首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perception of a moving visual stimulus can be suppressed or enhanced by surrounding context in adjacent parts of the visual field. We studied the neural processes underlying such contextual modulation with fMRI. We selected motion selective regions of interest (ROI) in the occipital and parietal lobes with sufficiently well defined topography to preclude direct activation by the surround. BOLD signal in the ROIs was suppressed when surround motion direction matched central stimulus direction, and increased when it was opposite. With the exception of hMT+/V5, inserting a gap between the stimulus and the surround abolished surround modulation. This dissociation between hMT+/V5 and other motion selective regions prompted us to ask whether motion perception is closely linked to processing in hMT+/V5, or reflects the net activity across all motion selective cortex. The motion aftereffect (MAE) provided a measure of motion perception, and the same stimulus configurations that were used in the fMRI experiments served as adapters. Using a linear model, we found that the MAE was predicted more accurately by the BOLD signal in hMT+/V5 than it was by the BOLD signal in other motion selective regions. However, a substantial improvement in prediction accuracy could be achieved by using the net activity across all motion selective cortex as a predictor, suggesting the overall conclusion that visual motion perception depends upon the integration of activity across different areas of visual cortex.  相似文献   

2.
Recent imaging studies have reported directional motion biases in human visual cortex when perceiving moving random dot patterns. It has been hypothesized that these biases occur as a result of the integration of motion detector activation along the path of motion in visual cortex. In this study we investigate the nature of such motion integration with functional MRI (fMRI) using different motion stimuli. Three types of moving random dot stimuli were presented, showing either coherent motion, motion with spatial decorrelations or motion with temporal decorrelations. The results from the coherent motion stimulus reproduced the centripetal and centrifugal directional motion biases in V1, V2 and V3 as previously reported. The temporally decorrelated motion stimulus resulted in both centripetal and centrifugal biases similar to coherent motion. In contrast, the spatially decorrelated motion stimulus resulted in small directional motion biases that were only present in parts of visual cortex coding for higher eccentricities of the visual field. In combination with previous results, these findings indicate that biased motion responses in early visual cortical areas most likely depend on the spatial integration of a simultaneously activated motion detector chain.  相似文献   

3.
A common view about visual consciousness is that it could arise when and where activity reaches some higher level of processing along the cortical hierarchy. Reports showing that activity in striate cortex can be dissociated from awareness , whereas the latter modulates activity in higher areas , point in this direction. In the specific case of visual motion, a central, "perceptual" role has been assigned to area V5: several human and monkey studies have shown V5 activity to correlate with the motion percept. Here we show that activity in this and other higher cortical areas can be also dissociated from perception and follow the physical stimulus instead. The motion information in a peripheral grating modulated fMRI responses, despite being invisible to human volunteers: under crowding conditions , areas V3A, V5, and parietal cortex still showed increased activity when the grating was moving compared to when it was flickering. We conclude that stimulus-specific activation of higher cortical areas does not necessarily result in awareness of the underlying stimulus.  相似文献   

4.
A series of visual enumeration tasks were conducted investigating the role of the dorsal visual stream in motion segmentation. Cortical areas representing the lower visual field have greater connections with the parietal cortex and should therefore show an advantage for processes driven by the dorsal stream (Previc, 1990). We looked for differences in processing displays in the upper versus lower visual field when targets required segmentation from distractors in an enumeration task. In a baseline condition, random configurations of moving and static items were presented briefly (200 ms) to the upper or lower visual field. Fast and efficient enumeration took place both for moving targets and for static targets presented alone; there was no effect of visual field. In contrast, for moving targets, a lower visual field advantage was found when the inclusion of static distractors demanded segmentation by motion. This disappeared at the smaller display sizes when the targets were presented in canonical patterns. The results are consistent with segmentation of moving targets from static distractors being mediated by dorsal regions of the visual cortex, particularly under conditions of high load (non-canonical patterns). These regions show greater sensitivity to the lower visual field and to magnocellular-based input.  相似文献   

5.
Ilg UJ  Schumann S  Thier P 《Neuron》2004,43(1):145-151
The motion areas of posterior parietal cortex extract information on visual motion for perception as well as for the guidance of movement. It is usually assumed that neurons in posterior parietal cortex represent visual motion relative to the retina. Current models describing action guided by moving objects work successfully based on this assumption. However, here we show that the pursuit-related responses of a distinct group of neurons in area MST of monkeys are at odds with this view. Rather than signaling object image motion on the retina, they represent object motion in world-centered coordinates. This representation may simplify the coordination of object-directed action and ego motion-invariant visual perception.  相似文献   

