首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specially designed apparatus that can simulate the waveform of the dawn or dusk signal at any latitude and any day of the year has been shown to phase shift the circadian pacemaker in rodents and primates at a fraction of the illuminance previously used. Until recently, it was considered that rather high illuminances or rather long exposure episodes to room light were necessary to phase shift human circadian rhythms. This experiment shows that, under controlled conditions of a modified constant routine protocol, a single dawn signal is sufficient to phase advance the timing of the onset of secretion of the pineal hormone melatonin. The significant phase advance of salivary melatonin of 20 minutes, which is enhanced to 34 minutes after three consecutive dawn signals, is small, but appears to be of sufficient magnitude to entrain the human circadian pacemaker, which has an endogenous period of about 24.2h. (Chronobiology International, 17(5), 659–668, 2000)  相似文献   

2.
A specially designed apparatus that can simulate the waveform of the dawn or dusk signal at any latitude and any day of the year has been shown to phase shift the circadian pacemaker in rodents and primates at a fraction of the illuminance previously used. Until recently, it was considered that rather high illuminances or rather long exposure episodes to room light were necessary to phase shift human circadian rhythms. This experiment shows that, under controlled conditions of a modified constant routine protocol, a single dawn signal is sufficient to phase advance the timing of the onset of secretion of the pineal hormone melatonin. The significant phase advance of salivary melatonin of 20 minutes, which is enhanced to 34 minutes after three consecutive dawn signals, is small, but appears to be of sufficient magnitude to entrain the human circadian pacemaker, which has an endogenous period of about 24.2h. (Chronobiology International, 17(5), 659-668, 2000)  相似文献   

3.
The authors' previous experiments have shown that dawn simulation at low light intensities can phase advance the circadian rhythm of melatonin in humans. The aim of this study was to compare the effect of repeated dawn signals on the phase position of circadian rhythms in healthy participants kept under controlled light conditions. Nine men participated in two 9-day laboratory sessions under an LD cycle 17.5:6.5 h, < 30:0 lux, receiving 6 consecutive daily dawn (average illuminance 155 lux) or control light (0.1 lux) signals from 0600 to 0730 h (crossover, random-order design). Two modified constant routine protocols before and after the light stimuli measured salivary melatonin (dim light melatonin onset DLMOn and offset DLMOff) and rectal temperature rhythms (midrange crossing time [MRCT]). Compared with initial values, participants significantly phase delayed after 6 days under control light conditions (at least -42 min DLMOn, -54 min DLMOff, -41 min MRCT) in spite of constant bedtimes. This delay was not observed with dawn signals (+10 min DLMOn, +2 min DLMOff, 0 min MRCT). Given that the endogenous circadian period of the human circadian pacemaker is slightly longer than 24 h, the findings suggest that a naturalistic dawn signal is sufficient to forestall this natural delay drift. Zeitgeber transduction and circadian system response are hypothesized to be tuned to the time-rate-of-change of naturalistic twilight signals.  相似文献   

4.
The flowering of Arabidopsis plants is accelerated by long-day photoperiods, and recent genetic studies have identified elements of the photoperiodic timing mechanism. These elements comprise genes that regulate the function of the circadian clock, photoreceptors, and downstream components of light signaling pathways. These results provide evidence for the role of the circadian clock in photoperiodic time measurement and suggest that photoperiod perception may follow Pittendrigh's external coincidence model. T-cycle experiments indicated that changes in the timing of circadian rhythms, relative to dawn and dusk, correlated with altered flowering time. Thus, the perception of photoperiod maybe mediated by adjustments in the phase of the circadian cycle that arise upon re-entrainment to a different light-dark cycle. The nature of the rhythm underlying the floral response is not known, but candidate molecules have been identified.  相似文献   

