首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mannan-rich plant cell walls were mechanically disintegrated and chemically extracted in order to ascertain their morphology and structure by electron microscopy and electron diffraction. For Acetabularia crenulata and Codium fragile, the cell-wall fragments were found to consist of alkali-resistant fibrillar mannan II encrusted with alkali-soluble granular mannan I. In the case of ivory nuts (Phytelephas macrocarpa) there is, in addition, a microfibrillar cellulose component which was also identified. The mannan I—mannan II polymorphism was also obtained when various mannan fractions were recrystallized from solution. In these recrystallizations, the occurrence of one or the other polymorph was found to depend on several parameters: the molecular weight of the mannan, the temperature of crystallization and the polarity of the crystallization medium.Abbreviations DP degree of polymerization - EDTA ethylenediaminetetraacetic acid Affiliated with the Scientific and Medical University of Grenoble  相似文献   

2.
Highly crystalline tri-O-substituted cellulose ethers having ethyl, n-propyl, n-butyl, allyl, and methallyl substituents were prepared from low-molecular weight cellulose (DP = 15). Influences of conformational and packing effects on solid-state 13C-NMR spectra were studied by using X-ray diffraction and solid- and solution-state 13C-NMR analyses of the cellulose derivatives. Unit-cell sizes tentatively obtained from X-ray diffraction patterns of the cellulose derivatives indicated that conformations and packing states of cellulose chains and alkyl chains of substituents were different between the derivatives. Solid- and solution-state 13C-NMR spectra of cellulose allomorphs, and effects of hydrogen bonds present in celluloses I, II, and III on chemical shifts of their solid-state 13C-NMR spectra were proposed.  相似文献   

3.
Comprehensive structural analyses were performed for N-o-, N-m-, and N-p-nitrophenyl-2,3,4-tri-O-acetyl-β-D-xylopyranosylamines. Single-crystal X-ray diffraction data were collected and revealed that one compound under investigation undergoes temperature-dependent polymorph transitions (crystal structures of three polymorphs were obtained). The number of molecules in the independent part of the crystal unit cells was in agreement with the number of resonances in solid-state (13)C NMR spectra. Therefore, the compounds exist as single polymorphs at room temperature, as confirmed by powder X-ray diffraction measurements. Significant differences in (13)C chemical shifts between solution and solid-state NMR for selected carbon atoms confirmed the existence of intra- and/or intermolecular interactions.  相似文献   

4.
Isolated spore coats of a marine Bacillus species were incubated in 25 mM MnCl(2) at pH 7.5. Manganese precipitates, formed on the coat surfaces, were analyzed by transmission electron microscopy, electron diffraction, and energy-dispersive X-ray spectroscopy. Initially, an amorphous manganese oxide was observed on the coats which recrystallized to hausmannite after prolonged incubation in the MnCl(2) solution. The spore coats catalyze the oxidation of Mn(II) and have no structural influence on the final mineral phase precipitated.  相似文献   

5.
Mannan triacetates prepared from material extracted from ivory nut and Tubera salep were studied by means of electron and X-ray diffraction. The former is uniquely constituted of acetylated d-mannopyranosyl units linked by a (1 → 4)-β-linkage whereas the latter contains acetylated (1 → 4)-β-d-glucopyranosyl randomly distributed in the backbone with a ratio of mannose to glucose of about 3:1. However, there seems to be no effect on crystallisation due to the presence of the glucosidic units on the conformation of the chain.Single crystals of ivory nut triacetate were prepared by slowly cooling a dilute solution of nitromethane and butanol. The crystals were long narrow laths which provide electron diffraction data after annealing at 190°C in a vacuum.Two different unit cells were derived from the acetylated Tubera salep X-ray data. A first unit cell with a = 1·18 nm, b = 1·54 nm and c = 1·60 nm contains eight sugar units, whereas the second unit cell with a = 0.369 nm, b = 0·96 nm and c = 1·58 nm would accommodate 16 residues. The latter agrees best with the base-plane parameters derived from electron diffraction of single crystals.The X-ray fibre diagram was interpreted in terms of a two-fold helix and an asymmetric unit composed of two triacetyl mannopyranosyl units. This means that two chemically identical mannose units would not be conformationally equivalent along the backbone.The presence of glucose units in the backbone does not seem to perturb the crystalline conformation. The ‘isomorphous replacement’ hypothesis was invoked to explain this observation. The helical parameters derived herein for Tubera salep mannan triacetate are different from those reported earlier for the same acetylated glucomannan but crystallised using a different technique. This is attributed to the occurrence of polymorphism in this material.  相似文献   