6.
Beauchamp MS  Lee KE  Haxby JV  Martin A 《Neuron》2002,34(1):149-159
We tested the hypothesis that different regions of lateral temporal cortex are specialized for processing different types of visual motion by studying the cortical responses to moving gratings and to humans and manipulable objects (tools and utensils) that were either stationary or moving with natural or artificially generated motions. Segregated responses to human and tool stimuli were observed in both ventral and lateral regions of posterior temporal cortex. Relative to ventral cortex, lateral temporal cortex showed a larger response for moving compared with static humans and tools. Superior temporal cortex preferred human motion, and middle temporal gyrus preferred tool motion. A greater response was observed in STS to articulated compared with unarticulated human motion. Specificity for different types of complex motion (in combination with visual form) may be an organizing principle in lateral temporal cortex.  相似文献   

7.
Pack CC  Livingstone MS  Duffy KR  Born RT 《Neuron》2003,39(4):671-680
Our perception of fine visual detail relies on small receptive fields at early stages of visual processing. However, small receptive fields tend to confound the orientation and velocity of moving edges, leading to ambiguous or inaccurate motion measurements (the aperture problem). Thus, it is often assumed that neurons in primary visual cortex (V1) carry only ambiguous motion information. Here we show that a subpopulation of V1 neurons is capable of signaling motion direction in a manner that is independent of contour orientation. Specifically, end-stopped V1 neurons obtain accurate motion measurements by responding only to the endpoints of long contours, a strategy which renders them largely immune to the aperture problem. Furthermore, the time course of end-stopping is similar to the time course of motion integration by MT neurons. These results suggest that cortical neurons might represent object motion by responding selectively to two-dimensional discontinuities in the visual scene.  相似文献   

8.
Loss of one type of sensory input can cause improved functionality of other sensory systems. Whereas this form of plasticity, cross-modal plasticity, is well established, the molecular and cellular mechanisms underlying it are still unclear. Here, we show that visual deprivation (VD) increases extracellular serotonin in the juvenile rat barrel cortex. This increase in serotonin levels facilitates synaptic strengthening at layer 4 to layer 2/3 synapses within the barrel cortex. Upon VD, whisker experience leads to trafficking of the AMPA-type glutamate receptors (AMPARs) into these synapses through the activation of ERK and increased phosphorylation of AMPAR subunit GluR1 at the juvenile age when natural whisker experience no longer induces synaptic GluR1 delivery. VD thereby leads to sharpening of the functional whisker-barrel map at layer 2/3. Thus, sensory deprivation of one modality leads to serotonin release in remaining modalities, facilitates GluR1-dependent synaptic strengthening, and refines cortical organization.  相似文献   

9.
AMPA glutamate receptors play a crucial role in brain functions such as synaptic plasticity and development. We have studied the chemo-architecture of the AMPA glutamate receptor subtype GluR2/3 in the hamster visual cortex by immunocytochemistry and compared it with the distribution of the calcium-binding proteins, calbindin D28K and calretinin. Anti-GluR2/3-immunoreactive (IR) neurons were predominantly located in layers II/III, V, and VI, and the majority of the labeled neurons were round or oval. However, many pyramidal cells in layer V were also labeled. Two-color immunofluorescence revealed that none of the GluR2/3-IR neurons contained calbindin D28 K or calretinin. Thus specific layers of neurons express the GluR2/3 subunit and these do not correlate with expression of calbindin D28K and calretinin.  相似文献   

10.
A direct projection from area V1 to area V3A of rhesus monkey visual cortex   总被引:1,自引:0,他引:1  
Small cortical lesions were made in regions of the primary visual cortex (V1) representing different retinal eccentricities. It was found that, whereas all parts of V1 project to visual areas V2, V3 and the motion area of the superior temporal sulcus, only parts of V1 representing peripheral eccentricities (in excess of 30 degrees) project directly to visual area V3A.  相似文献   