5.
6.
Circadian resonance, whereby a plant's endogenous rhythms are tuned to match environmental cues, has been repeatedly shown to be adaptive, although the underlying mechanisms remain elusive. Concomitantly, the adaptive value of nocturnal transpiration in C3 plants remains unknown because it occurs without carbon assimilation. These seemingly unrelated processes are interconnected because circadian regulation drives temporal patterns in nocturnal stomatal conductance, with maximum values occurring immediately before dawn for many species. We grew individuals of six Eucalyptus camaldulensis genotypes in naturally lit glasshouses and measured sunset, predawn and midday leaf gas exchange and whole‐plant biomass production. We tested whether sunrise anticipation by the circadian clock and subsequent increases in genotype predawn stomatal conductance led to rapid stomatal opening upon illumination, ultimately affecting genotype differences in carbon assimilation and growth. We observed faster stomatal responses to light inputs at sunrise in genotypes with higher predawn stomatal conductance. Moreover, early morning and midday stomatal conductance and carbon assimilation, leaf area and total plant biomass were all positively correlated with predawn stomatal conductance across genotypes. Our results lead to the novel hypothesis that genotypic variation in the circadian‐regulated capacity to anticipate sunrise could be an important factor underlying intraspecific variation in tree growth.  相似文献   

7.
Ten clinically healthy subjects (5 men and 5 women), 31 11 yrs of age, were studied at six timepoints (0800, 1200, 1600, 2000, 0000, 0400) distributed over a 1-week span. Circadian rhythms in platelet aggregation in response to adenosine diphosphate (ADP) and adrenalin (A), platelet adhesiveness measured as retention in a glass bead column, prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), fibrinogen, Factor VIII activity and alpha-1-antitrypsin antigen showed circadian rhythms. The plasma concentrations of plasminogen, alpha-2-macroglobulin, and antithrombin III (AT III) antigen, Factor V and fibrinogen degradation products showed no circadian rhythm by ANOVA or cosinor analysis. The phase relations of the rhythms of different coagulation parameters are of interest in the physiology and pathobiology of the coagulation-fibrinolytic system. The extent of the circadian rhythm (range of change) described is not of a magnitude to lead to diagnostic problems in the clinical laboratory. The timing of these rhythms, however, may determine transient risk states for thromboembolic phenomena, including myocardial infarction and stroke. Several but not all coagulation parameters suggest a transient state of hypercoagulability during the morning hours. The recognition of these rhythmic, and thus in the time of the occurrence predictable temporary risk states for thromboembolic phenomena, may lead to timed treatment and/or effective prevention.  相似文献   

8.
Glucocorticoids induce circadian gene expression in cultured cells and change the phase of circadian gene expression in vivo. In addition, glucocorticoids induce differentiation of preadipocyte to adipocytes. We set out to test the effect of dexamethasone, a glucocorticoid receptor agonist, on circadian rhythms in 3T3-L1 differentiated adipocytes. Our results show that differentiated adipocytes exhibit robust circadian rhythms without dexamethasone. Dexamethasone induces phase changes and increases the amplitude of circadian gene expression in nondifferentiated 3T3-L1 preadipocytes. However, dexamethasone had an opposite effect on differentiated adipocytes, leading to low-amplitude circadian expression. In conclusion, although glucocorticoids reset circadian rhythms, once rhythms are reset, glucocorticoid administration hinders circadian expression.  相似文献   

9.
Visible light synchronizes the human biological clock in the suprachiasmatic nuclei of the hypothalamus to the solar 24‐hour cycle. Short wavelengths, perceived as blue color, are the strongest synchronizing agent for the circadian system that keeps most biological and psychological rhythms internally synchronized. Circadian rhythm is important for optimum function of organisms and circadian sleep–wake disruptions or chronic misalignment often may lead to psychiatric and neurodegenerative illness. The beneficial effect on circadian synchronization, sleep quality, mood, and cognitive performance depends not only on the light spectral composition but also on the timing of exposure and its intensity. Exposure to blue light during the day is important to suppress melatonin secretion, the hormone that is produced by the pineal gland and plays crucial role in circadian rhythm entrainment. While the exposure to blue is important for keeping organism's wellbeing, alertness, and cognitive performance during the day, chronic exposure to low‐intensity blue light directly before bedtime, may have serious implications on sleep quality, circadian phase and cycle durations. This rises inevitably the need for solutions to improve wellbeing, alertness, and cognitive performance in today's modern society where exposure to blue light emitting devices is ever increasing.   相似文献   