6.
It is important to resolve the structure of Bombyx mori silk fibroin before spinning (silk I) and after spinning (silk II), and the mechanism of the structural transition during fiber formation in developing new silk-like fiber. The silk I structure has been recently resolved by (13)C solid-state NMR as a "repeated beta-turn type II structure." Here, we used (13)C solid-state NMR to clarify the heterogeneous structure of the natural fiber from Bombyx mori silk fibroin in the silk II form. Interestingly, the (13)C CP/MAS NMR revealed a broad and asymmetric peak for the Ala Cbeta carbon. The relative proportions of the various heterogeneous components were determined from their relative peak intensities after line shape deconvolution. Namely, for 56% crystalline fraction (mainly repeated Ala-Gly-Ser-Gly-Ala-Gly sequences), 18% distorted beta-turn, 13% beta-sheet (parallel Ala residues), and 25% beta-sheet (alternating Ala residues). The remaining fraction of 44% amorphous Tyr-rich region, 22% in both distorted beta-turn and distorted beta-sheet. Such a heterogeneous structure including distorted beta-turn can be observed for the peptides (AG)(n) (n > 9 ). The structural change from silk I to silk II occurs exclusively for the sequence (Ala-Gly-Ser-Gly-Ala-Gly)(n) in B. mori silk fibroin. The generation of the heterogeneous structure can be studied by change in the Ala Cbeta peak of (13)C CP/MAS NMR spectra of the silk fibroin samples with different stretching ratios.  相似文献   

7.
Isolated spore coats of a marine Bacillus species were incubated in 25 mM MnCl2 at pH 7.5. Manganese precipitates, formed on the coat surfaces, were analyzed by transmission electron microscopy, electron diffraction, and energy-dispersive X-ray spectroscopy. Initially, an amorphous manganese oxide was observed on the coats which recrystallized to hausmannite after prolonged incubation in the MnCl2 solution. The spore coats catalyze the oxidation of Mn(II) and have no structural influence on the final mineral phase precipitated.  相似文献   

8.
The 2,2,6,6-tetramethylpiperidine-1-oxy radial (TEMPO)-mediated oxidation was applied to aqueous slurries of cotton linters. The water-insoluble fibrous fractions thus obtained in the yields of more than 78% were characterized by solid-state 13C-NMR, X-ray diffraction and scanning electron microscopic analyses for evaluation of distribution of carboxylate groups formed in the TEMPO-oxidized celluloses. The patterns of solid-state 13C-NMR spectra revealed that the oxidation occurred at the C6 primary hydroxyl groups of cellulose. X-ray diffraction and scanning electron microscopic analyses showed that such C6 oxidation took place at the surfaces of cellulose I crystallites without any oxidation at the C6 of inside cellulose I crystallites. Thus, carboxylate and aldehyde groups introduced into the TEMPO-oxidized celluloses are densely present on the surfaces of cellulose I crystallites. In addition, the obtained results revealed that the shoulder signal due to non-crystalline C6 carbons at about 63 ppm in solid-state 13C-NMR spectra of native celluloses is ascribed to those of surfaces of cellulose I crystallites or those of cellulose microfibrils.  相似文献   

