首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The response of pancreatic exocrine secretion to cholecystokinin (CCK), has been studied in experimental acute pancreatitis induced in rats by supramaximal doses of caerulein. Several doses of caerulein were used (4, 20 and 40 micrograms/Kg) and each one was administered by four subcutaneous injections over 3 h at hourly intervals. Pancreatic juice was collected 9 h after the first injection. The caerulein-treated animals showed a statistically significant increase in serum amylase levels. Secretory activity of ductular cells remained unchanged in all the caerulein-treated animals, but total protein and amylase secretion decreased significantly at all the caerulein doses used, both in resting conditions and under stimulation with CCK (1.25 micrograms/Kg/h). Despite this the acinar cells of rats treated with the lowest dose of caerulein retained a certain degree of secretory function since amylase activity in pancreatic juice was greater than in other groups of rats treated with higher doses of caerulein. Moreover, the percentage of increase observed in total protein and amylase in response to CCK respect to basal secretion is similar to that of the untreated animals. At higher doses (20 and 40 micrograms/Kg) the secretory capacity in response to CCK was inhibited. Therefore CCK administration in slight acute pancreatitis could be used as a therapy since it favours the secretion of pancreatic enzymes at percentual levels similar to those of the controls.  相似文献   

2.
The effect of infused acetylcholine and (2-acetyllactoyloxyethyl)-trimethylammonium hemi-1,5-naphthalenedisulfonate (aclatonium napadisilate), a new cholinergic drug . On endocrine and exocrine secretory responses was simultaneously investigated during the perfusion of isolated rat pancreases. Acetylcholine (1.1 microM) stimulated the output of pancreatic juice and amylase, and significantly elicited the production of both insulin and glucagon. Its effect on somatostatin secretion, however, was minimal. Both pancreatic juice flow and amylase output were also significantly stimulated by aclatonium napadisilate (12 microM). These stimulatory effects of aclatonium napadisilate on the exocrine pancreas were blocked by atropine (25 microM). Aclatonium napadisilate could stimulate glucagon, but could not influence insulin and somatostatin secretion. The addition of atropine had no effect on the release of insulin, glucagon, and somatostatin. These results indicate that the effects of aclatonium napadisilate is cholinergic, and that the action is muscarinic. In addition, it can be concluded that pancreatic somatostatin secretion, as well as other hormones from islet cells, is controlled by the parasympathetic nervous system.  相似文献   

3.
The effects of neurotensin on pancreatic exocrine secretion were examined in fasted, conscious White Leghorn hens. A cannula was surgically implanted in the central duct serving the ventral lobe of the pancreas in order to collect pure pancreatic juice. Following recovery, neurotensin was infused intravenously at 3.6 or 10.8 pmol/kg*min. The volume and pH of the pancreatic secretions were recorded and total pancreatic protein concentration, amylase, lipase, trypsin, and chymotrypsin activity were measured every 30 min for 2 hr and compared to secretions following the infusion of 0.9% saline. Our results demonstrated that neurotensin did not affect the pH nor the pancreatic juice protein concentration, but did increase secretion rate following neurotensin infusion at 3.6 pmol/kg*min. Amylase activity was significantly depressed during neurotensin infusions, while lipase (both pancreatic and carboxylester lipase) activity was significantly elevated. The ratio of amylase to lipase activity was especially depressed by neurotensin infusion at 10.8 pmol/kg*min. Insufficient secretory activity prevented a balanced statistical analysis of chymotrypsin activity, but from a pooled analysis, neurotensin had no effect on protease activity in the pancreatic juice. These results support our current research indicating that neurotensin may be a hormonal regulator of postprandial lipid digestion in chickens.  相似文献   

4.
The secretory response of hepatic bile and exocrine pancreas to gastrointestinal peptides has been studied in chronically cannulated sheep. Pancreatic juice flow and protein output were evoked dose dependently by intraportal injection of secretin, CCK-8, caerulein, VIP and neurotensin. However, biliary secretion was evoked by only secretin. Biliary and pancreatic exocrine secretions were enhanced by delivered gastric juice into the duodenum as followed by the increased plasma concentration of immunoreactive secretin (IRS). Results suggest that secretin is the major peptide that regulates pancreatic exocrine secretion and hepatic bile production in the sheep.  相似文献   

