首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bengalese finches, Lonchura striata, are extremely sexually dimorphic in their singing behavior; males sing complex songs, whereas females do not sing at all. This study describes the developmental differentiation of the brain song system in Bengalese finches. Nissl staining was used to measure the volumes of four telencephalic song nuclei: Area X, HVC, the robust nucleus of the arcopallium (RA), and the lateral portion of the magnocellular nucleus of the anterior nidopallium (LMAN). In juveniles (circa 35 days old), Area X and the HVC were well developed in males, while they were absent or not discernable in females. The RA was much larger in males but barely discernable in females. In males, the volumes of Area X and the RA increased further into adulthood, but that of the HVC remained unchanged. The LMAN volume was greater in juveniles than in adults, and there was no difference in the LMAN volume between the sexes. The overall tendency was similar to that described in zebra finches, except for the volume of the RA, where the degree of sexual dimorphism is larger and the timing of differentiation occurs earlier in Bengalese finches. Motor learning of the song continues until day 90 in zebra finches, but up to day 120 in Bengalese finches. Earlier neural differentiation and a longer learning period in Bengalese finches compared with zebra finches may be related to the more elaborate song structures of Bengalese finches.  相似文献   

2.
Large morphological sex differences in the vertebrate brain were initially identified in song control nuclei of oscines. Besides gross differences between volumes of nuclei in males and females, sex differences also concern the size and dendritic arborization of neurons and various neurochemical markers, such as the calcium-binding protein parvalbumin (PV). Perineuronal nets (PNN) of the extracellular matrix are aggregates of different compounds, mainly chondroitin sulfate proteoglycans, that surround subsets of neurons, often expressing PV. PNN develop in zebra finches song control nuclei around the end of the sensitive period for song learning and tutor deprivation, known to delay the end of the song learning sensitive period, decreases the numbers of PNN in HVC. We demonstrate here the existence in zebra finches of a major sex difference (males > females) affecting the number of PNN (especially those surrounding PV-positive cells) in HVC and to a smaller extent the robust nucleus of the arcopallium, RA, the two main nuclei controlling song production. These differences were not present in Area X and LMAN, the lateral magnocellular nucleus of the anterior nidopallium. A dense expression of material immunoreactive for chondroitin sulfate was also detected in several nuclei of the auditory and visual pathways. This material was often organized in perineuronal rings but quantification of these PNN did not reveal any sex difference with the exception that the percentage of PNN surrounding PV-ir cells in the dorsal lateral mesencephalic nucleus, MLd, was larger in females than in males, a sex difference in the opposite direction compared to what is seen in HVC and RA. These data confirm and extend previous studies demonstrating the sex difference affecting PNN in HVC-RA by showing that this sex difference is anatomically specific and does not concern visual or auditory pathways.  相似文献   

3.
Across vertebrate species, signalers alter the structure of their communication signals based on the social context. For example, male Bengalese finches produce faster and more stereotyped songs when directing song to females (female‐directed [FD] song) than when singing in isolation (undirected [UD] song), and such changes have been found to increase the attractiveness of a male's song. Despite the importance of such social influences, little is known about the mechanisms underlying the social modulation of communication signals. To this end, we analyzed differences in immediate early gene (EGR‐1) expression when Bengalese finches produced FD or UD song. Relative to silent birds, EGR‐1 expression was elevated in birds producing either FD or UD song throughout vocal control circuitry, including the interface nucleus of the nidopallium (NIf), HVC, the robust nucleus of the arcopallium (RA), Area X, and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Moreover, EGR‐1 expression was higher in HVC, RA, Area X, and LMAN in males producing UD song than in males producing FD song, indicating that social context modulated EGR‐1 expression in these areas. However, EGR‐1 expression was not significantly different between males producing FD or UD song in NIf, the primary vocal motor input into HVC, suggesting that context‐dependent changes could arise de novo in HVC. The pattern of context‐dependent differences in EGR‐1 expression in the Bengalese finch was highly similar to that in the zebra finch and suggests that social context affects song structure by modulating activity throughout vocal control nuclei. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 47–63, 2016  相似文献   