9.
Four different alkaline treatments for isolation of cellulose microfibrils from vascular bundles of banana rachis were comparatively studied. Isolated cellulose microfibrils were characterized using high performance anion exchange chromatography for neutral sugar composition, as well as attenuated total reflection Fourier transform infrared spectroscopy, transmission electron microscopy, X-ray and electron diffraction and solid-state 13C NMR. The cellulose microfibrils treated with peroxide alkaline, peroxide alkaline–hydrochloric acid or 5 wt% potassium hydroxide had average diameters of 3–5 nm, estimated lengths of several micrometers. Although the interpretation of their structure is difficult because of the low cristallinity, X-ray diffraction, 13C NMR and ATR-FTIR results suggested that cellulose microfibrils from banana rachis could be either interpreted as cellulose IV1 or cellulose Iβ. The specimens treated with a more concentrated KOH solution (18 wt%) were still microfibrillated but their structure was converted to cellulose II.  相似文献   

10.
The filamentous bacteriophage (Inovirus) strain Ff (fd, f1, M13) is widely used in molecular biophysics as a simple model system. A low resolution molecular model of the fd protein coat has been reported, derived from iterative helical real space reconstruction of cryo-electron micrographs (cryoEM). This model is significantly different from the model previously derived from X-ray fibre diffraction and solid-state NMR. We show that the cryoEM model agrees neither with solid-state NMR data nor with X-ray fibre diffraction data of fd, and has some puzzling structural features, for instance nanometre holes through the protein coat. We refine the cryoEM model against the X-ray data, and find that the model after refinement closely approximates the model derived directly from X-ray fibre diffraction and solid-state NMR data. We suggest possible reasons for the differences between the models derived from cryoEM and X-ray diffraction.  相似文献   

11.
Preparation of cellulose films from solution of bacterial cellulose in NMMO   总被引:1,自引:0,他引:1  
Bacterial cellulose (BC) was dissolved in N-methylmorpholine N-oxide (NMMO) to prepare regenerated BC films (RBC) with phase inversion. The solubility of BC, supermolecule on structure, morphology, thermal and physical properties of the films were investigated by Fourier transform infrared spectroscopy (FT-IR), solid-state cross polarization/magic angle spinning 13C nuclear magnetic resonance (CP/MAS 13C NMR), wide-angle X-ray diffraction (WAXD), scanning electron microscope (SEM), and thermogravimetric analysis (TGA). The investigation suggested BC was dissolved completely in NMMO. From the C6 signal shifts to the amorphous area, the crystallinity of materials decreased from 79.20% to 38.17%, and the transformation from cellulose I to II occurred. It was also found that the banded structure of the native materials was replaced by homogeneous and densified sections, so RBC films had better mechanical and barrier properties, and do thermal stability was similar to that of the native BC.  相似文献   

12.
The gene (1272-bp) encoding a β-1,4-mannanase from a gut bacterium of Eisenia fetida, Cellulosimicrobium sp. strain HY-13 was cloned and expressed in Escherichia coli. The recombinant β-1,4-mannanase (rManH) was approximately 44.0 kDa and has a catalytic GH5 domain that is 65% identical to that of the Micromonospora sp. β-1,4-mannosidase. The enzyme exhibited the highest catalytic activity toward mannans at 50 °C and pH 6.0. rManH displayed a high specific activity of 14,711 and 8498 IU mg−1 towards ivory nut mannan and locust bean gum, respectively; however it could not degrade the structurally unrelated polysaccharides, mannobiose, or p-nitrophenyl sugar derivatives. rManH was strongly bound to ivory nut mannan, Avicel, chitosan, and chitin but did not attach to curdlan, insoluble oat spelt xylan, lignin, or poly(3-hydroxybutyrate). The superior biocatalytic properties of rManH suggest that the enzyme can be exploited as an effective additive in the animal feed industry.  相似文献   