10.
Light is the principal cue that entrains the circadian timing system, but the threshold of entrainment and the relative contributions of the retinal photoreceptors—rods, cones and intrinsically photosensitive retinal ganglion cells—are not known. We measured thresholds of entrainment of wheel-running rhythms at three wavelengths, and compared these to thresholds of two other non-image-forming visual system functions: masking and the pupillary light reflex (PLR). At the entrainment threshold, the relative spectral sensitivity and absolute photon flux suggest that this threshold is determined by rods. Dim light that entrained mice failed to elicit either masking or PLR; in general, circadian entrainment is more sensitive by 1–2 log units than other measures of the non-image-forming visual system. Importantly, the results indicate that dim light can entrain circadian rhythms even when it fails to produce more easily measurable acute responses to light such as phase shifting and melatonin suppression. Photosensitivity to one response, therefore, cannot be generalized to other non-image-forming functions. These results also impact practical problems in selecting appropriate lighting in laboratory animal husbandry.  相似文献   

11.
Abstract

The circadian rhythms of blood pressure (BP) and heart rate (HR) were documented in 30 patients for a 24‐hour period before and during the 24 hours that included unilateral surgery for senile cataract or retinal detachment. The patients were premedicated with diazepam. Anaesthesia was induced at a fixed time (09.00) in all patients with thiopentone, and muscle relaxation was with pancuronium. Maintenance was with enflurane in 15 patients and with fentanyl and droperidol in the rest. Though the intraoperative changes in haemodynamic parameters were dissimilar with the two types of maintenance agents, but both types had a similar effect on the circadian rhythms of blood pressure and heart rate. Whereas preoperatively the BP and HR circadian rhythms were nearly in phase, with their peaks in the late morning to early afternoon, the postoperative rhythms underwent a dissociation to a phase shift in the BP 24‐h pattern. The phase effect may be hypothetically attributed to direct pharmacological actions or to masking effects.  相似文献   

12.
Twenty-three clinically healthy, diurnally active elderly subjects, 71 ± 5 years of age were studied over a 24-hr span (six samples). Complete blood counts and differential counts were done (Ortho ELT-8, Wright stained smears). The circadian rhythm parameters of the hematologic variables in the elderly subjects were compared with reference values obtained from a larger group of clinically healthy young adult and adult subjects studied independently. The data were analyzed by cosinor and the Bingham test. Circadian rhythms in the number of circulating formed elements in the peripheral blood persist in the aged. In comparison with the young adult, the elderly subjects show differences in the timing (phase advance) of the circadian rhythms in circulating neutrophil leukocytes and lymphocytes, a decrease in the circadian amplitude of circulating platelets, a decrease in circadian rhythm adjusted mean (mesor) in the red cell count, and in the neutrophil band forms.  相似文献   

13.
袁力  李艺柔  徐小冬 《遗传》2018,40(1):1-11
时间生物学主要研究生物节律的产生及生物钟的运行机制,2017年诺贝尔生理或医学奖的颁布再次引发人们对该领域诸多科学问题的高度关注。生物钟与日月运行引起的环境信号周期性保持同步,有利于生物节律的相位和组织稳态的精确维持。本文介绍了生物节律现象的早期研究及随后生物钟理论体系建立的发展简史,并结合2017年诺贝尔生理或医学奖的解读阐述了果蝇生物钟基因的发现与分子调控机理,进而简单归纳当前时间生物学领域的前沿科学问题,阐明生物钟研究的意义。  相似文献   

14.
The development of techniques allowing the unattended collection of RNA from cell samples at room temperature makes practical accurate and facile monitoring of circadian rhythms in Chlamydomonas reinhardtii. The utility of these methods was demonstrated by collecting RNA samples for three days from cells maintained in continuous darkness. Every hour, cells were automatically collected and lysed with buffer containing SDS and proteinase K. Samples were maintained at room temperature with little or no evidence of degradation of RNA. Strong, non-damping circadian rhythms of cab mRNA abundance were measured. Free-running rhythms of about 24 h were measured from cultures maintained at 16, 20, 25 and 30 °C, thus demonstrating temperature compensation of circadian period. Simultaneous collections from cultures previously entrained to 12 h light/12 h dark cycles of opposite phase displayed circadian rhythms of cab mRNA abundance that were in phase with their previous entraining light cycles. Thus, this result suggests that the measured circadian rhythms of cab mRNA abundance was not an artifact of the collection procedure.  相似文献   