5.
Since nonparallel secretion of enzymes by the exocrine pancreas has been demonstrated with several experimental models, we were interested in verifying a recent claim that enzyme secretion remained strictly proportional (parallel) upon stimulation of the in vivo rabbit pancreas. Pancreatic juice was collected by extraduodenal cannulation of the pancreatic duct, in two different protocols. In the first protocol the administration of pentobarbital induces a mild anesthesia. Under this condition, amylase and chymotrypsin secretion remained parallel after cholecystokinin stimulation. In a second protocol, a deeper and constant anesthesia was attained with Fluothane resulting in a lower basal protein output than in the first protocol. Pancreatic secretion was collected under intravenous secretin perfusion (4.5 clinical units X kg-1 X h-1). After stabilization and basal collection periods, pancreatic secretion was stimulated with an i.v. bolus injection of either cholecystokinin (2 Ivy dog units/kg), caerulein (0.1 micrograms/kg), or carbachol (6 micrograms/kg). Upon stimulation of the pancreas, protein output increased an average of 30-fold and there was a concomitant 20-25% decrease in the ratio of the specific activities of amylase to chymotrypsin which resulted from a greater increase in the specific activity of chymotrypsin in pancreatic juice after stimulation of secretion. Thus, under appropriate conditions, nonparallel secretion of enzymes by the exocrine pancreas can be demonstrated in yet another experimental model. Furthermore, the proportion of amylase and chymotrypsin activities in pancreatic juice are once more shown to be dependent, up to a threshold, upon the rate of protein output by this exocrine gland.  相似文献   

6.
The effect of mucous bacilli on the excretory activity of pancreas in pigs has been investigated. The use of biomass at doses of 0.1, 0.2 and 0.3 g/kg stimulates to a different extent the pancreatic exocrine function in pigs: the pancreatic juice volume increases, on the average, by 17-20% and the secretion of amylolytic, proteolytic and lipolytic enzymes of the pancreatic juice becomes 1.6-2.2, 1.5-1.8 and 1.4-1.7 times higher, respectively. The increased functional activity of pancreas indicates the high reserve secretory potential of the pancreatic secretory apparatus. When brought into action, this apparatus favours more complete segregation and absorption of food nutrients.  相似文献   

7.
The effects of sodium oleate infused into either the duodenum or the terminal ileum on bile and pancreatic secretion were examined in the conscious rat. Rats were prepared with cannulae draining pure bile and pancreatic juice separately, and with an ileal and two duodenal cannulae. A 40 mM taurocholate solution containing 7 mg/ml bovine trypsin was infused into the duodenum throughout the experiment to replace diverted bile-pancreatic juice to maintain the normal regulation of pancreatic secretion. The intraduodenal infusion of sodium oleate significantly increased pancreatic juice flow, protein, and bicarbonate outputs, whereas it did not affect bile secretion. Intravenous infusion of proglumide (300 mg/kg/hr) did not inhibit pancreatic secretion stimulated by intraduodenal infusion of sodium oleate. An intravenous infusion of atropine (100 micrograms/kg/hr) attenuated protein and fluid secretions but not that of bicarbonate in response to intraduodenal oleate. In contrast, the intraileal infusion of oleate had no effect on pancreatic secretion, whereas it decreased bile flow, bicarbonate, and bile salt outputs. In conclusion, sodium oleate introduced in the duodenum stimulates pancreatic secretion but oleate in the terminal ileum inhibits bile secretion.  相似文献   