13.
Comprehensive structural analyses were performed for N-o-, N-m-, and N-p-nitrophenyl-2,3,4-tri-O-acetyl-β-d-xylopyranosylamines. Single-crystal X-ray diffraction data were collected and revealed that one compound under investigation undergoes temperature-dependent polymorph transitions (crystal structures of three polymorphs were obtained). The number of molecules in the independent part of the crystal unit cells was in agreement with the number of resonances in solid-state 13C NMR spectra. Therefore, the compounds exist as single polymorphs at room temperature, as confirmed by powder X-ray diffraction measurements. Significant differences in 13C chemical shifts between solution and solid-state NMR for selected carbon atoms confirmed the existence of intra- and/or intermolecular interactions.  相似文献   

14.
Petkova AT  Yau WM  Tycko R 《Biochemistry》2006,45(2):498-512
We describe solid-state nuclear magnetic resonance (NMR) measurements on fibrils formed by the 40-residue beta-amyloid peptide associated with Alzheimer's disease (Abeta(1-40)) that place constraints on the identity and symmetry of contacts between in-register, parallel beta-sheets in the fibrils. We refer to these contacts as internal and external quaternary contacts, depending on whether they are within a single molecular layer or between molecular layers. The data include (1) two-dimensional 13C-13C NMR spectra that indicate internal quaternary contacts between side chains of L17 and F19 and side chains of I32, L34, and V36, as well as external quaternary contacts between side chains of I31 and G37; (2) two-dimensional 15N-13C NMR spectra that indicate external quaternary contacts between the side chain of M35 and the peptide backbone at G33; (3) measurements of magnetic dipole-dipole couplings between the side chain carboxylate group of D23 and the side chain amine group of K28 that indicate salt bridge interactions. Isotopic dilution experiments allow us to make distinctions between intramolecular and intermolecular contacts. On the basis of these data and previously determined structural constraints from solid-state NMR and electron microscopy, we construct full molecular models using restrained molecular dynamics simulations and restrained energy minimization. These models apply to Abeta(1-40) fibrils grown with gentle agitation. We also present evidence for different internal quaternary contacts in Abeta(1-40) fibrils grown without agitation, which are morphologically distinct.  相似文献   

15.
Some structural features and physicochemical properties of the mannan from Rhodotorula rubra strain 14 have been investigated. Chemical analysis indicated the mannan to have alternating β-(1→3) and β-(1→4) lingages. Wide-angle X-ray diffraction of the original mannan showed an intensive, amorphous halo, suggesting short-distance, macromolecular arrangement, as in other amorphous substances. The specimen underwent radical structural changes upon heating the polymer in phosphate buffer solution.  相似文献   

16.
Nuclear magnetic resonance (NMR) spectroscopy, and particularly solid-state NMR spectroscopy, is a method of choice to study the structure and dynamics of both the lipid and the protein components of model and biological membranes. Different approaches have been developed to study these systems in which the restricted molecular motions result in broad NMR spectra. This contribution will first present an overview of the different techniques used to study lipid bilayers, namely 31p, 2H and 13C solid-state NMR spectroscopy. On the other hand, the study of the structure of membrane peptides and proteins is a rapidly growing field and several methods developed in the last two decades will be presented. These methods allow the investigation of protein systems for which structural information is often difficult to obtain by techniques such as X-ray diffraction and multidimensional solution NMR.  相似文献   

