首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lung cancer is the leading cause of death from cancer. Mucins are glycoproteins with high molecular weight, responsible for cell growth, differentiation, and signaling, and were proposed to be correlated with gene heterogeneity of lung cancer. Here, we report aberrant expression of mucin genes and tumor necrosis factor receptors in lung adenocarcinoma tissues compared with normal tissues in GEO datasets. Mucin-1 (MUC1) gene was selected and considered as the target gene; furthermore, the expression pattern of adenocarcinomic cells (A549, H1650, or H1299 cells) was validated under the stimulation with tumor necrosis factor-alpha (TNFα) or dexamethasone (DEX), separately. MUC1 gene interference was done to A549 cells to show its role in sensitivity of lung cancer cells to TNFα and DEX. Results of our experiments indicate that MUC1 may regulate the influence of inflammatory mediators in effects of glucocorticoids (GCs), as a regulatory target to improve therapeutics. It shows the potential effect of MUC1 and GCs in lung adenocarcinoma (LADC), which may help in LADC treatment in the future.  相似文献   

2.
Interactions of types I, II, and III protein kinase C (PKC) with phospholipids were investigated by following the changes in protein kinase activity and phorbol ester binding. The acidic phospholipids such as phosphatidylserine (PS), phosphatidic acid, phosphatidyl-glycerol, and cardiolipin, which are activators of PKC in the assay of protein phosphorylation, could differentially inactivate PKC I, II, and III during preincubation in the absence of divalent cation. The phospholipid-induced inactivation of PKC was concentration and time dependent and only affected the kinase activity without influencing phorbol ester binding. PKC I was the most susceptible to the phospholipid-induced inactivation, and PKC III was the least. The IC50 values of PS for PKC I, II, and III were 5, 45, and greater than 120 microM, respectively. Addition of divalent cation such as Ca2+ or Mg2+ suppressed the phospholipid-induced inactivation of PKC. In the absence of divalent cation, PKC I, II, and III all formed complexes with PS vesicles, although to a slightly different degree, as analyzed by molecule sieve chromatography. [3H]Phorbol 12,13-dibutyrate binding for PKC I, II, and III was recovered after chromatography; however, the kinase activities of all these enzymes were greatly reduced. In the presence of Ca2+, all three PKCs formed complexes with PS vesicles, and both the kinase and phorbol ester-binding activities of PKC II and III were recovered following chromatography. Under the same conditions, the phorbol ester-binding activity of PKC I was also recovered, but the kinase activity was not. The phospholipid-induced inactivation of PKC apparently results from a direct interaction of phospholipid with the catalytic domain of PKC; this interaction can be suppressed by divalent cations. In the presence of divalent cations, PS interacted preferentially with the regulatory domain of PKC and resulted in the activation of the kinase.  相似文献   

3.
Members of protein kinase C (PKC) family have been widely implicated in the regulation of cell proliferation, differentiation and survival. Increased protein C activity in malignant breast tissue and in most aggressive breast cancer cell lines suggests possible role of PKC in the development and progression of breast cancer. PKC may be therefore a target for breast cancer treatment. In our study we attempted to investigate the effect of: phorbol ester (PMA)-PKC activator, and bisindolylmaleimide II (GF II), a highly selective PKC inhibitor, on the proliferation as well as induction of apoptosis and necrosis in breast cancer cell line MDA-MB-231. Our results provide evidence for multidirectional effects of PKC on the proliferation of this type of breast cancer cells. The effects of both compounds were different after short time of exposition (1-3 h). PMA induced proliferation, while GF II showed an opposite effect. After 24 h, however, both compounds exhibited relatively high inhibitory effect on the proliferation and proved to be effective in induction of necrosis and apoptosis.  相似文献   

4.
5.
6.
7.
Human umbilical vein endothelial cells (HUVEC), like most normal cells, are resistant to tumor necrosis factor-alpha (TNF)-induced apoptosis in spite of TNF activating sphingomyelinase and generating ceramide, a known inducer of apoptosis. Here we report that TNF activates another key enzyme, sphingosine kinase (SphK), in the sphingomyelin metabolic pathway resulting in production of sphingosine-1-phosphate (S1P) and that S1P is a potent antagonist of TNF-mediated apoptosis. The TNF-induced SphK activation is independent of sphingomyelinase and ceramidase activities, suggesting that TNF affects this enzyme directly other than through a mass effect on sphingomyelin degradation. In contrast to normal HUVEC, in a spontaneously transformed endothelial cell line (C11) TNF stimulation failed to activate SphK and induced apoptosis as characterized by morphological and biochemical criteria. Addition of exogenous S1P or increasing endogenous S1P by phorbol ester markedly protected C11 cell line from TNF-induced apoptosis. Conversely, N, N-dimethylsphingosine, an inhibitor of SphK, profoundly sensitized normal HUVEC to killing by TNF. Thus, we demonstrate that the activation of SphK by TNF is an important signaling for protection from the apoptotic effect of TNF in endothelial cells.  相似文献   

