首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
G R Flentke  P A Frey 《Biochemistry》1990,29(9):2430-2436
UDPgalactose 4-epimerase from Escherichia coli is rapidly inactivated by the compounds uridine 5'-diphosphate chloroacetol (UDC) and uridine 5'-diphosphate bromoacetol (UDB). Both UDC and UDB inactivate the enzyme in neutral solution concomitant with the appearance of chromophores absorbing maximally at 325 and 328 nm, respectively. The reaction of UDC with the enzyme follows saturation kinetics characterized by a KD of 0.110 mM and kinact of 0.84 min-1 at pH 8.5 and ionic strength 0.2 M. The inactivation by UDC is competitively inhibited by competitive inhibitors of UDPgalactose 4-epimerase, and it is accompanied by the tight but noncovalent binding of UDC to the enzyme in a stoichiometry of 1 mol of UDC/mol of enzyme dimer, corresponding to 1 mol of UDC/mol of enzyme-bound NAD+. The inactivation of epimerase by uridine 5'-diphosphate [2H2]chloroacetol proceeds with a primary kinetic isotope effect (kH/kD) of 1.4. The inactivation mechanism is proposed to involve a minimum of three steps: (a) reversible binding of UDC to the active site of UDPgalactose 4-epimerase; (b) enolization of the chloroacetol moiety of enzyme-bound UDC, catalyzed by an enzymic general base at the active site; (c) alkylation of the nicotinamide ring of NAD+ at the active site by the chloroacetol enolate. The resulting adduct between UDC and NAD+ is proposed to be the chromophore with lambda max at 325 nm. The enzymic general base required to facilitate proton transfer in redox catalysis by this enzyme may be the general base that facilitates enolization of the chloroacetol moiety of UDC in the inactivation reaction.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Kinetic and developmental characteristics of rat intestinal UDP-galactose 4-epimerase activity have been examined. The enzyme in the adult rat had a Vmax. value 2–3 times higher than that of the newborn animal, but the Km values for the enzyme in the newborn and adult rat were the same (0.17mm). No differences in epimerase activity were found along the length of the jejuno-ileum of adult animals, but higher activity was detected in the lower portion of the villi and crypts. The specific activity of the enzyme in the newborn rat began to rise at about 17 days of age, reaching a peak at 29 days of age, and then became constant at adult values. Total epimerase activity in the newborn rat liver was 2–5 times higher than the total activity in the intestine, and total epimerase activity in the adult intestine was 3–4 times higher than the total activity in the liver. Cortisone injection did not enhance the increase of epimerase normally seen during development, but caused a decrease in activity of this enzyme in the jejunum in rats up to 17 days of age. After 17 days, cortisone treatment had no effect on epimerase activity.  相似文献   

14.
15.
16.
17.
1. The combined effect of the sugar nucleotides UDP-D-fucose or UDP-D-glucuronic acid together with the free sugars D-fucose or L-arabinose is the inactivation of the Escherichia coli enzyme UDP-galactose 4-epimerase (EC 5.1.3.2). The sugar nucleotide or the free sugar alone or the sugar nucleotide plus 5'-Ump do not inactivate the enzyme. 2. The inactivation of the enzyme by its substrate UDP-D-glucose was not affected by the presence of free sugar. 3. In all cases the inactivation observed follows pseudo-first-order kinetics. 4. A comparison of various sugar nucleotides indicates that the hydroxymethyl group at position 6 of the sugar moiety of the natural substrates is important for substrate binding.  相似文献   

18.
In a biosynthetic study of the spore coat of Bacillus megaterium ATCC 12872 spore with galactosamine phosphate as a major component of the outer coat, high-performance liquid chromatography (HPLC) and enzyme immunoassay were applied for the measurement of UDP-N-acetylglucosamine-4-epimerase [EC 5.1.3.7] activity and the enzyme protein concentration, respectively. The new HPLC system using an ion-pair (or anion-exchange) column allowed us to determine successfully the enzyme activity and its application, proving that the specific activity of the enzyme in the cells increased at the later stage of sporulation. This increase in activity was parallel to the induction of enzyme protein synthesis, which was detected by sandwich enzyme immunoassay using antiserum to the purified enzyme. These results suggested that the regulation of this enzyme is at the genetic level and it plays an important role in the outer coat synthesis in the later sporulation stage of B. megaterium.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号