8.
We have previously demonstrated that proteins could stimulate pancreatic secretion independently of luminal bile-pancreatic juice (BPJ) in a BPJ-diverted rat. To determine whether luminal protease-independent pancreatic secretion occurs in normal rats with BPJ returned to the upper small intestine, we investigated the pancreatic secretory response to intraduodenal instillation of a casein hydrolysate or the synthetic trypsin inhibitor, FOY 305, at concentrations which could almost equally inhibit hydrolysis of the synthetic substrate for trypsin with the luminal content. FOY 305 at 10 micrograms/ml and casein hydrolysate solutions at both 100 and 200 mg/ml similarly inhibited approx. 80% of the tryptic activity in the luminal contents of the proximal small intestine. Intraduodenal administration of casein hydrolysate solutions (100 and 200 mg/ml) significantly increased pancreatic secretion in a dose-dependent manner. However, intraduodenal administration of FOY 305 (10 micrograms/ml) was ineffective for stimulating pancreatic secretion. These results demonstrate that dietary protein enhances pancreatic secretion independently of the masking of luminal trypsin activity in rats.  相似文献   

9.
The influence of adrenalectomy and hydrocortisone treatment on the exocrine pancreatic secretion has been studied in anaesthetized rats. In the adrenalectomized animals Na+ administered in the saline solution provided for drinking was able to maintain standard sodium levels in serum. In these animals an increase of Na+ secretion in pancreatic juice was observed. Furthermore, the osmotic effect created by the increase in Na+ would account for the increase in pancreatic flow. In these adrenalectomized rats, an increase in K+ output is observed, which can be explained by the high K+ concentrations in serum. Likewise adrenalectomy decreased pancreatic enzyme secretion and produced a loss in weight of the organ that is accounted for by a lack of glucocorticoids. Hydrocortisone administration did not affect neither the secretion nor the weight of the pancreas of the control rats but the hormone proved to be effective in adrenalectomized rats producing a pancreatic secretion close to normal, balancing the secretory rate of water, Na+ and K+, completely restoring total protein secretion and the weight of the pancreas but amylase secretion in part only. It is therefore concluded that the weight of the pancreas and its exocrine secretion are clearly influenced by adrenalectomy and by substitution therapy with hydrocortisone. The administration of this hormone (25 mg.kg-1.day-1 along 6 days) did not affect intact animals.  相似文献   

10.
The influence of venom (TSV) from the Brazilian scorpion, Tityus serrulatus, on exocrine pancreatic secretion was studied in relation to known cholinergic and peptidergic secretagogue activity. Pulse-labeling followed by chase incubation in the presence of secretagogues and various pharmacological agents revealed unique physiological characteristics of TSV in guinea pig pancreatic lobules. Exocytotic discharge of newly synthesized 3H-labeled proteins during a 3-h chase incubation showed a marked increase over basal discharge levels using logarithmic TSV doses of 0.10 to 100 micrograms/ml. This stimulation was comparable to maximal values elicited by carbachol, cholecystokinin-octapeptide (CCK-8) or caerulein and discharge kinetics were similar. TSV-mediated secretion was ATP and calcium dependent and partially inhibited by atropine. Only tetrodotoxin completely blocked TSV stimulation of newly synthesized protein discharge. Both botulinum toxin and curare had no effect on venom stimulation, indicating that TSV interaction with exocrine pancreatic cells occurs postsynaptically. Verapamil, a calcium channel antagonist, produced a moderate inhibition of TSV stimulation. When antagonists to the cholecystokinin (CCK) receptor were incubated with TSV, no change in secretory activity occurred. Therefore, TSV does not bind to CCK receptors and probably operates through its own receptor which may be an ion channel. Additionally, morphological studies in vitro revealed a high level of pancreatic secretory activity as evidenced by dense secretory acinar luminal content, reduction in zymogen granule (ZG) population, and development of exocytotic images.  相似文献   

11.
1. The secretory responses of hepatic bile and exocrine pancreas by intraduodenal infusion of propionate (PA), 3Cl-PA, 2Cl-PA, 3Br-PA and 2Br-PA solutions were examined in anesthetized piglets. 2. Pancreatic juice and protein secretions were enhanced by infusion of PA and PA analogue solutions of pH 2.0 following increase of plasma secretin level but not pH 7.0. The order of response time was as follows: 3Br-PA greater than 2Cl-PA greater than 2Br-PA greater than 3Cl-PA greater than PA. 3. The response of bile flow depended on endogenous secretin and showed almost the same pattern as that of pancreatic juice secretion. 4. The results suggested that pancreatic exocrine secretion via endogenous secretin was not always dependent on the dissociation constant of weak acids.  相似文献   

