首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative stress is postulated to play a role in cell death in many neurodegenerative diseases. As a model of neonatal neuronal cell death, we have examined the role of oxidative stress in Purkinje cell death in the heterozygous Lurcher mutant (+/Lc). Lurcher is a gain of function mutation in the delta2 glutamate receptor (GluRdelta2) that turns the receptor into a leaky membrane channel, resulting in chronic depolarization of +/Lc Purkinje cells starting around the first week of postnatal development. Virtually, all +/Lc Purkinje cells die by the end of the first postnatal month. To investigate the role of oxidative stress in +/Lc Purkinje cell death, we have examined nitric oxide synthase (NOS) activity and the expression of two markers for oxidative stress, nitrotyrosine and manganese super oxide dismutase (MnSOD), in wild type and +/Lc Purkinje cells at P10, P15, and P25. The results show that NOS activity and immunolabeling for nitrotyrosine and MnSOD are increased in +/Lc Purkinje cells. To determine whether peroxynitrite formation is a prerequisite for +/Lc Purkinje cell death, +/Lc mutants were crossed with an alpha-nNOS knockout mutant (nNOSalpha(-/-)) to reduce the production of NO. Analysis of the double mutants showed that blocking alpha-nNOS expression does not rescue +/Lc Purkinje cells. However, we present evidence for sustained NOS activity and nitrotyrosine formation in the GluRdelta2(+/Lc):nNOS(-/-) double mutant Purkinje cells, which suggests that the failure to rescue GluRdelta2(+/Lc):nNOS(-/-) Purkinje cells may be explained by the induction of alternative nNOS isoforms.  相似文献   

2.
Cerebellar Purkinje cells in the heterozygous Lurcher mutant undergo cell autonomous degeneration beginning in the second week of postnatal development and becoming almost total around 30–45 days. The Lurcher mutation was recently identified as gain-of-function defect in the δ2 glutamate receptor causing a constitutive current leak, suggesting that +/Lc Purkinje cells die by an excitotoxic mechanism. In previous studies we have shown that overexpression of bcl-2, a key regulator of cell death, in the heterozygous Lurcher mutant does not prevent +/Lc Purkinje cell death. To investigate further the mechanisms of +/Lc Purkinje cell death, we have crossed +/Lc mutants with a second line of Hu-bcl-2 transgenics (NSE73a) that shows an earlier onset of transgene expression and higher expression levels. Analysis of eight +/Lc-NSE73a mutants (4 at 2 months and 4 at 5–6 months) showed that Hu-bcl-2 overexpression delayed, but ultimately could not prevent +/Lc Purkinje cell death.  相似文献   

3.
Intrinsic Purkinje cell death in heterozygous Lurcher (Grid2Lc/+) mice is accompanied by the target-related death of granule cells and olivary neurons. The expression of pro-caspase-3 is increased in Grid2Lc/+ Purkinje cells and activated caspase-3 is detected in all three cell types before their death. Bax inactivation in Grid2Lc/+ mutants rescues granule cells but not Purkinje cells. Here, we show that, while Bax inactivation inhibits caspase-3 activation in both cell types, p53 inactivation does not affect caspase-3 activation and neuronal loss in Grid2Lc/+ mice. The up-regulation of pro-caspase-3 in Grid2Lc/+ Purkinje cells is Bax and p53 independent. These results suggest that Grid2Lc/+ granule cell death is dependent on Bax and caspase-3 activation, whereas several pathways can mediate Grid2Lc/+ Purkinje cell death.  相似文献   

4.
Glutamate receptor (GluR) δ2 selectively expressed in cerebellar Purkinje cells plays key roles in synapse formation, long-term depression and motor learning. We propose that GluRδ2 regulates synapse formation by making a physical linkage between the active zone and postsynaptic density. To examine the issue, GluRδ2-transfected 293T cells were cultured with cerebellar neurons. We found numerous punctate signals for presynaptic markers on the surface of 293T cells expressing GluRδ2. The presynaptic specializations induced by GluRδ2 were capable of exo- and endocytosis as indicated by FM1-43 dye labeling. Replacement of the extracellular N-terminal domain (NTD) of GluRδ2 with that of the AMPA receptor GluRα1 abolished the inducing activity. The NTD of GluRδ2 fused to the immunoglobulin constant region successfully induced the accumulation of presynaptic specializations on the surface of beads bearing the fusion protein. These results suggest that GluRδ2 triggers presynaptic differentiation by direct interaction with presynaptic components through the NTD.  相似文献   