4.
The higher vocal center (HVC) of adult male canries undergoes a seasonal change in volume that corresponds to seasonal modifications of vocal behavior: HVC is large when birds produce stereotyped song (spring) and is small when birds produce plastic song and add new song syllables into their vocal repertoires (fall). We reported previously that systemic exposure to testosterone (T) produces an increase in the volume of HVC similar to that observed with long-day photoperiods. T-induced growth of HVC occured regardless of wheter the borders of HVC were defined by Nissl-staining, the distribution of androgen-concentrating cells, or the distribution of projection neurons [separate neuronal populations within HVC project to the robust nucleus of the archistriatum (RA) and to Area X of the avian striatum (X)]. In the present study we used steroid autoradiography to determine whether T can influence the distribution of HVC cells that bind estrogen, and we combined estrogen autoradiography with retrograde labeling to determine whether HVC neurons that project to RA versus X differ in their ability to accumulate estrogen. Results showed that T increased the volume of Nissl-defined HVC and although HVC contained a low density of estrogen-concentrating cells, T increased the spatial distribution of these cells to match the Nissl borders of HVC. We also identified a region containing a high density of estrogenconcentrating cells located medial to HVC [we call this region paraHVC (pHVC)], and T also increased the volume of pHVC. pHVC also contained numerous X-projecting neurons, but few if any RA-projecting neurons. Double-labeling analysis revealed the RA-projecting neurons did not accumulate estrogen, a small percentage of X-projecting neurons in HVC accumulated estrogen, and the majority of X-projecting neurons in pHVC showed heavy accumulation of estrogen. The data reported here and in our previous article suggest distinct roles for gonadal steroids within the HVC-pHVC complex: estrogens are concentrated by neurons that project to a striatal region that influences vocal production during song learning (X), whereas androgens are concentrated primarily by neurons that project to a motor region that is involved in vocal production during both song learning and the recitation of already-learned song (RA). © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Previous studies have suggested that both major active metabolites of testosterone, estradiol (E2) and dihydrotestosterone (DHT), are needed for complete masculinization of the brain regions that control song in passerine birds. However, DHT treatment of hatchling female zebra finches has only small masculinizing effects on the song system. To assess whether E2 and DHT have a synergistic effect on the masculinization of the zebra finch song system, female zebra finches were given Silastic implants of E2 on the day of hatching (day 1) either without any additional hormone treatment or in combination with DHT on days 1, 14, or 70. At 105 to 110 days of age, we measured the volumes of Area X, higher vocal center (HVC), robust nucleus of the archistriatum (RA), soma sizes in HVC, RA, and the lateral magnocellular nucleus of the neostriatum (lMAN), and neuron density and number in RA. E2 masculinized all of the measures in the song system with the exception of the number of neurons in RA. DHT did not synergize with E2 to produce any additional masculinization of the attributes measured. These data demonstrate that the combination of E2 and DHT did not result in the complete masculinization of the song control nuclei and argue against the importance of androgen in sexual differentiation of the song system. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
Brain nuclei that control song are larger in male canaries, which sing, than in females, which sing rarely or not at all. Treatment of adult female canaries with testosterone (T) induces song production and causes song-control nuclei to grow, approaching the volumes observed in males. For example, the higher vocal center (HVC) of adult females approximately doubles in size by 1 month following the onset of T treatment. Male HVC projects to a second telencephalic nucleus, RA (the robust nucleus of the archistriatum), which projects in turn to the vocal motor neurons. Whether HVC makes a similar connection in female canaries is not known, although HVC and RA are not functionally connected in female zebra finches, a species in which testosterone does not induce neural or behavioral changes in the adult song system. This experiment investigated whether HVC makes an efferent projection to RA in normal adult female canaries, or if T is necessary to induce the growth of this connection. In addition, we examined whether T-induced changes in adult female canary brain are reversible. Adult female canaries received systemic T implants that were removed after 4 weeks; these birds were killed 4 weeks after T removal (Testosterone-Removal, T-R). Separate groups of control birds received either (a) T implants for 4 weeks which were not removed (Testosterone-Control, T-C) or (b) empty implants (Untreated Control, øO-C). Crystals of the fluorescent tracer DiI were placed in the song-control nucleus HVC in order to anterogradely label both efferent targets of HVC, RA and Area X. Projections from HVC to RA and Area X were present in all treatment groups including untreated controls, and did not appear to differ either qualitatively or quantitatively. Thus, formation of efferent connections from HVC may be prerequisite to hormone-induced expression of song behavior in adult songbirds. The volumes of RA and Area X were measured using the distribution of anterograde label as well as their appearance in Nissl-stained tissue. RA was larger in T-treated control birds than in untreated controls. Experimental birds in which T was given and then removed (T-R) had RA volumes closer in size to untreated controls (ø-C). Because the volume of RA in T-treated controls (T-C) was larger than that of birds that did not receive T (ø-C), we conclude that the volume of RA increased in both T-C and T-R birds but regressed upon removal of T in T-R birds. Surprisingly, the volume of Area X did not increase in T-treated birds. Birds in this study were maintained on short days, suggesting that T-induced growth of Area X reported previously may have resulted from an interaction between T and another seasonal or photoperiodic factor induced by exposure to long daylengths. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The neural song control system of female zebra finches is permanently masculinized if the females are given estradiol within 1 month after hatching. One hypothesis is that estradiol acts on neurons in the caudal nucleus of the ventral hyperstriatum (HVc) to cause developmental changes that lead to masculinizing influences in other song control regions. To test whether lesions of HVc block the masculinizing effects of estradiol elsewhere in the song system, we gave 20-day-old females either a Silastic pellet containing estradiol or no implant, and they received either a unilateral lesion of HVc or no lesion. At 60 days of age, they were sacrificed. The volumes of brain regions and sizes of neurons were measured in four song nuclei: HVc, robust nucleus of the archistriatum (RA), lateral magnocellular nucleus of the neostriatum (lMAN), and Area X. Lesions of HVc blocked the masculinizing effects of estradiol on RA and Area X on the side of the lesion. Thus, HVc must be intact in order for estradiol to masculinize these two nuclei. This observation is compatible with the hypothesis that estradiol acts on or near HVc to masculinize several song nuclei, although other interpretations are also possible.  相似文献   