12.
The effect of luminal gastrin on the secretion of pancreatic juice was studied in seven conscious preruminant calves employing luminal infusions of gastrin and cholecystokinin (CCK)-9 and pharmacological CCK1 and CCK2 receptor blocks with antagonists. The study was performed in the preprandial and prandial states. Pharmacological blocking of the CCK2 receptor, like that of the CCK1 receptor, resulted in reduction of pancreatic postprandial secretion and increased the duration of the prandial pattern of duodenal electrical activity. Exogenous luminal gastrin, like luminal CCK-9, enhanced the secretion of pancreatic juice proteins, though the overall effect of gastrin was weaker than that of CCK-9. The effect was inhibited by infusion of CCK2 but also by CCK1 receptor antagonist. In conclusion, duodenal luminal gastrin can stimulate exocrine pancreatic secretion by a mechanism that depends on CCK2 receptors in calves. Involvement of the CCK1 receptor in this mechanism needs further investigation. Prandial pancreatic secretory and duodenal motility cycles can be regulated by endogenous gastrin release.  相似文献   

13.
The effect of luminal ghrelin on pancreatic enzyme secretion in the rat   总被引:1,自引:0,他引:1  
Ghrelin, a 28-amino-acid peptide produced predominantly by oxyntic mucosa has been reported to affect the pancreatic exocrine function but the mechanism of its secretory action is not clear. The effects of intraduodenal (i.d.) infusion of ghrelin on pancreatic amylase outputs under basal conditions and following the stimulation of pancreatic secretion with diversion of pancreato-biliary juice (DPBJ) as well as the role of vagal nerve, sensory fibers and CCK in this process were determined. Ghrelin given into the duodenum of healthy rats at doses of 1.0 or 10.0 microg/kg increased pancreatic amylase outputs under basal conditions or following the stimulation of pancreatic secretion with DPBJ. Bilateral vagotomy as well as capsaicin deactivation of sensory fibers completely abolished all stimulatory effects of luminal ghrelin on pancreatic exocrine function. Pretreatment with lorglumide, a CCK(1) receptor blocker, reversed the stimulation of amylase release produced by intraduodenal application of ghrelin. Intraduodenal ghrelin at doses of 1.0 or 10.0 microg/kg increased plasma concentrations of CCK and ghrelin. In conclusion, ghrelin given into the duodenum stimulates pancreatic enzyme secretion. Activation of vagal reflexes and CCK release as well as central mechanisms could be implicated in the stimulatory effect of luminal ghrelin on the pancreatic exocrine functions.  相似文献   

14.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

15.
The exocrine pancreas releases secretory products essential for nutrient assimilation. In addition to digestive enzymes, the release of lipoprotein-like particles containing the membrane trafficking protein caveolin-1 from isolated pancreatic explants has been reported. The present study examined: (1) if gastrointestinal hormones induce the apical secretion of phospholipid in vivo and (2) a potential association of caveolin-1 and the lipid-soluble vitamin K analog menaquinone-4 (MK-4) with these structures. Analysis of isolated acinar cells, purified zymogen granules, and pancreatic juice collected in vivo indicated the presence a caveolin-1 immunoreactive protein that was acutely released in response hormone stimulation. Chloroform-extracted fractions of pancreatic juice also contained high concentrations of MK-4 that was secreted in parallel to protein and phospholipid. The presence of caveolin-1 and MK-4 in the phospholipid fraction of pancreatic juice places these molecules in the secretory pathway of exocrine cells and suggests a physiological role in digestive enzyme synthesis and/or processing.  相似文献   