5.
Glutamate receptor (GluR) δ1 is widely expressed in the developing forebrain, whereas GluRδ2 is selectively expressed in cerebellar Purkinje cells. Recently, we found that trans-synaptic interaction of postsynaptic GluRδ2 and pre-synaptic neurexins (NRXNs) through cerebellin precursor protein (Cbln) 1 mediates excitatory synapse formation in the cerebellum. Thus, a question arises whether GluRδ1 regulates synapse formation in the forebrain. In this study, we showed that the N-terminal domain of GluRδ1 induced inhibitory presynaptic differentiation of some populations of cultured cortical neurons. When Cbln1 or Cbln2 was added to cultures, GluRδ1 expressed in HEK293T cells induced preferentially inhibitory presynaptic differentiation of cultured cortical neurons. The synaptogenic activity of GluRδ1 was suppressed by the addition of the extracellular domain of NRXN1α or NRXN1β containing splice segment 4. Cbln subtypes directly bound to the N-terminal domain of GluRδ1. The synaptogenic activity of GluRδ1 in the presence of Cbln subtypes correlated well with their binding affinities. When transfected to cortical neurons, GluRδ1 stimulated inhibitory synapse formation in the presence of Cbln1 or Cbln2. These results together with differential interactions of Cbln subtypes with NRXN variants suggest that GluRδ1 induces preferentially inhibitory presynaptic differentiation of cortical neurons by interacting with NRXNs containing splice segment 4 through Cbln subtypes.  相似文献   

6.
We have studied the expression of a-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunits in cultured cerebellar granule cells [7 days in vitro (DIV)] grown in medium containing different concentrations of K± (10, 25, or 40 mM) with or without 100 μM N-methyl-D-aspartate (NMDA; added once after 2 DIV). All these conditions are known to influence maturation and survival of granule cells, as well as the functional expression of NMDA receptors during development in culture. The expression of both glutamate receptor (GluR) subunit 1 mRNA and receptor protein was low in cultures grown in 10 mM K± (K10) and increased dramatically in cultures grown in 25 mM K± (K25), with intermediate levels found in cultures grown in K10 and chronically exposed to NMDA (K10 ± NMDA). In cultures grown in 40 mM K± (K40), the expression of GluR1 mRNA and receptor protein was lower than in K25 but still higher than in K10. GluR2 and -3 subunits were differently regulated by growth conditions, with their expression being higher in K10 and progressively reduced to the lowest levels in K40 (both mRNA and receptor proteins). GluR4 mRNA levels did not differ between K10 and K25, although they were reduced by chronic exposure to NMDA. To test how the differential expression of the various subunits affects the functional activity of AMPA receptors, we have measured AMPA-stimulated 4SCa influx and 40-[3H]phorbol 12, 13-dibutyrate binding in intact cells. Both functional parameters increased along with the K± concentration and were maximal in K40, in coincidence with the lowest expression of the GluR2 subunits. These results indicate that functional diversity of AMPA receptors can be generated by the degree of chronic depolarization and/or exposure to NMDA in neurons developing in primary culture.  相似文献   