17.
The purpose of this research was to investigate the influence of changes in the amorphous state on the crystallization of trehalose. Amorphous trehalose is known to stabilize biomaterials; hence, an understanding of crystallization is vital. Amorphous trehalose, prepared by spray-drying, was exposed to either a single step (0–75%) in relative humidity (RH) or to modulated 0–75–0% RH to cause crystallization. For the single-step experiment, two samples crystallized in a predictable manner to form the dihydrate. One sample, while notionally identical, did not crystallize in the same way and showed a mass loss throughout the time at 75% RH, with a final mass less than that expected for the dihydrate. The idiosyncratic sample was seen to have a starting near infrared (NIR) spectra similar to that exhibited by anhydrous crystalline trehalose, implying that short-range order in the amorphous material (or a small amount of crystalline seed, not detectable using powder X-ray diffraction) caused the sample to fail to form the dihydrate fully when exposed to high RH. The modulated RH study showed that the amorphous material interacted strongly with water; the intensity of the NIR traces was not proportional to mass of water but rather the extent of hydrogen bonding. Subsequent crystallization of this sample clearly was a partial formation of the dihydrate, but with the bulk of the sample then shielded such that it was unable to show significant sorption when exposed to elevated RH. It has been shown that the nature of the amorphous form will alter the way in which samples crystallize. With oscillation in RH, it was possible to further understand the interactions between water and amorphous trehalose.  相似文献   

18.
Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution   总被引:1,自引:0,他引:1  
Jin H  Zha C  Gu L 《Carbohydrate research》2007,342(6):851-858
Untreated cellulose was directly and quickly dissolved in NaOH/thiourea/urea aqueous solution. The mechanism of dissolution was investigated by SEM, WXRD and (13)C NMR. The components of this solvent cannot dissolve cellulose on their own, and the interactions between NaOH and urea, as well as between NaOH and thiourea, play an important role in improving the dissolution of cellulose. Moreover, (13)C NMR spectra proved that NaOH, thiourea, and urea were bound to cellulose molecules, which brings cellulose molecules into aqueous solution to a certain extent and prevents cellulose macromolecules from associating. (13)C NMR spectra of the cellulose solution show that this novel mixture is a direct solvent. Optical microscopy and CP MAS (13)C NMR were used to study the process of dissolution. The results reveal that cellulose is dissolved completely and that cellulose I (cotton linter) first changes to amorphous cellulose chains in solution, and then to cellulose II during regeneration. Moreover, a new, more effective dissolution method is proposed, as confirmed by dynamic rheology measurements.  相似文献   

19.
锌酵母中酵母甘露多糖组分的特征和结构   总被引:4,自引:0,他引:4  
本文研究从锌酵母中分离出的酵母甘露多糖XP的特征和结构。XP经全水解和^13CNMR谱显示除甘露糖基外,还有少量L-鼠李糖基和甲氧基。甲基化分析、过碘酸盐氧化、Smith降解、乙酰解和部分酸水解显示XP的主链是1→6连接的甘露糖,侧链是1→2连接的甘露糖。^1H及^13C NMR谱表明所有糖苷键均为α型,结合元素分析XP基本是酵母甘露多糖和蛋白质以及锌的络合物。  相似文献   

20.
The bacterial proton pump bacteriorhodopsin (BR) is a 26.5 kDa seven-transmembrane helical protein. Several structural models have been published at > or =1.55 A resolution. The initial cis-trans isomerization of the retinal moiety involves structural changes within <1 A. To understand the chromophore-protein interactions that are important for light-driven proton transport, very accurate measurements of the protein geometry are required. To reveal more structural details at the site of the retinal, we have, therefore, selectively labeled the tryptophan side chains of BR with (15)N and metabolically incorporated retinal, (13)C-labeled at position 14 or 15. Using these samples, heteronuclear distances were measured with high accuracy using SFAM REDOR magic angle spinning solid-state NMR spectroscopy in dark-adapted bacteriorhodopsin. This NMR technique is applied for the first time to a high-molecular mass protein. Two retinal conformers are distinguished by their different isotropic 14-(13)C chemical shifts. Whereas the C14 position of 13-cis-15-syn-retinal is 4.2 A from [indole-(15)N]Trp86, this distance is 3.9 A in the all-trans-15-anti conformer. This latter distance allows us to check on the details of the active center of BR in the various published models derived from X-ray and electron diffraction data. The experimental approach and the results reported in this paper enforce the notion that distances between residues of a membrane protein binding pocket and a bound ligand can be determined at subangstrom resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号