11.
D Cheong  JK Zubieta  J Liu 《PloS one》2012,7(6):e39854
Predicting the trajectories of moving objects in our surroundings is important for many life scenarios, such as driving, walking, reaching, hunting and combat. We determined human subjects' performance and task-related brain activity in a motion trajectory prediction task. The task required spatial and motion working memory as well as the ability to extrapolate motion information in time to predict future object locations. We showed that the neural circuits associated with motion prediction included frontal, parietal and insular cortex, as well as the thalamus and the visual cortex. Interestingly, deactivation of many of these regions seemed to be more closely related to task performance. The differential activity during motion prediction vs. direct observation was also correlated with task performance. The neural networks involved in our visual motion prediction task are significantly different from those that underlie visual motion memory and imagery. Our results set the stage for the examination of the effects of deficiencies in these networks, such as those caused by aging and mental disorders, on visual motion prediction and its consequences on mobility related daily activities.  相似文献   

12.
The perception of visual motion can be selectively and reversibly compromised by transcranial magnetic stimulation (TMS) of a small region of cortex, roughly 1 cm in diameter and corresponding in position to human area V5. The reversible inactivation of a small and specialized visual area which receives its predominant input from area V1 and sends a powerful return (re-entrant) input back to it allowed us to study for the first time the backward influence of area V5 on area V1. In contrast to the complete and temporary visual motion blindness which occurs during stimulation of V5, a less-prominent interference with the perception of visual motion occurs at 70-80 ms after the onset of the visual stimulus when TMS is applied to V1. Because V5 is critical for the perception of coherent motion, and because an intact re-entry of signals from V5 to V1 is essential for the conscious perception of visual motion, the results obtained with stimulation of V1 must be caused by a disruption of the re-entrant signals from V5 to V1.  相似文献   

13.
Although primary visual cortex (V1 or striate) activity per se is not sufficient for visual apperception (normal conscious visual experiences and conscious functions such as detection, discrimination, and recognition), the same is also true for extrastriate visual areas (such as V2, V3, V4/V8/VO, V5/M5/MST, IT, and GF). In the lack of V1 area, visual signals can still reach several extrastriate parts but appear incapable of generating normal conscious visual experiences. It is scarcely emphasized in the scientific literature that conscious perceptions and representations must have also essential energetic conditions. These energetic conditions are achieved by spatiotemporal networks of dynamic mitochondrial distributions inside neurons. However, the highest density of neurons in neocortex (number of neurons per degree of visual angle) devoted to representing the visual field is found in retinotopic V1. It means that the highest mitochondrial (energetic) activity can be achieved in mitochondrial cytochrome oxidase-rich V1 areas. Thus, V1 bear the highest energy allocation for visual representation.In addition, the conscious perceptions also demand structural conditions, presence of adequate duration of information representation, and synchronized neural processes and/or ‘interactive hierarchical structuralism.’ For visual apperception, various visual areas are involved depending on context such as stimulus characteristics such as color, form/shape, motion, and other features. Here, we focus primarily on V1 where specific mitochondrial-rich retinotopic structures are found; we will concisely discuss V2 where smaller riches of these structures are found. We also point out that residual brain states are not fully reflected in active neural patterns after visual perception. Namely, after visual perception, subliminal residual states are not being reflected in passive neural recording techniques, but require active stimulation to be revealed.  相似文献   

14.
A simple and biologically plausible model is proposed to simulatethe visual motion processing taking place in the middle temporal (MT) areaof the visual cortex in the primate brain. The model is ahierarchical neural network composed of multiple competitive learninglayers. The input layer of the network simulates the neurons in the primaryvisual cortex (V1), which are sensitive to the orientation and motionvelocity of the visual stimuli, and the middle and output layers of thenetwork simulate the component MT and pattern MT neurons, which areselectively responsive to local and global motions, respectively. Thenetwork model was tested with various simulated motion patterns (random dotsof different direction correlations, transparent motion, grating and plaidpatterns, and so on). The response properties of the model closely resemblemany of the known features of the MT neurons found neurophysiologically.These results show that the sophisticated response behaviors of the MTneurons can emerge naturally from some very simple models, such as acompetitive learning network.  相似文献   

15.
Saccades occur several times each second in normal human vision. The visual image moves across the retina at high velocity during a saccade, yet no blurring of the visual scene is perceived . Active suppression of visual input may account for this perceptual continuity, but the neural mechanisms underlying such saccadic suppression remain unclear. We used functional MRI to specifically examine responses in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) during saccades. Activity in both V1 and LGN was strongly modulated by saccades. Furthermore, this modulation depended on whether visual stimulation was present or absent. In complete darkness, saccades led to reliable signal increases in V1 and LGN, whereas in the presence of visual stimulation, saccades led to suppression of visually evoked responses. These findings represent unequivocal evidence for saccadic suppression in human LGN and retinotopically defined V1 and are consistent with the earliest site of saccadic suppression lying at or before V1.  相似文献   