7.
Ethanol exposure during development leads to alterations in neuronal differentiation and profound neuronal loss in multiple regions of the developing brain. Although differentiating Purkinje cells of the cerebellum are particularly vulnerable to ethanol exposure, the mechanisms that ameliorate ethanol-induced Purkinje cell loss have not been well defined. Previous research indicates that glial-derived neurotrophic factor (GDNF), a member of the transforming growth factor-β family, promotes the survival of several neuronal populations, including cerebellar Purkinje cells. Therefore, we examined whether GDNF could attenuate ethanol-induced Purkinje cell loss in an in vitro model system using calbindin-D28k-immunoreactivity as a specific marker for Purkinje cells. We found that ethanol led to a significant dose-related decline in calbindin-D28k-immunoreactive cells in explant cultures of the developing cerebellum. However, concurrent administration of GDNF led to a significant rescue of calbindin-D28k-immunoreactive cells. Therefore, our results suggest that GDNF prevents ethanol-associated Purkinje cell loss. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 835–847, 1997  相似文献   

8.
Neural stem cells proliferate in vitro and form neurospheres in the presence of epidermal growth factor (EGF), and are capable of differentiating into both neurons and glia when exposed to a substrate. We hypothesize that specific neurotrophic factors induce differentiation of stem cells from different central nervous system (CNS) regions into particular fates. We investigated differentiation of stem cells from the postnatal mouse hippocampus in culture using the following trophic factors (20 ng/mL): brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and glial-derived neurotrophic factor (GDNF). Without trophic factors, 32% of stem cells differentiated into neurons by 4 days in vitro (DIV), decreasing to 10% by 14 DIV. Addition of BDNF (starting at either day 0 or day 3) significantly increased neuron survival (31–43% by 14 DIV) and differentiation. Morphologically, many well-differentiated neurons resembled hippocampal pyramidal neurons. 5′-Bromodeoxyuridine labeling demonstrated that the pyramidal-like neurons originated from stem cells which had proliferated in EGF-containing cultures. However, similar application of NT-3 and GDNF did not exert such a differentiating effect. Addition of BDNF to stem cells from the postnatal cerebellum, midbrain, and striatum did not induce these neuronal phenotypes, though similar application to cortical stem cells yielded pyramidal-like neurons. Thus, BDNF supports survival of hippocampal stem cell-derived neurons and also can induce differentiation of these cells into pyramidal-like neurons. The presence of pyramidal neurons in BDNF-treated hippocampal and cortical stem cell cultures, but not in striatal, cerebellar, and midbrain stem cell cultures, suggests that stem cells from different CNS regions differentiate into region-specific phenotypic neurons when stimulated with an appropriate neurotrophic factor. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 395–425, 1998  相似文献   

9.
Cerebellar Purkinje cells have the most elaborate dendritic trees among neurons in the brain. We examined the roles of ryanodine receptor (RyR), an intracellular Ca2+ release channel, in the dendrite formation of Purkinje cells using cerebellar cell cultures. In the cerebellum, Purkinje cells express RyR1 and RyR2, whereas granule cells express RyR2. When ryanodine (10 µM), a blocker of RyR, was added to the culture medium, the elongation and branching of Purkinje cell dendrites were markedly inhibited. When we transferred small interfering RNA (siRNA) against RyR1 into Purkinje cells using single‐cell electroporation, dendritic branching but not elongation of the electroporated Purkinje cells was inhibited. On the other hand, transfection of RyR2 siRNA into granule cells also inhibited dendritic branching of Purkinje cells. Furthermore, ryanodine reduced the levels of brain‐derived neurotrophic factor (BDNF) in the culture medium. The ryanodine‐induced inhibition of dendritic differentiation was partially rescued when BDNF was exogenously added to the culture medium in addition to ryanodine. Overall, these results suggest that RyRs expressed by both Purkinje and granule cells play important roles in promoting the dendritic differentiation of Purkinje cells and that RyR2 expressed by granule cells is involved in the secretion of BDNF from granule cells. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 74: 467–480, 2014  相似文献   

