共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Oxidative stress induces transient O‐GlcNAc elevation and tau dephosphorylation in SH‐SY5Y cells 下载免费PDF全文
Emese Kátai József Pál Viktor Soma Poór Rupeena Purewal Attila Miseta Tamás Nagy 《Journal of cellular and molecular medicine》2016,20(12):2269-2277
O‐linked β‐N‐acetlyglucosamine or O‐GlcNAc modification is a dynamic post‐translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O‐GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O‐GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH‐SY5Y we investigated the dynamic nature of O‐GlcNAc after treatment with 0.5 mM H2O2 for 30 min. to induce oxidative stress. We found that overall O‐GlcNAc quickly increased and reached peak level at around 2 hrs post‐stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O‐Glycosylation. In conclusion, our results show that temporary elevation in O‐GlcNAc modification after H2O2‐induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O‐GlcNAc and phosphorylation on tau proteins. 相似文献
3.
4.
Yasutaka Ikeda Shinji Tsuji Akira Satoh Masaharu Ishikura Takuji Shirasawa Takahiko Shimizu 《Journal of neurochemistry》2008,107(6):1730-1740
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta. Although understanding of the pathogenesis of PD remains incomplete, increasing evidence from human and animal studies has suggested that oxidative stress is an important mediator in its pathogenesis. Astaxanthin (Asx), a potent antioxidant, has been thought to provide health benefits by decreasing the risk of oxidative stress‐related diseases. This study examined the protective effects of Asx on 6‐hydroxydopamine (6‐OHDA)‐induced apoptosis in the human neuroblastoma cell line SH‐SY5Y. Pre‐treatment of SH‐SY5Y cells with Asx suppressed 6‐OHDA‐induced apoptosis in a dose‐dependent manner. In addition, Asx strikingly inhibited 6‐OHDA‐induced mitochondrial dysfunctions, including lowered membrane potential and the cleavage of caspase 9, caspase 3, and poly(ADP‐ribose) polymerase. In western blot analysis, 6‐OHDA activated p38 MAPK, c‐jun NH2‐terminal kinase 1/2, and extracellular signal‐regulated kinase 1/2, while Asx blocked the phosphorylation of p38 MAPK but not c‐jun NH2‐terminal kinase 1/2 and extracellular signal‐regulated kinase 1/2. Pharmacological approaches showed that the activation of p38 MAPK has a critical role in 6‐OHDA‐induced mitochondrial dysfunctions and apoptosis. Furthermore, Asx markedly abolished 6‐OHDA‐induced reactive oxygen species generation, which resulted in the blockade of p38 MAPK activation and apoptosis induced by 6‐OHDA treatment. Taken together, the present results indicated that the protective effects of Asx on apoptosis in SH‐SY5Y cells may be, at least in part, attributable to the its potent antioxidative ability. 相似文献
5.
Shirley D. Wenker María E. Chamorro Daiana M. Vota Mariana A. Callero Daniela C. Vittori Alcira B. Nesse 《Journal of cellular biochemistry》2010,110(1):151-161
Erythropoietin (Epo) is known to have a significant role in tissues outside the hematopoietic system. In this work, we investigated the function of Epo in cells of neuronal origin subjected to differentiation. Treatment of SH‐SY5Y cells with all‐trans‐retinoic acid (atRA) generated differentiated neuron‐like cells, observed by increased expression of neuronal markers and morphological changes. Exposure of undifferentiated cells to proapoptotic stimuli such as staurosporine, TNF‐α, or hypoxia, significantly increased programmed cell death, which was prevented by previous treatment with Epo. In contrast, atRA‐differentiated cultures showed cell resistance to apoptosis. No additional effect of Epo was detected in previously differentiated cells. The inhibition of the PI3K/Akt pathway by Ly294002 abrogated the protective effects induced by either Epo or atRA. The effect of atRA was mediated by an increased expression of Bcl‐2 whereas the Epo treatment upregulated not only Bcl‐2 but also Bcl‐xL. This upregulation by Epo was not detected in atRA‐differentiated cells, thus confirming the lack of the protective effect of Epo. As expected, assays with AG490, an inhibitor of Jak2, blocked the Epo action only in undifferentiated cells. This reduced neuroprotective function of Epo on SH‐SY5Y differentiated cells could be explained at least in part by downregulation of the Epo receptor expression, which was observed in atRA‐differentiated cells. This study shows differential cellular protection induced by Epo at two stages of SH‐SY5Y differentiation. The results allow us to suggest that this differential cell behavior can be ascribed to the interaction between atRA and the signaling pathways mediated by Epo. J. Cell. Biochem. 110: 151–161, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
6.