8.
Exogenous estrogens, when administered to hatchling female zebra finches, masculinize the morphology and function of their neural vocal control system. The first of two experiments evaluated whether tamoxifen citrate is an antiestrogen in zebra finches, and the second determined whether it would block the masculinization hypothesized to be caused in hatchling males by the males' endogenous estradiol. In the first experiment adult female zebra finches were ovariectomized and injected for 10 days with estradiol benzoate (EB), tamoxifen, EB and tamoxifen combined, or vehicle (control). The dependent variable was oviduct weight. The EB-stimulated growth of the oviduct was blocked by tamoxifen, which had no effects when administered alone. Thus, tamoxifen acts as an antiestrogen in the zebra finch oviduct. In Experiment 2, male and female zebra finches were treated with tamoxifen or vehicle for the first 20 days after hatching. The males were castrated at 20 days. At 60 days we compared the song control regions of experimental and control males and females. In both sexes tamoxifen increased the somatic areas of neurons in RA (robust nucleus of the archistriatum), HVc (caudal nucleus of the ventral hyperstriatum), and MAN (magnocellular nucleus of the anterior neostriatum). Tamoxifen also increased the volumes of HVc, RA, MAN, and Area X in males. Thus, tamoxifen failed to block masculinization of males, but masculinized females and hypermasculinized males. Tamoxifen's hypermasculinization of the male and masculinization of the female song system is paradoxical given that (1) estradiol does not have similar effects on the male song system, and (2) tamoxifen antagonizes the effects of EB in the oviduct.  相似文献   