10.
Abstract: Primary cultures of cerebellar granule cells (CGCs) grown in high-K+ (25 mM; K25) medium progressively differentiate in vitro. Differentiation is noticeable after 3–4 days in vitro (DIV) and reach a mature stage after 8 DIV. Longer cultivation of CGCs (>13 DIV) triggers the processes of spontaneous cell death. However, if cultured in normal physiological K+ concentration (5 mM; K5), a significant proportion of the cells dies by the end of the first week in culture. To address the role of protein kinase C (PKC) in the development of CGCs, we measured the kinase activity as well as the protein level of the kinase isoforms. As the K25 CGC culture proceeded, the PKC activity time-dependently increased by 3.2-fold, reaching a steady state at 8 DIV. Western blot analysis using PKC isoform-specific antibodies revealed an increase in levels of PKC α, γ, μ, λ, and ι from 2 to 8 DIV. A slight increase or decrease at 4 DIV was observed for PKC ε and βII, respectively, whereas no significant change was observed for βI. The isoforms of δ, θ, η, and ζ were not detected. Comparing the 14 DIV cultures with the 10 DIV cultures, the immunoreactivities of PKC ι and ε were decreased, those of PKC α, βI, βII, γ, and λ were unchanged, whereas that of PKC μ was still increased. In K5 cultures, the immunoreactivity of each PKC isoform at 2–4 DIV was similar to that observed in K25 cells, although no remarkable differentiation features were observed. Coordinated with the appearance of cell death at 8 DIV in low-K+ cultures, levels of PKC α, μ, λ, and ι, but not the others, were markedly decreased. The NMDA receptor antagonists MK-801 and 2-amino-5-phosphopentanoic acid markedly prevented the age-induced apoptosis of CGCs, and the cells survived >18 DIV under these conditions. The cytoprotective effect of MK-801 was concomitant with the increases in levels of PKC γ, λ, ι, and μ at 10 and 14 DIV. In addition, the PKC ε level was increased at 14 DIV but decreased at early stages, whereas PKC α, βI, and βII levels were unchanged, as compared with K25 culture alone. Taken together, induction and up-regulation of PKC isoforms may play an important role in the maintenance of CGC survival by depolarization and MK-801.  相似文献   

11.
A long‐term cell culture system was used to study maturation, aging, and death of cortical neurons. Mouse cortical neurons were maintained in culture in serum‐free medium (Neurobasal supplemented with B27) for 60 days in vitro (DIV). The levels of several proteins were evaluated by immunoblotting to demonstrate that these neurons matured by developing dendrites and synapses and remained continuously healthy for 60 DIV. During their maturation, cortical neurons showed increased or stable protein expression of glycolytic enzyme, synaptophysin, synapsin IIa, α and β synucleins, and glutamate receptors. Synaptogenesis was prominent during the first 15 days and then synaptic markers remained stable through DIV60. Very early during dendritic development at DIV3, β‐synuclein (but not α‐synuclein) was localized at the base of dendritic growth cones identified by MAP2 and α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazole (AMPA) receptor GluR1. In mature neurons, α and β synucleins colocalized in presynaptic axon terminals. Expression of N‐methyl‐D ‐aspartate (NMDA) and AMPA receptors preceded the formation of synapses. Glutamate receptors continued to be expressed strongly through DIV60. Cortical neurons aging in vitro displayed a complex profile of protein damage as identified by protein nitration. During cortical neuron aging, some proteins showed increased nitration, while other proteins showed decreased nitration. After exposure to DNA damaging agent, young (DIV5) and old (DIV60) cortical neurons activated apoptosis mechanisms, including caspase‐3 cleavage and poly(ADP)‐ribose polymerase inactivation. We show that cultured mouse cortical neurons can be maintained for long term. Cortical neurons display compartmental changes in the localization of synucleins during maturation in vitro. These neurons sustain protein nitration during aging and exhibit age‐related variations in the biochemistry of neuronal apoptosis. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 9–23, 2002  相似文献   

12.

Background

Lamins are structural proteins that are the major determinants of nuclear architecture and play important roles in various nuclear functions including gene regulation and cell differentiation. Mutations in the human lamin A gene cause a spectrum of genetic diseases that affect specific tissues. Most available mouse models for laminopathies recapitulate disease symptoms for muscle diseases and progerias. However, loss of human lamin A/C also has highly deleterious effects on fetal development. Hence it is important to understand the impact of lamin A/C expression levels on embryonic differentiation pathways.