8.
Most cell lines are resistant to tumor necrosis factor-alpha (TNF-alpha) cytotoxicity and require cotreatment of TNF-alpha with cycloheximide (Chx) to undergo apoptosis. Recently, the serine/threonine protein kinase, protein kinase B has been demonstrated to protect cells from apoptosis induced by TNF-alpha. In this study, we have shown that the human hepatocellular carcinoma cell line, SMMC-7721, was insensitive to TNF-alpha cytotoxicity and underwent apoptosis quickly in the presence of TNF-alpha and Chx. PKB levels decreased during TNF-alpha/Chx-induced apoptosis. No significant change in PKB levels was found in the presence of TNF-alpha or Chx alone. It seemed that the level of PKB closely correlated with apoptosis. The protein level of focal adhesion kinase (FAK) was reduced by 66% by transfecting FAK antisense cDNA recombinant vector into SMMC-7721 cells. We determined the apoptosis-induced effect of TNF-alpha/Chx on the FAK antisense cDNA transfectant cells. The results indicated that the percentage of apoptotic cells was enhanced at lower doses of TNF-alpha (10, 20 or 50 U.mL(-1)) and decreased at a higher dose of TNF-alpha (1000 U.mL(-1)) in the transfected cells as compared to the control. Correspondingly, in the FAK antisense cDNA transfectant cells treated with lower doses of TNF-alpha in presence of 10 microg.mL(-1) Chx, the PKB level was lower, but in the FAK antisense cDNA transfectants treated with higher doses of TNF-alpha in presence of 10 microg.mL(-1) Chx, the PKB level was higher. In response to TNF-alpha alone, FAK antisense cDNA transfectants showed a decrease in the level of PKB. However, in the case of TNF-alpha cotreated with wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase (PtdIns3K), the FAK antisense cDNA transfectants produced significantly less amounts of PKB than the control. It seemed that FAK could stimulate PKB levels through a pathway not involving PtdIns3K. These results suggest that FAK can affect the sensitivity of SMMC-7721 cells to TNF-alpha/Chx-induced apoptosis in a biphasic manner by regulating PKB levels.  相似文献   

9.
Several forms of protein kinase C with molecular masses of 74-, 77-, and 80-kDa were detected in subcellular fractions of human breast cancer MDA-MB-231 cells which express the alpha-type protein kinase C. Several lines of evidence indicated that the 74-kDa is the precursor of the 77- and 80-kDa protein kinase C forms. (i) Pulse-labeling experiments revealed that protein kinase C is synthesized on membranes as a 74-kDa protein that can be chased into the 77- and the 80-kDa protein kinase C forms. (ii) The primary translation product of protein kinase C displayed an apparent molecular size of 74-kDa as determined by in vitro translation of poly(A)+ RNA from MDA-MB-231 cells. (iii) Incubation with serine/threonine-specific protein phosphatases (potato acid phosphatase and phosphatase 1 or 2A) resulted in the complete dephosphorylation of the 77-kDa to the 74-kDa protein kinase C form. Protein kinase C appears to be synthesized in membranes as an unphosphorylated and presumably inactive 74-kDa form that is converted into the active 77- and 80-kDa protein kinase C by post-translational modification involving at least two phosphorylation steps. The first phosphorylation is probably achieved by a specific, yet unidentified, "protein kinase C kinase" since the 74-kDa protein kinase C species did not undergo autophosphorylation and was neither a substrate for the purified protein kinase C, S6 kinase, phosphorylase kinase, casein kinase II, nor for the catalytic subunit of cAMP-dependent protein kinase. Except for phosphorylase kinase and the catalytic subunit of the cAMP-dependent protein kinase, phosphorylation of the 77-kDa protein kinase C form with purified protein kinase C (autophosphorylation), S6 kinase or casein kinase II shifted the molecular mass of the 77-kDa protein kinase C to 80-kDa. Prolonged exposure of MDA-MB-231 cells to phorbol 12-myristate 13-acetate not only leads to a complete down-regulation of protein kinase C activity but also to an accumulation of 74-kDa protein kinase C due to a retarded conversion of the 74-kDa into the 77- and 80-kDa protein kinase C forms in these cells. Our data indicate that tumor promoters additionally interfere with the posttranslational processing that converts the 74-kDa protein kinase C precursor into the 77- and 80-kDa forms of the enzyme.  相似文献   

10.
11.
Affinity-isolated progesterone receptor (PR) from human breast cancer cells incubated with [32P]orthophosphate was shown to exist as a phosphoprotein. Exposure of the cells to 10 nM phorbol-12-myristate-13-acetate (PMA) for 10 min increased by 30-40% the amount of label incorporated into the 116-kDa receptor protein. A two-fold increase in the total number of steroid binding sites was also observed in cells receiving PMA treatment. This apparent unmasking of PR binding sites by phosphorylation probably involved conformational changes to existing receptor complexes and affected the eventual state of receptor dissociation or transformation. An increase primarily in the 8 S sedimenting molecular species was observed but PMA treatment also led to the appearance of a smaller, 2-3 S form of receptor (10% of total) that was not present in control samples. When cytosols were partially transformed in vitro by ATP and salt, all molecular species of receptor (8, 4, and 2-3 S) from the PMA-treated samples consistently migrated faster in sucrose gradients. The larger amount of 2-3 S receptor in PMA-treated samples disappeared when ATP, but not salt, was the transforming agent. These results suggest a major role for phosphorylating reactions in the receptor-mediated action of steroids by regulating hormone-binding and influencing receptor transformation. Tumor promoters such as the phorbol esters may act by artificially increasing the level of processing of steroid receptor.  相似文献   