Coordinated activation of AMP‐activated protein kinase,extracellular signal‐regulated kinase,and autophagy regulates phorbol myristate acetate‐induced differentiation of SH‐SY5Y neuroblastoma cells 下载免费PDF全文
Nevena Zogovic Gordana Tovilovic‐Kovacevic Maja Misirkic‐Marjanovic Ljubica Vucicevic Kristina Janjetovic Ljubica Harhaji‐Trajkovic Vladimir Trajkovic 《Journal of neurochemistry》2015,133(2):223-232
We explored the interplay between the intracellular energy sensor AMP‐activated protein kinase (AMPK), extracellular signal‐regulated kinase (ERK), and autophagy in phorbol myristate acetate (PMA)‐induced neuronal differentiation of SH‐SY5Y human neuroblastoma cells. PMA‐triggered expression of neuronal markers (dopamine transporter, microtubule‐associated protein 2, β‐tubulin) was associated with an autophagic response, measured by the conversion of microtubule‐associated protein light chain 3 (LC3)‐I to autophagosome‐bound LC3‐II, increase in autophagic flux, and expression of autophagy‐related (Atg) proteins Atg7 and beclin‐1. This coincided with the transient activation of AMPK and sustained activation of ERK. Pharmacological inhibition or RNA interference‐mediated silencing of AMPK suppressed PMA‐induced expression of neuronal markers, as well as ERK activation and autophagy. A selective pharmacological blockade of ERK prevented PMA‐induced neuronal differentiation and autophagy induction without affecting AMPK phosphorylation. Conversely, the inhibition of autophagy downstream of AMPK/ERK, either by pharmacological agents or LC3 knockdown, promoted the expression of neuronal markers, thus indicating a role of autophagy in the suppression of PMA‐induced differentiation of SH‐SY5Y cells. Therefore, PMA‐induced neuronal differentiation of SH‐SY5Y cells depends on a complex interplay between AMPK, ERK, and autophagy, in which the stimulatory effects of AMPK/ERK signaling are counteracted by the coinciding autophagic response.
7.
8.
Analysis of the amyloid precursor protein role in neuritogenesis reveals a biphasic SH‐SY5Y neuronal cell differentiation model 下载免费PDF全文
Joana Fernandes da Rocha Odete A. B. da Cruz e Silva Sandra Isabel Vieira 《Journal of neurochemistry》2015,134(2):288-301
The existence of an intrinsic programme controlling neuritogenesis and activated during early neuronal differentiation and regeneration stages is well established. However, the identity and role of each molecular player and event, as well as how such a programme is modified by environmental signals, remain a focus of research. The amyloid precursor protein (APP) is a neuromodulator of the developing and mature nervous system, although in a highly complex manner which is far from clear. To study APP‐induced neuritogenesis, the retinoic acid (RA)‐induced SH‐SY5Y cell differentiation model was first minutely characterized in terms of RA dose, morphological outputs and relevant biochemical markers. The findings reported here unveiled two differentiation phases for the 10 μM RA dose: 1–4 (4 days excluded) and 4–8 days, clearly defined by fold increases in the ratio between APP and acetylated Tubulin. Moreover, we describe, for the first time, a unique peak of secreted APP (sAPP)/APP ratio in the first phase. Subsequent APP and sAPP modulations confirmed that a high sAPP/APP ratio potentiates the elongation of smaller processes at the earlier neuritogenic phase. This sAPP/APP ratio drops in the second phase, as holoAPP levels increase to assist the maintenance of the longer neurites, potentially via their stabilization.
9.
10.
11.
Rakhee J. Mistry Fbio Klamt David B. Ramsden Richard B. Parsons 《Journal of biochemical and molecular toxicology》2020,34(3)
Nicotinamide N‐methyltransferase (NNMT) plays a central role in cellular metabolism, regulating pathways including epigenetic regulation, cell signalling, and energy production. Our previous studies have shown that the expression of NNMT in the human neuroblastoma cell line SH‐SY5Y increased complex I activity and subsequent ATP synthesis. This increase in ATP synthesis was lower than the increase in complex I activity, suggesting uncoupling of the mitochondrial respiratory chain. We, therefore, hypothesised that pathways that reduce oxidative stress are also increased in NNMT‐expressing SH‐Y5Y cells. The expression of uncoupling protein‐2 messenger RNA and protein were significantly increased in NNMT‐expressing cells (57% ± 5.2% and 20.1% ± 1.5%, respectively; P = .001 for both). Total GSH (22 ± 0.3 vs 35.6 ± 1.1 nmol/mg protein), free GSH (21.9 ± 0.2 vs 33.5 ± 1 nmol/mg protein), and GSSG (0.6 ± 0.02 vs 1 ± 0.05 nmol/mg protein; P = .001 for all) concentrations were significantly increased in NNMT‐expressing cells, whereas the GSH:GSSG ratio was decreased (39.4 ± 1.8 vs 32.3 ± 2.5; P = .02). Finally, reactive oxygen species (ROS) content was decreased in NNMT‐expressing cells (0.3 ± 0.08 vs 0.12 ± 0.03; P = .039), as was the concentration of 8‐isoprostane F2α (200 ± 11.5 vs 45 ± 2.6 pg/mg protein; P = .0012). Taken together, these results suggest that NNMT expression reduced ROS generation and subsequent lipid peroxidation by uncoupling the mitochondrial membrane potential and increasing GSH buffering capacity, most likely to compensate for increased complex I activity and ATP production. 相似文献
12.