Methodology and Principal Findings

We have investigated the differentiation potential of mouse embryonic stem cells containing reduced levels of lamin A/C by detailed lineage analysis of embryoid bodies derived from these cells by in vitro culture. We initially carried out a targeted disruption of one allele of the mouse lamin A/C gene (Lmna). Undifferentiated wild-type and Lmna+/− embryonic stem cells showed similar expression of pluripotency markers and cell cycle profiles. Upon spontaneous differentiation into embryoid bodies, markers for visceral endoderm such as α-fetoprotein were highly upregulated in haploinsufficient cells. However, neuronal markers such as β-III tubulin and nestin were downregulated. Furthermore, we observed a reduction in the commitment of Lmna+/− cells into the myogenic lineage, but no discernible effects on cardiac, adipocyte or osteocyte lineages. In the next series of experiments, we derived embryonic stem cell clones expressing lamin A/C short hairpin RNA and examined their differentiation potential. These cells expressed pluripotency markers and, upon differentiation, the expression of lineage-specific markers was altered as observed with Lmna+/− embryonic stem cells.

Conclusions

We have observed significant effects on embryonic stem cell differentiation to visceral endoderm, neuronal and myogenic lineages upon depletion of lamin A/C. Hence our results implicate lamin A/C level as an important determinant of lineage-specific differentiation during embryonic development.  相似文献   

13.
Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing mice with hMSC, and by using a panel of subsequent screening methods. Flow cytometry analysis revealed that 83.5, 1.1, and 8.5% of primary cultures of hMSC were double positive for STRO-1 and either of DJ 3, 9, and 18, respectively. However, none of the three DJ antibodies allowed enrichment of clonogenic hMSC from BMMNCs as single reagents. Using mass-spectrometric analysis, we identified the antigen recognised by DJ3 as CD44, whereas DJ9 and DJ18 recognized HLA-DRB1 and Collagen VI, respectively. The identified proteins were highly expressed throughout in vitro osteogenic- and adipogenic differentiation. Interestingly, undifferentiated cells revealed a sole cytoplasmic distribution pattern of Collagen VI, which however changed to an extracellular matrix appearance upon osteogenic- and adipogenic differentiation. In relation to this, we found that STRO-1+/−/Collagen VI sorted hMSC contained fewer differentiated alkaline phosphatase+ cells compared to STRO-1+/−/Collagen VI+ hMSC, suggesting that Collagen VI on the cell membrane exclusively defines differentiated MSCs. In conclusion, we have generated a panel of high quality antibodies to be used for characterization of MSCs, and in addition our results may suggest that the DJ18 generated antibody against Collagen VI can be used for negative selection of cultured undifferentiated MSCs.  相似文献   

14.
Abstract: The requirement of complex sphingolipid biosynthesis for growth of neurons was examined in developing rat cerebellar Purkinje neurons using a dissociated culture system. Purkinje cells developed well-differentiated dendrites and axons after 2 weeks in a serum-free nutrient condition. Addition of 2 µM fumonisin B1, a fungal inhibitor of mammalian ceramide synthase, inhibited incorporation of [3H]galactose/glucosamine and [14C]serine into complex sphingolipids of cultured cerebellar neurons. Under this condition, the expression of Purkinje cell-enriched sphingolipids, including GD1α, 9-O-acetylated LD1 and GD3, and sphingomyelin, was significantly decreased. After 2 weeks' exposure to fumonisin B1, dose-dependent measurable decreases in the survival and visually discernible differences in the morphology were seen in fumonisin-treated Purkinje cells. The Purkinje cell dendrites exhibited two types of anomalies; one population of cells developed elongated but less-branched dendrites after a slight time lag, but their branches began to degenerate. In some cells, formation of elongated dendrite trees was severely impaired. However, treatment with fumonisin B1 also led to the formation of spinelike protrusions on the dendrites of Purkinje cells as in control cultures. In contrast to the alterations observed in Purkinje cells, morphology of other cell types including granule neurons appeared to be almost normal after treatment with fumonisin B1. These observations indicated strongly that membrane sphingolipids participate in growth and maintenance of dendrites and in the survival of cerebellar Purkinje cells. Indeed, these effects of fumonisin B1 were reversed, but not completely, by the addition of 6-[[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]caproyl]sphingosine (C6-NBD-ceramide), a synthetic derivative of ceramide. Thus, we conclude that deprivation of membrane sphingolipids in a culture environment is responsible for aberrant growth of Purkinje cells.  相似文献   