15.
Individual plant cells possess a genetic network, the circadian clock, that times internal processes to the day‐night cycle. Mathematical models of the clock are typically either “whole‐plant” that ignore tissue or cell type‐specific clock behavior, or “phase‐only” that do not include molecular components. To address the complex spatial coordination observed in experiments, here we implemented a clock network model on a template of a seedling. In our model, the sensitivity to light varies across the plant, and cells communicate their timing via local or long‐distance sharing of clock components, causing their rhythms to couple. We found that both varied light sensitivity and long‐distance coupling could generate period differences between organs, while local coupling was required to generate the spatial waves of clock gene expression observed experimentally. We then examined our model under noisy light‐dark cycles and found that local coupling minimized timing errors caused by the noise while allowing each plant region to maintain a different clock phase. Thus, local sensitivity to environmental inputs combined with local coupling enables flexible yet robust circadian timing.  相似文献   

16.
ABSTRACT. Evidence is presented for a circadian control of locomotory activity in the larval stadia of the cricket, Teleogryllus commodus Walker. Under light—dark cycles (LD), maximal activity occurs around the L/D transition and/or in the hours preceding it. Free-running rhythm patterns longer than 24 h are observed in constant light. Re-entrainment to phase advances in the LD cycle is also accompanied by several transient cycles. However, free-running rhythms under constant darkness or transients when exposed to LD cycle delays were not found. LD cycles during the eighth stadium set the phase of a free-running rhythm in the adult, even if the nymph does not show a rhythm. Nymphal activity is often erratic and is disrupted periodically by the moulting cycle, but moulting does not interrupt the operation of the circadian system. The daily timing of the moult itself is not under circadian control.  相似文献   

17.
18.
A vast network of cellular circadian clocks regulates 24‐hour rhythms of behavior and physiology in mammals. Complex environments are characterized by multiple, and often conflicting time signals demanding flexible mechanisms of adaptation of endogenous rhythms to external time. Traditionally this process of circadian entrainment has been conceptualized in a hierarchical scheme with a light‐reset master pacemaker residing in the hypothalamus that subsequently aligns subordinate peripheral clocks with each other and with external time. Here we review new experiments using conditional mouse genetics suggesting that resetting of the circadian system occurs in a more “federated” and tissue‐specific fashion, which allows for increased noise resistance and plasticity of circadian timekeeping under natural conditions.  相似文献   

19.
Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms.  相似文献   

20.
While light is considered the dominant stimulus for entraining (synchronizing) mammalian circadian rhythms to local environmental time, social stimuli are also widely cited as 'zeitgebers' (time-cues). This review critically assesses the evidence for social influences on mammalian circadian rhythms, and possible mechanisms of action. Social stimuli may affect circadian behavioural programmes by regulating the phase and period of circadian clocks (i.e. a zeitgeber action, either direct or by conditioning to photic zeitgebers), by influencing daily patterns of light exposure or modulating light input to the clock, or by associative learning processes that utilize circadian time as a discriminative or conditioned stimulus. There is good evidence that social stimuli can act as zeitgebers. In several species maternal signals are the primary zeitgeber in utero and prior to weaning. Adults of some species can also be phase shifted or entrained by single or periodic social interactions, but these effects are often weak, and appear to be mediated by social stimulation of arousal. There is no strong evidence yet for sensory-specific nonphotic inputs to the clock. The circadian phase-dependence of clock resetting to social stimuli or arousal (the 'nonphotic' phase response curve, PRC), where known, is distinct from that to light and similar in diurnal and nocturnal animals. There is some evidence that induction of arousal can modulate light input to the clock, but no studies yet of whether social stimuli can shift the clock by conditioning to photic cues, or be incorporated into the circadian programme by associative learning. In humans, social zeitgebers appear weak by comparison with light. In temporal isolation or under weak light-dark cycles, humans may ignore social cues and free-run independently, although cases of mutual synchrony among two or more group-housed individuals have been reported. Social cues may affect circadian timing by controlling sleep-wake states, but the phase of entrainment observed to fixed sleep-wake schedules in dim light is consistent with photic mediation (scheduled variations in behavioural state necessarily create daily light-dark cycles unless subjects are housed in constant dark or have no eyes). By contrast, discrete exercise sessions can induce phase shifts consistent with the nonphotic PRC observed in animal studies. The best evidence for social entrainment in humans is from a few totally blind subjects who synchronize to the 24 h day, or to near-24 h sleep-wake schedules under laboratory conditions. However, the critical entraining stimuli have not yet been identified, and there are no reported cases yet of social entrainment in bilaterally enucleated blind subjects. The role of social zeitgebers in mammalian behavioural ecology, their mechanisms of action, and their utility for manipulating circadian rhythms in humans, remains to be more fully elaborated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号