THBS-1) is a novel physiological ligand for ApoER2 and VLDLR. THBS-1 is present in the SVZ and along the entire rostral migratory stream (RMS). It binds to ApoER2 and VLDLR and induces phosphorylation of Dab1. In contrast to Reelin, it does not induce Dab1 degradation or Akt phosphorylation, but stabilizes neuronal precursor chains derived from subventricular explants. Lack of THBS-1 results in anatomical abnormalities of the RMS and leads to a reduction of postnatal neuronal precursors entering the OB. 相似文献
8.
《Cell Adhesion & Migration》2013,7(6):454-456
Adult subventricular zone neurogenesis is an important process in most mammals. However, whether it persists in humans is highly debated. Recent work by Sanai and colleagues provides a major step in settling this debate. Using histological approaches, they demonstrated an active subventricular zone with limited neurogenesis in humans as well as discovered a new migratory route. 相似文献
9.
Ronny Fransson Pierluigi Nicotera Lars Wärng»ardi Ulf G. Ahlborg 《Cell biology and toxicology》1990,6(2):235-244
Recent studies have demonstrated that the insecticide DDT is a tumor promoting agent. Similar to many other tumor promoting agents, DDT has been shown to inhibit gap junctional intercellular communication (GJIC) between cells in culture, and it has been suggested that DDT-induced loss of communication between adjacent cells may depend on changes in cytosolic free Ca2+ concentration ([Ca2+]i). In the present study, the role of[Ca2+]i in DDT-induced loss of GJIC was investigated in WB-F344 rat liver cells using the scrape-loading/dye transfer assay (SLDT) and the Ca2+ fourescent indicator, furà-2. Our results show that DDT at non-cytotoxic concentrations caused a reversible loss of GJIC. Inhibition of GJIC was not associated with detectable increases in [Ca2+]i, and was not prevented by loading cells with the intracellular Ca2+ chelator, BAPTA. In addition, the hydroquinone, tBuBHQ, which caused a 2+3 fold sustained increase in [Ca2+]i, did not inhibit GJIC. Conversely, when untreated cells were loaded with increasing BAPTA concentrations, GJIC were lost. These results indicate that increases in [Ca2+]i are not responsible for DDT-induced loss of communication and that, in general an increase in [Ca2+]i, within physiological levels is not sufficient to abolish GJIC. However, Ca2+-dependent processes that are active at normal resting [Ca2+
i appear to be required for the maintenance of GJIC.Abbreviations [Ca2+]
cytosolic free Ca2+ concentration
- GJIC
gap junctional intercellular communication
- SLDT
scrape-loading/dye transfer assay
- DDT
1,1,1-trichloro-2,2-di-(4-chlorophenyl)ethane
- tBuBHQ
2,5-di(tert-butyl)-1,4-benzohydroquinone
- LDH
lactate dehydrogenase
- ER
endoplasmic reticulum
- Fura-2
1-[2-(5carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxyl]-2-(2amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid
- BAPTA
bis-(o-aminophenoxy)-ethane-N,N,N,N-tetraaceticacid
- Fura-2/AM and BAPTA/AM
are the cell permeant acetoxymethyl ester forms of fura-2 and BAPTA, respectively 相似文献
10.
The role of junctional communication in animal tissues 总被引:2,自引:0,他引:2
John D. Pitts 《In vitro cellular & developmental biology. Plant》1980,16(12):1049-1056
Summary Permeable intercellular junctions are a common feature of most animal tissues. These junctions allow the free exchange of
small ions and molecules between all the cells in coupled populations. Such limited syncytial interaction contributes to the
integration of individual cells into organized tissues.
Presented in the symposium on Molecular and Morphological Aspects of Cell-Cell Communication at the 31st Annual Meeting of
the Tissue Culture Association, St. Louis, Missouri, June 1–5, 1980.
This symposium was supported in part by Contract 263-MD-025754 from the National Cancer Institute and the Fogarty International
Center. 相似文献
11.