15.
Burn healing is a complex physiological process involving multiple cell activities, such as cell proliferation, migration and differentiation. Although extracellular signal-regulated kinases (ERK) have a pivotal role in regulating a variety of cellular responses, little is known about the individual functions of ERK isoform for healing in vivo. This study investigated the role of ERK2 in burn healing. To assess this, Erk2+/− mice generated by gene targeting were used. The resultant mice exhibited significant delay in re-epithelization of partial-thickness burns in the skin in comparison to wild-type. An in vitro proliferation assay revealed that keratinocytes from Erk2+/− mice grew significantly slower than those prepared from wild-type. These results highlight the importance of ERK2 in the process of burn healing.  相似文献   

16.
After thymic emigration CD4‐T‐cells continue to differentiate into multiple effector and suppressor sublineages in peripheral lymphoid organs. In vivo analysis of peripheral CD4‐T‐cell differentiation has relied on animal models with targeted gene mutations. These are expressed either constitutively or conditionally after Cre mediated recombination. Available Cre transgenic strains to specifically target T‐cells act at stages of thymocyte development that precede thymic selection. Tracing gene functions in CD4‐T‐cell development after thymic exit becomes complicated when the targeted gene is essential during thymic development. Other approaches to conditionally modify gene functions in peripheral T‐cells involve infection of in vitro activated cells with Cre expressing lenti‐, retro‐, or adenoviruses, which precludes in vivo analyses. To study molecular mechanisms of peripheral CD4‐T‐cell differentiation in vivo and in vitro we generated transgenic mice expressing a tamoxifen inducible Cre recombinase (CreERT2) under the control of the CD4 gene promoter. We show here that in CD4CreERT2 mice Cre is inducibly and selectively activated in CD4‐T‐cells. Tamoxifen treatment both in vivo and in vitro results in efficient recombination of loci marked by LoxP sites. Moreover, this strain shows no abnormalities related to transgene insertion. Therefore it provides a valuable tool for studying gene function during differentiation of naïve peripheral CD4‐T‐cells into effector or suppressor sub‐lineages. genesis 50:908–913, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
A new neurological mouse mutation that arose spontaneously in a BALB/cByJ stock displays a semidominant pattern of inheritance. In the heterozygote, this mutation results in an early loss of Purkinje cells in the cerebellum, which is followed by the overt symptom of an ataxic gait first observed at postnatal day 13 (P13). A portion of animals homozygous for the mutation die within P0; the remaining homozygotes die by P25. The mutation maps to mouse Chromosome (Chr) 6 between markers D6Rck314 and D6Rck361, a chromosomal segment that contains the lurcher (Lc) locus. The Lc mutation is also semidominant and has a strikingly similar phenotype. A cross between a new mutant (Nm) heterozygote and an Lc heterozygote yields double heterozygotes, animals that carry both mutations, with a phenotype similar to that of both Nm and Lc homozygotes. The similarity in phenotype, the colocalization of the two loci on mouse Chr 6, and the positive result of the allelism test demonstrate that the new mutation is an allele of the Lc gene. Received: 4 April 1997 / Accepted: 21 April 1997  相似文献   