13.
Bisphenol A (BPA) is an endocrine disruptor chemical, which is commonly used in everyday products. Adverse effects of its exposure are reported even at picomolar doses. Effects of picomolar and nanomolar concentrations of BPA on cytotoxicity, nitric oxide (NO) levels, acetylcholinesterase (AChE) gene expression and activity, and tumor necrosis factor‐α (TNF‐α) and caspase‐8 levels were determined in SH‐SY5Y cells. The current study reveals that low‐dose BPA treatment induced cytotoxicity, NO, and caspase‐8 levels in SH‐SY5Y cells. We also evaluated the mechanism underlying BPA‐induced cell death. Ours is the first report that receptor‐interacting serine/threonine‐protein kinase 1–mediated necroptosis is induced by nanomolar BPA treatment in SH‐SY5Y cells. This effect is mediated by altered AChE and decreased TNF‐α levels, which result in an apoptosis‐necroptosis switch. Moreover, our study reveals that BPA is an activator of AChE. 相似文献
14.
Ellagic acid mitigates arsenic‐trioxide‐induced mitochondrial dysfunction and cytotoxicity in SH‐SY5Y cells 下载免费PDF全文
Fakiha Firdaus Mohd. Faraz Zafeer Mohammad Waseem Ehraz Anis M. Mobarak Hossain Mohammad Afzal 《Journal of biochemical and molecular toxicology》2018,32(2)
In the current study, neuroprotective significance of ellagic acid (EA, a polyohenol) was explored by primarily studying its antioxidant and antiapoptotic potential against arsenic trioxide (As2O3)‐induced toxicity in SH‐SY5Y human neuroblastoma cell lines. The mitigatory effects of EA with particular reference to cell viability and cytotoxicity, the generation of reactive oxygen species, DNA damage, and mitochondrial dynamics were studied. Pretreatment of SH‐SY5Y cells with EA (10 and 20 μM) for 60 min followed by exposure to 2 μM As2O3 protected the SH‐SY5Y cells against the harmful effects of the second. Also, EA pre‐treated groups expressed improved viability, repaired DNA, reduced free radical generation, and maintained altered mitochondrial membrane potential than those exposed to As2O3 alone. EA supplementation also inhibited As2O3‐induced cytochrome c expression that is an important hallmark for determining mitochondrial dynamics. Thus, the current investigations are more convinced for EA as a promising candidate in modulating As2O3‐induced mitochondria‐mediated neuronal toxicity under in vitro system. 相似文献
15.
16.
17.
18.
Puerarin Protects Human Neuroblastoma SH‐SY5Y Cells against Glutamate‐Induced Oxidative Stress and Mitochondrial Dysfunction 下载免费PDF全文
Xue Zhu Ke Wang Kai Zhang Xiufeng Lin Ling Zhu Fanfan Zhou 《Journal of biochemical and molecular toxicology》2016,30(1):22-28
Glutamate, the principal excitatory neurotransmitter, plays a central role in brain metabolism; however, aberrant neurotransmission of glutamate has been linked to neurodegenerative diseases. Therefore, the effective agents that target at glutamate‐induced cell injury will be useful for prevention and treatment of neurodegenerative diseases. In this study, the neuroprotective effect of puerarin, an active isoflavone extracted from the Chinese herb Radix puerariae, against glutamate‐induced cell injury in human neuroblastoma SH‐SY5Y cells was evaluated for the first time. The results showed that the pretreatment of puerarin could attenuate glutamate‐induced cell injury in a dose‐dependent manner. This protective effect was mediated through inhibiting reactive oxygen species generation, attenuating the upregulation of Bax and downregulation of Bcl‐2, preserving mitochondrial membrane potential (MMP), preventing cytochrome c release, and reducing caspase activity. These findings may significantly contribute to a better understanding of the neuroprotective effect of puerarin and provide new insights into its application toward neurodegenerative diseases in the future. 相似文献
19.