The neurogenic niche of the anterior subventricular zone (SVZ) persistently generates neuroblasts, which migrate along the rostral migratory stream (RMS) into the olfactory bulb (OB), where they differentiate into granule and periglomerular cells. Loss of the neural cell adhesion molecule NCAM or its post‐translational modification polysialic acid (polySia) impairs migration causing accumulations of cells in the proximal RMS and decreased OB volume. Polysialylation of NCAM is implemented by two polysialyltransferases, ST8SIA2 and ST8SIA4, with overlapping functions. Here, we used mice with Ncam1 and polysialyltransferase deletions to analyze how partial or complete loss of polySia synthesis or a combined loss of polySia and NCAM affects the RMS and the interneuron composition in the OB. Numerous calretinin (CR)‐positive cells were detected dispersed around the RMS in Ncam1 knockout, St8sia2, St8sia4 double‐knockout, and St8sia2, St8sia4, Ncam1 triple‐knockout mice, as well as in St8sia2 ?/? but not in St8sia4 ?/? mice. These changes were not reflected by reductions of CR‐positive cells in the granule or glomerular layer of the OB. Instead, calbindin‐positive periglomerular interneurons were strongly reduced in all polySia‐NCAM negative mice and slightly attenuated in St8sia2 ?/? as well as in the St8sia4 ?/? mice, which were devoid of ectopic CR‐positive cells along the RMS. Consistent with the early developmental generation of calbindin‐ as compared with CR‐positive OB interneurons, this phenotype was fully developed at postnatal day 5. Together, these results demonstrate that the early development of calbindin‐positive periglomerular interneurons depends on the presentation of polySia on NCAM and requires the activity of both polysialyltransferases. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 421–433, 2016 相似文献
12.
Summary The permeability and ultrastructure of communicating junctions of cultured neonatal rat ventricular cells are examined under control conditions and during treatments which raise intracellular Ca2+. Lucifer Yellow (487 mol wt) is used to examine junctional permeability. Under normal ionic conditions dye transfer from an injected muscle cell to neighboring muscle cells occurs rapidly (in less than 6 sec) while transfer to neighboring fibroblasts occurs more slowly. Application of monensin, which results in a partial contracture with superimposed asynchrony, or A23187, which results in a partial contracture, do not inhibit the transfer of dye between the muscle cells. A23187 did result in junctional blockade between muscle cells and fibroblasts. Freeze-fractured gap junctions from control and monensin-treated cells exhibit no distinguishable differences. Center-to-center spacing was not significantly different, 9.0 nm±1.4sd versus 9.2 nm±1.3sd, respectively; and particle diameters were virtually unchanged, 8.69 nm±0.9sd versus 8.61 nm±1.07sd, respectively. These results suggest that concentrations of intracellular Ca2+ sufficient to support a partial contracture and asynchronous contractile activity do not result in a block of intercellular junctions in cultured myocardial cells. These results are discussed in terms of intracellular Ca2+-buffering and junctional sensitivity to Ca2+. 相似文献
13.
A novel fluorochrome, Fluoro-Jade B, was used to detect dying precursor cells in the subventricular zone (SVZ) and rostral migratory stream (RMS) of adult rats after bilateral olfactory bulbectomy and in control intact rats. The animals in experimental group were left to survive 3 days and from 3 till 16 months after surgical procedure. 1. In the control animals, Fluoro-Jade B positive cells were visible in the SVZ and within the whole extent of the RMS. The number of Fluoro-Jade B positive cells increased in the elbow in comparison to the rest parts of the RMS. 2. In the experimental animals surviving either 3 days or from 3 till 16 months after bilateral olfactory bulbectomy, Fluoro-Jade B positive cells displayed the similar pattern of distribution as in the control animals. However, some quantitative differences in the labeled cells number along the rostral migratory pathway appeared. 3. The average number of degenerating cells within the control SVZ and RMS was 26.24+/- 0.686. In bulbectomized animals, regardless of survival time, an insignificant increase of Fluoro-Jade B positive cells number occurred. We can conclude that dying of precursor cells is a physiological process running within the SVZ/RMS in both control and experimental animals. Moreover, this physiological process is not influenced by survival period after bilateral olfactory bulbectomy. Our results demonstrate Fluoro-Jade B as a useful marker of dying cells. 相似文献
14.