16.
Shapley R 《Neuron》2007,56(5):755-756
Roelfsema, Tolboom, and Khayat have found that neurons in primary visual cortex, V1, increase their spike firing rates to signal image segmentation and attention. V1 responses were in a temporal sequence: first to image motion, next to segmentation, last to attentional signals. The involvement of V1 with segmentation and attention suggests modifying the hierarchical view of visual perception.  相似文献   

17.
The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1) is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex.  相似文献   

18.
Knowledge-based or top-down influences on primary visual cortex (area V1) are believed to originate from information conveyed by extrastriate feedback axon connections. Understanding how this information is communicated to area V1 neurons relies in part on elucidating the quantitative as well as the qualitative nature of extrastriate pathway connectivity. A quantitative analysis of the connectivity based on anatomical data regarding the feedback pathway from extrastriate area V2 to area V1 in macaque monkey suggests (i) a total of around ten million or more area V2 axons project to area V1; (ii) the mean number of synaptic inputs from area V2 per upper-layer pyramidal cell in area V1 is less than 6% of all excitatory inputs; and (iii) the mean degree of convergence of area V2 afferents may be high, perhaps more than 100 afferent axons per cell. These results are consistent with empirical observations of the density of radial myelinated axons present in the upper layers in macaque area V1 and the proportion of excitatory extrastriate feedback synaptic inputs onto upper-layer neurons in rat visual cortex. Thus, in primate area V1, extrastriate feedback synapses onto upper-layer cells may, like geniculocortical afferent synapses onto layer IVC neurons, form only a small percentage of the total excitatory synaptic input.  相似文献   

19.
Sensory experience, and the lack thereof, can alter the function of excitatory synapses in the primary sensory cortices. Recent evidence suggests that changes in sensory experience can regulate the synaptic level of Ca(2+)-permeable AMPA receptors (CP-AMPARs). However, the molecular mechanisms underlying such a process have not been determined. We found that binocular visual deprivation, which is a well-established in vivo model to produce multiplicative synaptic scaling in visual cortex of juvenile rodents, is accompanied by an increase in the phosphorylation of AMPAR GluR1 (or GluA1) subunit at the serine 845 (S845) site and the appearance of CP-AMPARs at synapses. To address the role of GluR1-S845 in visual deprivation-induced homeostatic synaptic plasticity, we used mice lacking key phosphorylation sites on the GluR1 subunit. We found that mice specifically lacking the GluR1-S845 site (GluR1-S845A mutants), which is a substrate of cAMP-dependent kinase (PKA), show abnormal basal excitatory synaptic transmission and lack visual deprivation-induced homeostatic synaptic plasticity. We also found evidence that increasing GluR1-S845 phosphorylation alone is not sufficient to produce normal multiplicative synaptic scaling. Our study provides concrete evidence that a GluR1 dependent mechanism, especially S845 phosphorylation, is a necessary pre-requisite step for in vivo homeostatic synaptic plasticity.  相似文献   

20.
Temporal integration in the visual system causes fast-moving objects to generate static, oriented traces (‘motion streaks’), which could be used to help judge direction of motion. While human psychophysics and single-unit studies in non-human primates are consistent with this hypothesis, direct neural evidence from the human cortex is still lacking. First, we provide psychophysical evidence that faster and slower motions are processed by distinct neural mechanisms: faster motion raised human perceptual thresholds for static orientations parallel to the direction of motion, whereas slower motion raised thresholds for orthogonal orientations. We then used functional magnetic resonance imaging to measure brain activity while human observers viewed either fast (‘streaky’) or slow random dot stimuli moving in different directions, or corresponding static-oriented stimuli. We found that local spatial patterns of brain activity in early retinotopic visual cortex reliably distinguished between static orientations. Critically, a multivariate pattern classifier trained on brain activity evoked by these static stimuli could then successfully distinguish the direction of fast (‘streaky’) but not slow motion. Thus, signals encoding static-oriented streak information are present in human early visual cortex when viewing fast motion. These experiments show that motion streaks are present in the human visual system for faster motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号