9.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei.  相似文献   

10.
The song system of zebra finches is sexually dimorphic: the volumes of the song control nuclei and the neurons within these nuclei are larger in males. The song system of hatching female zebra finches is masculinized by systemic treatment with estrogen. We investigated the locus of this estrogen action by using microimplants of estradiol benzoate (EB). We implanted female zebra finch nestlings 10–13 days old with Silastic pellets containing approximately 2 μg EB at one of several sites: near the higher vocal center (HVC), in the brain distant from HVC, or in the periphery either under the skin of the breast or in the peritoneal cavity. Controls were either unimplanted or implanted near HVC with Silastic pellets without hormone. The brains were fixed by perfusion at 60 days, and the volumes of the song control regions as well as the sizes of individual neurons were measured. Neurons in HVC were lerger (more masculine) in the HVC-implanted group than in other groups, which did not differ among themselves. The size of neurons in the robust nucleus of the archistriatum (RA) and the lateral magnocellular nucleus ofthe neostriatum (lMAN) were inversely correlated with the distance of the EB pellet to HVC; neurons in RA and lMAN were larger when the EB pellets were closer to HVC. This result suggests that implants near HVC were at or near a site of estrogen action. To our knowledge, this is the first demonstration that localized brain implants of estrogen cause morphological masculinization in any species. 1994 John Wiley & Sons, Inc.  相似文献   

11.
[3H]Testosterone (T) was injected into male and female canaries (Serinus canarius), a species in which females are able to sing but do so more rarely and more simply than males. Autoradiographic analysis revealed that males and females have equal proportions of cells labeled by T or its metabolites in four song control nuclei: the high vocal center (HVC), the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN), the robust nucleus of the archistriatum (RA), and the hypoglossal motor nucleus (nXII). Labeled cells were also observed in both sexes in the medial portion of MAN, and in hypothalamic nuclei. In both sexes, labeled cells in HVC, IMAN, RA, and nXII were larger than unlabeled cells. There were no sex differences in the size of either labeled or unlabeled cells in these song nuclei. The density of labeled cells per unit volume of tissue did not differ between the sexes in any song nucleus analyzed. However, because males have larger HVC and RA than females, males have a greater total number of hormone-sensitive cells in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches and tropical duetting wrens suggests that the complexity of song that a bird can produce is correlated with the total number of hormone-sensitive cells in song nuclei. © 1992 John Wiley & Sons, Inc.  相似文献   

12.
Only male zebra finches (Poephila guttata) sing, and nuclei implicated in song behavior exhibit marked sex differences in neuron number. In the robust nucleus of the anterior neostriatum (RA), these sex differences develop because more neurons die in young females than in males. However, it is not known whether the sexually dimorphic survival of RA neurons is a primary event in sexual differentiation or a secondary response to sex differences in the number of cells interacting trophically with RA neurons. In particular, since sexual differentiation of the RA parallels the development of dimorphisms in the numbers of neurons providing afferent input from the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the high vocal center (HVC), it has been hypothesized that sex differences in the size of these afferent populations trigger differential RA neuron survival and growth. To test this hypothesis, we lesioned either the lMAN or both the lMAN and HVC unilaterally in 12-day-old male and female zebra finches. Subsequently, RA cell death and RA neuron number and size were measured. Unilateral lMAN lesions increased cell death and decreased neuron number and size within the ipsilateral RA of both sexes. However, even in the lMAN-lesioned hemisphere, these effects were less pronounced in males than in females, so that by day 25 the volume, number, and size of neurons were sexually dimorphic in both the contralateral and ipsilateral RA. Similarly, the absence of both lMAN and HVC afferents did not prevent the emergence of sex differences in the number and size of RA neurons by 25 day posthatching. We conclude that these sex differences within the RA are not a secondary response to dimorphisms in the numbers of lMAN or HVC neurons providing afferent input. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
In zebra finches (Taeniopygia guttata), estradiol contributes to sexual differentiation of the song system but the receptor(s) underlying its action are not exactly known. Whereas mRNA and/or protein for nuclear estrogen receptors ERα and ERβ are minimally expressed, G‐protein coupled estrogen receptor 1 (GPER1) has a much greater distribution within neural song regions and the syrinx. At present, however, it is unclear if this receptor contributes to dimorphic development of the song system. To test this, the specific GPER1 antagonist, G‐15, was intracranially administered to zebra finches for 25 days beginning on the day of hatching. In males, G‐15 significantly decreased nuclear volumes of HVC and Area X. It also decreased the muscle fiber sizes of ventralis and dorsalis in the syrinx. In females, G‐15 had no effect on measures within the brain, but did increase fiber sizes of both muscle groups. In sum, these data suggest that GPER1 can have selective and opposing influences on dimorphisms within the song system, but since not all features were affected additional factors are likely involved. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018  相似文献   