Physiological levels of melatonin enhance gap junction communication in primary cultures of mouse hepatocytes 总被引:2,自引:0,他引:2
Blackman CF Andrews PW Ubeda A Wang X House DE Trillo MA Pimentel ME 《Cell biology and toxicology》2001,17(1):1-9
Gap junction communication is known to be involved in controlling cell proliferation and differentiation, and seems to play
a crucial role in suppression of tumor promotion. Melatonin, a hormone secreted by the pineal gland, has putative oncostatic
properties. Intercellular communication through gap junctions was assessed by microinjecting Lucifer yellow fluorescent dye
into primary hepatocytes and visualizing the spread of the dye to adjacent neighboring cells using phase contrast/fluorescent
microscopy. Treatment of primary hepatocyte cultures with a physiological range of melatonin concentrations for 24 h prior
to microinjection resulted in significant enhancement in intercellular communication at 0.2 and 0.4 nmol/L but not at lower
(0.1 nmol/L) or higher (0.8 or 1.0 nmol/L) concentrations. A time-dependent study showed that the changes in intercellular
communication began 10 h after melatonin treatment and reached a maximum at 12 h of treatment. This nonlinear, functional
gap junction response to melatonin occurred in the physiological concentration range detected in blood of mammals during nightly
releases of the hormone by the pineal gland. These melatonin levels may affect the ability of gap junction communication to
exert cell growth control in vivo. The uneven decline between individuals in nocturnal release of melatonin that occurs with age could identify potentially
sensitive subpopulations susceptible to developing pathologies involving alterations in biological processes dependent on
gap junction communication.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
15.
SUMMARY The objective of this study was to analyze neurogenesis in the rat rostral migratory stream (RMS) during the first postnatal month.1. During the early postnatal development some morphological changes, concerning the RMS thickness, shape, and the olfactory ventricle persistence at P0 were observed.2. Bromodeoxyuridine (BrdU) immunohistochemistry and subsequent quantification of proliferating cells showed significant age-dependent changes. The highest number of proliferating cells was found at P3 and significant decrease of BrdU-positive cells at P7 rats. At P28, the number of proliferating cells reached the level of P0 rats. 相似文献
16.
The effect of acrylonitrile on gap junctional intercellular communication in rat astrocytes 总被引:5,自引:0,他引:5
Kamendulis LM Jiang J Zhang H deFeijter-Rupp H Trosko JE Klaunig JE 《Cell biology and toxicology》1999,15(3):173-183
Rats chronically exposed to acrylonitrile (ACN) have shown a dose-dependent increase in the incidence of astrocytomas in the brain. The mechanism(s) by which ACN induces cancer in rodents has not been established. ACN does not appear to be directly genotoxic in the brain and thus a nongenotoxic mode of action has been proposed. Inhibition of gap junctional intercellular communication (GJIC) has been shown to be a property of many nongenotoxic carcinogens. The present study examined the effects of ACN on GJIC in a rat astrocyte transformed cell line, DI TNC1 cells (a target cell for ACN carcinogenicity) and primary cultured hepatocytes (a nontarget cell for ACN carcinogenicity). ACN inhibited GJIC in rat astrocytes in a dose-dependent manner. Inhibition of GJIC was observed following 2 h treatment with 0.10 mmol/L and 1.00 mmol/L ACN. However, in primary cultured hepatocytes, ACN exposed did not result in inhibition of GJIC even after 48 h of continued treatment. In the astrocytes, GJIC inhibition plateaued after 4 h of treatment and remained blocked throughout the entire experimental period examined. Inhibition of GJIC in DI TNC1 cells was reversed by removal of ACN from the culture medium after 4 or 24 h of treatment. Cotreatment of astrocytes with vitamin E reduced the effect of ACN-induced inhibition of GJIC. Similarly, inhibition of GJIC was prevented by treatment with 2-oxothiazolidine-4-carboxylic acid (OTC), a precursor of glutathione synthesis. Decreasing cellular glutathione by treatment with buthionine sulfoxamine alone (without ACN) did not affect GJIC in astrocytes. Collectively, these results demonstrate that treatment with ACN caused a selective inhibition of GJIC in rat DI TNC1 astrocytes (the target cell type), but not in rat hepatocytes (a nontarget tissue). Inhibition of GJIC in astrocytes was reversed by treatment with antioxidants and suggests a potential role for oxidative stress in ACN-induced carcinogenesis. 相似文献
17.