16.
1. The secretory responses of bile and exocrine pancreas were studied in various aged piglets. 2. At 3 days old the bile and exocrine pancreas could be reacted by various stimulations. The response by secretin was the same as that in the 28 day old. 3. Protein concentration in pancreatic juice by CCK-8 increased steeply after 6 days old, but the ratio of amylase to protein rose abruptly at 28 days old. 4. These findings indicate that (1) the secretory capacity of bile and pancreatic juice developed predominantly at an early period of postnatal life; (2) the formation of bile acids and pancreatic digestive enzymes developed gradually during the suckling period.  相似文献   

17.
A CaCO3-crystal-growth inhibitor was isolated from human pancreatic stones by using EDTA demineralization, followed by DEAE-Trisacryl chromatography. The isolated inhibitor was found to be a phosphoglycoprotein with Mr 14017 and having an unusual chemical composition. It is characterized by a high (42%) acidic amino acid content, but lacks methionine and gamma-carboxyglutamic acid. The protein contains 2.65 mol of P/mol of protein, as phosphoserine (2 mol) and phosphothreonine (0.5 mol). Isoelectric focusing of the protein yields one major band corresponding to an isoelectric point of 4.2. Immunochemical quantification of the crystal-growth inhibitor in pure pancreatic juice reveals that it constitutes 14% of the normal exocrine secretion. Our findings demonstrate that this is a novel secretory protein, which has no enzymic activity and which maintains pancreatic juice in a supersaturated state with respect to CaCO3.  相似文献   

18.
The effect of newly discovered pancreastatin on pancreatic secretion stimulated by a diversion of bile-pancreatic juice (BPJ) from the intestine was examined in the conscious rat. Exogenous pancreastatin infusion (20, 100 and 200 pmol/kg.h) inhibited pancreatic protein and fluid outputs during BPJ diversion in a dose-dependent manner. Pancreastatin did not affect plasma cholecystokinin (CCK) concentrations. Pancreastatin (100 pmol/kg.h) inhibited CCK-stimulated pancreatic secretion, but did not inhibit secretin-stimulated pancreatic secretion. Pancreastatin alone, however, did not affect basal pancreatic secretion. In contrast, pancreastatin (10(-10)-10(-7)M) did not suppress CCK-stimulated amylase release from isolated rat pancreatic acini. These results indicate that pancreastatin has an inhibitory action on exocrine function of the pancreas. This action may not be mediated by direct mechanisms and nor via an inhibition of CCK release. It is suggested that pancreastatin may play a role in the regulation of the intestinal phase of exocrine pancreatic secretion.  相似文献   

19.
A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues--pancreatic, lacrimal, and submandibular--from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pI and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin-sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.  相似文献   

20.
Increasing evidence supports the role of atrial natriuretic factor (ANF) in the modulation of gastrointestinal physiology. The effect of ANF on exocrine pancreatic secretion and the possible receptors and pathways involved were studied in vivo. Anesthetized rats were prepared with pancreatic duct cannulation, pyloric ligation, and bile diversion into the duodenum. ANF dose-dependently increased pancreatic secretion of fluid and proteins and enhanced secretin and CCK-evoked response. ANF decreased chloride secretion and increased the pH of the pancreatic juice. Neither cholinergic nor adrenergic blockade affected ANF-stimulated pancreatic secretion. Furthermore, ANF response was not mediated by the release of nitric oxide. ANF-evoked protein secretion was not inhibited by truncal vagotomy, atropine, or Nomega-nitro-l-arginine methyl ester administration. The selective natriuretic peptide receptor-C (NPR-C) receptor agonist cANP-(4-23) mimicked ANF response in a dose-dependent fashion. When the intracellular signaling coupled to NPR-C receptors was investigated in isolated pancreatic acini, results showed that ANF did not modify basal or forskolin-evoked cAMP formation, but it dose-dependently enhanced phosphoinositide hydrolysis, which was blocked by the selective PLC inhibitor U-73122. ANF stimulated exocrine pancreatic secretion in the rat, and its effect was not mediated by nitric oxide or parasympathetic or sympathetic activity. Furthermore, CCK and secretin appear not to be involved in ANF response. Present findings support that ANF exerts a stimulatory effect on pancreatic exocrine secretion mediated by NPR-C receptors coupled to the phosphoinositide pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号