14.
Like many other songbird species, male zebra finches learn their song from a tutor early in life. Song learning in birds has strong parallels with speech acquisition in human infants at both the behavioral and neural levels. Forebrain nuclei in the 'song system' are important for the sensorimotor acquisition and production of song, while caudomedial pallial brain regions outside the song system are thought to contain the neural substrate of tutor song memory. Here, we exposed three groups of adult zebra finch males to either tutor song, to their own song, or to novel conspecific song. Expression of the immediate early gene protein product Zenk was measured in the song system nuclei HVC, robust nucleus of the arcopallium (RA) and Area X. There were no significant differences in overall Zenk expression between the three groups. However, Zenk expression in the HVC was significantly positively correlated with the strength of song learning only in the group that was exposed to the bird's own song, not in the other two groups. These results suggest that the song system nucleus HVC may contain a neural representation of a memory of the bird's own song. Such a representation may be formed during juvenile song learning and guide the bird's vocal output.  相似文献   

15.
16.
Telencephalic nucleus HVC and its two efferent targets, RA and X, play essential roles in the production of complex, learned vocalizations in the male zebra finch. Normal females do not produce these learned vocalizations; HVC, RA, and X are small in volume, and HVC and RA are not synaptically connected. We have shown that estrogen treatment during development causes females to learn and produce male-like vocalizations. This article describes the neural masculinization of these E2 females, replicating and extending the work of others. Female zebra finches were treated with 17 beta-estradiol (E2) at hatching, at 14-22 days of age, or as adults. In adulthood, the volumes of nucleus RA and area X were measured and the efferent projections of nucleus HVC examined using the anterograde tracer PHA-L. Early, sustained E2 treatment caused the greatest increase in the volume of RA and X, the innervation of RA and X by HVC axons, and the masculinization of auditory responses of cells in RA. Treatments that lasted for a shorter period or started later in development resulted in different patterns of partial brain masculinization. E2 treatment in adulthood had no effect on the volume of RA or X or their innervation by HVC. Bilateral lesions of the tracheosyringeal nerves or of HVC had the same effects on the male-typical vocalizations produced by E2 females as they do on the vocalizations produced by males. These results demonstrate that the neural masculinization of telencephalic nuclei induced by E2 treatment sets up a functional circuit in females similar to one in males that enables the learning and production of complex vocalizations.  相似文献   