Okano H Sawamoto K 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1500):2111-2122
Recent advances in stem cell research, including the selective expansion of neural stem cells (NSCs) in vitro, the induction of particular neural cells from embryonic stem cells in vitro, the identification of NSCs or NSC-like cells in the adult brain and the detection of neurogenesis in the adult brain (adult neurogenesis), have laid the groundwork for the development of novel therapies aimed at inducing regeneration in the damaged central nervous system (CNS). There are two major strategies for inducing regeneration in the damaged CNS: (i) activation of the endogenous regenerative capacity and (ii) cell transplantation therapy. In this review, we summarize the recent findings from our group and others on NSCs, with respect to their role in insult-induced neurogenesis (activation of adult NSCs, proliferation of transit-amplifying cells, migration of neuroblasts and survival and maturation of the newborn neurons), and implications for therapeutic interventions, together with tactics for using cell transplantation therapy to treat the damaged CNS. 相似文献
18.
Several phorbol esters are potent activators of protein kinase C. They down-regulate gap junctional intercellular communication and induce phosphorylation of connexin43, but the sensitivity and extent of responses vary much between systems. We asked whether the total protein kinase C enzyme activity or the protein kinase C isoenzyme constitution was of importance for such variations. Some fibroblastic culture systems were compared. It was concluded that the total protein kinase C enzyme activity did not determine the sensitivity to phorbol esters. Furthermore, the use of isotype-specific inhibitors of protein kinase C indicated that protein kinase C alpha, delta, and epsilon may be involved to different extents in different fibroblastic systems in the response to phorbol esters. 相似文献
19.
Tomiko Asano Haruo Shinohara † Rika Morishita Hiroshi Ueda Noriko Kawamura Ritsuko Katoh-Semba Masao Kishikawa Kanefusa Kato 《Journal of neurochemistry》2001,79(6):1129-1135
G proteins play important roles in transmembrane signal transduction, and various isoforms of each subunit, alpha, beta and gamma, are highly expressed in the brain. The Ggamma5 subunit is a minor isoform in the adult brain, but we have previously shown it to be highly expressed in the proliferative region of the ventricular zone in the rat embryonic brain. We show here that Ggamma5 is also selectively localized in a proliferative region in the adult rat brain, including the subventricular zone of the lateral ventricle and rostral migratory stream. The Galphai2 subunit colocalized with Ggamma5 in these regions, the two subunits being present in neuronal precursors and ependymal cells but not in proliferating astrocytes. In addition, intense staining of Ggamma5 was seen in axons of the olfactory neurons, which are known to regenerate. These results suggest specific roles for Ggamma5 in precursor cells during neurogenesis so that this isoform might be a useful biological marker. 相似文献
20.
Summary We have analyzed the intracellular and cell-to-cell diffusion kinetics of fluorescent tracers in theChironomus salivary gland. We use this analysis to investigate whether membrane potential-induced changes in junctional permeability are accompanied by changes in cell-to-cell channel selectivity. Tracers of different size and fluorescence wavelength were coinjected into a cell, and the fluorescence was monitored in this cell and an adjacent one. Rate constants,kj, for cell-to-cell diffusion were derived by compartment model analysis, taking into account (i) cell-to-cell diffusion of the tracers; (ii) their loss from the cells; (iii) their binding (sequestration) to cytoplasmic components; and (iv) their relative mobility to cytoplasm, as determined separately on isolated cells. In cell pairs, we compared a tracer'skj with the electrical cell-to-cell conductance,gj.At cell membrane resting potential, thekj's ranged 3.8–9.2×10–3 sec–1 for the small carboxyfluorescein (mol wt 376) to about 0.4×10–3 sec–1 for a large fluorescein-labeled sugar (mol wt 2327). Cell membrane depolarization reversibly reducedgj andkj for a large and a small tracer, all in the same proportion. This suggests that membrane potential controls the number of open channels, rather than their effective pore diameter or selectivity. From the inverse relation between tracer mean diameter and relativekj we calculate an effective, permeation-limiting diameter of approximately 29 Å for the insect cell-to-cell channel.Intracellular diffusion was faster than cell-to-cell diffusion, and it was not solely dependent on tracer size. Rate constants for intracellular sequestration and loss through nonjunctional membrane were large enough to become rate-limiting for cell-to-cell tracer diffusion at low junctional permeabilities. 相似文献