18.
Cleidocranial dysplasia (CCD) is an autosomal‐dominant disorder caused by a lack of function of one or more alleles of the RUNX2 gene. Mutations of the RUNX2 gene were analyzed in a family with CCD, and a novel nonsense mutation was identified, c. 1096G > T, p.E366X, which was predicted to cause a number of potential dysfunctions. Western blot analysis showed that the novel mutation created a shortened protein product, which lost 155 aa in the C‐terminal domain. The mutant protein was detected to be localized mostly in the cytoplasm, not in the nucleus, which demonstrated that transport of the RUNX2 protein into the nucleus was disturbed by the p.E366X mutation. For the first time, RUNX2+/m dental pulp cells (DPCs) were isolated from two permanent incisors of the CCD patient. Compared to RUNX2+/+ controls, RUNX2+/m DPCs presented an impeded progression from the G1 to the S phase in the cell cycle, a lower rate of proliferation, weaker ability of calcification, and distinct ultrastructure. More interestingly, the ultrastructural analysis and energy dispersive X‐ray spectrometry (EDS) analysis showed that the CCD tooth exhibited insufficient mineralization of enamel and dentin. This study suggests that the truncated RUNX2 mutant protein may be responsible for the alterations of RUNX2+/m DPCs, and RUNX2 gene may be involved in dental development by affecting the cell growth and differentiation, which provides new insights into understanding of dental abnormalities in CCD patients. J. Cell. Biochem. 111: 1473–1481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
The cerebellum is important for the integration of sensory perception and motor control, but its structure has mostly been studied in mammals. Here, we describe the cell types and neural tracts of the adult zebrafish cerebellum using molecular markers and transgenic lines. Cerebellar neurons are categorized to two major groups: GABAergic and glutamatergic neurons. The Purkinje cells, which are GABAergic neurons, express parvalbumin7, carbonic anhydrase 8, and aldolase C like (zebrin II). The glutamatergic neurons are vglut1+ granule cells and vglut2high cells, which receive Purkinje cell inputs; some vglut2high cells are eurydendroid cells, which are equivalent to the mammalian deep cerebellar nuclei. We found olig2+ neurons in the adult cerebellum and ascertained that at least some of them are eurydendroid cells. We identified markers for climbing and mossy afferent fibers, efferent fibers, and parallel fibers from granule cells. Furthermore, we found that the cerebellum-like structures in the optic tectum and antero-dorsal hindbrain show similar Parvalbumin7 and Vglut1 expression profiles as the cerebellum. The differentiation of GABAergic and glutamatergic neurons begins 3 days post-fertilization (dpf), and layers are first detectable 5 dpf. Using anti-Parvalbumin7 and Vglut1 antibodies to label Purkinje cells and granule cell axons, respectively, we screened for mutations affecting cerebellar neuronal development and the formation of neural tracts. Our data provide a platform for future studies of zebrafish cerebellar development.  相似文献   

20.
We cultured a P19 mouse teratocarcinoma cell line and induced its neuronal differentiation to study the function of ionotropic glutamate receptors (GluRs) in early neuronal development. Immunocytochemical studies showed 85% neuronal population at 5 days in vitro (DIV) with microtubule-associated protein 2-positive staining. Thirty percent and 50% of the cells expressed the alpha-amino-3-hydroxy-5-methyl-4-isopropinonate (AMPA) receptor subunit, GluR2/3, and the kainate (kainic acid; KA) receptor subunit, GluR5/6/7, respectively. In Western blot analysis, the temporal expression of GluR2/3 began to appear at 3 DIV, whereas GluR5/6/7 was already expressed in the undifferentiated cells. P19-derived neurons began to respond to glutamate, AMPA and KA, but not to the metabotropic GluR agonist trans-1-aminocyclopentane-1,3-decarboxylic acid, by 5 DIV in terms of increases in intracellular calcium and phospholipase C-mediated poly-phosphoinositide turnover. Furthermore, KA reduced cell death of P19-derived neurons in both atmospheric and hypobaric conditions in a phospholipase C-dependent manner. The common AMPA/KA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione, but not the AMPA receptor antagonist, 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium, profoundly increased hypobaric insult-induced neurotoxicity. In a flow cytometry study, the nerve growth factor-mediated antiapoptotic effect was facilitated by AMPA, with an induction of TrkA, but not p75(NTR) expression. Therefore, AMPA and KA receptors might mediate neurotrophic functions to facilitate neurotrophic factor signaling to protect neurons against hypoxic insult in early neuronal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号