17.
Telencephalic nucleus HVC and its two efferent targets, RA and X, play essential roles in the production of complex, learned vocalizations in the male zebra finch. Normal females do not produce these learned vocalizations; HVC, RA, and X are small in volume, and HVC and RA are not synaptically connected. We have shown that estrogen treatment during development causes females to learn and produce male-like vocalization. This article describes the neural masculinization of these E2 females, replicating and extending the work of others. Female zebra finches were treated with 17β-estradiol (E2) at hatching, at 14–22 days of age, or as adults. In adulthood, the volumes of nucleus RA and area X were measured and the efferent projections of nucleus HVC examined using the anterograde tracer PHA-L. Early, sustained E2 treatment caused the greatest increase in the volume of RA and X, the innervation of RA and X by HVC axons, and the masculinization of auditory responses of cells in RA. Treatments that lasted for a shorter period or started later in development resulted in different patterns of partial brain masculinization. E2 treatment in adulthood had no effect on the volume of RA or X or their innervation by HVC. Bilateral lesions of the tracheosyringeal nerves or of HVC had the same effects on the male-typical vocalizations produced by E2 females as they do on the vocalizations produced by males. These results demonstrate that the neural masculinization of telencephalic nuclei induced by E2 treatment sets up a functional circuit in females similar to one in males that enables the learning and production of complex vocalizations.  相似文献   

18.
In order to determine the critical period(s) during which estrogen alters sexually dimorphic behavior and neuroanatomy in zebra finches (Poephila guttata), nestlings were injected daily 20 μg estradiol benzoate (EB) during posthatching week 1, week 2, week 3, or weeks 1, 2, and 3. At 7 months of age, birds were implanted with testosterone propionate and tested with female partners for singing, dancing, and copulatory mounting. Brains were subsequently processed for morphometry, and the volumes of the song system nuclei HVC, area X, and RA and the soma sizes and densities of neurons in RA were determined. Males given EB during week 1 failed to mount. Females given EB during week 1 were fully masculinized with respect to dancing and RA neuron soma size and density, and were partially masculinized with respect to song nuclei volumes and singing. Treatment beginning after week 1 was ineffective or less effective for all measures. Only for RA neuron measures was treatment for all three weeks more effective than week 1 treatment. Thus the first post-hatching week is the most influential period of those tested for effects of exogenous estrogen on sexual differentiation in this species, and is a period during which both masculinization of females and demasculinization of males is possible. 1994 John Wiley & Sons, Inc.  相似文献   

19.
Song behavior and the neural song system that serves it are sexually dimorphic in zebra finches. In this species, males sing and females normally do not. The sex differences in the song system include sex differences in the proportion of neurons that express androgen receptors, which is higher in specific brain regions of males. Estradiol (E2) administered in early development profoundly masculinizes the song system of females, including the proportion of neurons expressing androgen receptors. We examined whether or not the expression of these androgen receptors was causally related to the E2-induced masculinization of this system by co-administering Flutamide, which blocks androgen action at the receptor, along with E2 at hatching. E2 alone had its usual masculinizing effect on the female song system, measured in adulthood: increasing the size of song nuclei, the size of neurons in HVC, RA, and 1MAN, and the number of neurons in HVC. E2's masculinizing action, however, was significantly diminished on all measures by co-administering Flutamide. Indeed, females receiving both E2 and Flutamide were never significantly more masculine than controls on any measure. Flutamide alone had no effect. Our results strongly suggest that the activation of androgen receptors is necessary for the E2-induced masculinization of the song system in females.  相似文献   

20.
This study tested the hypothesis that the relative proportion of neurons that are hormone sensitive in avian song control nuclei is related to the basic motor ability to sing, whereas the absolute number of such neurons is related to the complexity of song behavior. Either [3H]testosterone (T) or estradiol (E2) was injected into male and female rufous and white wrens (Thryothorus rufalbus), a tropical species in which females sing duets with males but have smaller song repertoires than males. Autoradiographic analysis indicated that there were no sex differences in the proportions of T or E2 target cells in two song nuclei: the high vocal center (HVC) and the lateral portion of the magnocellular nucleus of the anterior neostriatum (IMAN). The density of labeled cells per unit volume of tissue did not differ between the sexes in either song nucleus. Males have larger song nuclei, however, which is consistent with their more complex song behavior, and therefore have a greater total number of hormone-sensitive neurons in these regions than do females. Comparison of these results with measures of hormone accumulation in zebra finches, canaries, and bay wrens supports the hypothesis presented. © 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号