12.
Recycling of tumor necrosis factor-alpha receptor in MCF-7 cells   总被引:1,自引:0,他引:1  
Kinetics of regulation of membrane receptors for tumor necrosis factor-alpha (TNF) in human breast adenocarcinoma MCF-7 cells was investigated. When MCF-7 cells were incubated with radioiodinated human recombinant TNF, they bound TNF specifically and accumulated it intracellularly. Preincubation of cells with native TNF up to 1 x 10(-9) M for 12 h stimulated specific binding of TNF, indicating that concentrations of membrane receptors for TNF were regulated by the ligand. Accumulation of radioactivity in cells incubated with [125I]TNF proceeded at a constant rate for up to 24 h. Kinetics of binding and internalization of TNF were similar in the presence and absence of protein synthesis for at least 1 h, suggesting that the TNF receptor was either replenished from an intracellular pool of receptors or was recycled (reutilized) during the course of TNF internalization. Data were analyzed kinetically by fitting equations of compartmental models of ligand-cell interactions with and without the term for receptor recycling. Fits were obtained only for the model with receptor recycling; absence of the term for receptor recycling resulted in physically impossible best-fit parameter values. Analysis of the best-fit parameters indicated that both internalization and recycling of the receptor were stimulated by the ligand.  相似文献   

13.
We conjugated tumor necrosis factor-alpha (TNF-alpha) with the synthetic polymeric modifier polyvinyl pyrrolidone (PVP) to facilitate its clinical use for anti-tumor therapy. TNF-alpha was chemically conjugated with the terminal carboxyl-bearing PVP at one end of its main chain, which was radically polymerized via the formation of an amide bond between the lysine amino groups of TNF-alpha and carboxyl group of PVP. In vitro specific bioactivity of PVP-conjugated TNF-alpha (PVP-TNF-alpha) relative to that of native TNF-alpha gradually decreased with increases in the degree of PVP attachment. In contrast, PVP-TNF-alpha in which 40% of TNF-alpha lysine residues were coupled with PVP (MPVP-TNF-alpha) exhibited the highest anti-tumor activity among the conjugated derivatives examined. MPVP-TNF-alpha had more than 200-fold higher anti-tumor efficacy than native TNF-alpha, and the anti-tumor activity of MPVP- TNF-alpha was more than 5-fold stronger than that MPEG- TNF-alpha which had the highest anti-tumor activity among PEG-conjugated TNF-alphas examined. Additionally, a high dose of native TNF-alpha induced toxic side-effects such as body weight reduction, piloerection and tissue inflammation, while no side effects were observed following i.v. administration of MPVP-TNF-alpha. The plasma half-life of MPVP-TNF-alpha (360 min) was about 80 and 3-fold longer than those of native TNF-alpha (4.6 min) and MPEG-TNF-alpha (122 min), respectively. These results suggested that PVP is a useful polymeric modifier for increasing the anti-tumor activity of PVP.  相似文献   

14.
15.
16.
Exposure of MCF-7 human breast cancer cells to the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to the inhibition of cell proliferation. We investigate here the short-term effects of TPA on subcellular distribution of protein kinase C, and on protein phosphorylation in cultured MCF-7 cells. We report a rapid and dramatic decrease in cytosolic protein kinase C activity after TPA treatment. Only 30% of the enzymatic activity lost in the cytosol was recovered in the particulate fraction. These data suggest that subcellular translocation of protein kinase C is accompanied by a rapid down-regulation of the enzyme (70%). Furthermore, TPA and other protein kinase C activators rapidly induce the phosphorylation of a 28 kDa protein in intact MCF-7 cells. Phorbol esters devoid of tumor-promoting activity are ineffective both for inducing these early biochemical events and for inhibiting cell proliferation.  相似文献   

17.
Cytotoxic mechanism of tumor necrosis factor-alpha   总被引:24,自引:0,他引:24  
J W Larrick  S C Wright 《FASEB journal》1990,4(14):3215-3223
Many intracellular pathways are set in motion by the binding of tumor necrosis factor (TNF) to its cell surface receptor. Major steps in the TNF-mediated cytotoxicity cascade include G protein-coupled activation of phospholipases, generation of free radicals, and damage to nuclear DNA by endonucleases. Ultimately the cells undergo apoptosis and die. Understanding how TNF initiates these pathways will facilitate the rational design of pharmaceuticals that can attenuate or potentiate the action of this important cytokine.  相似文献   

18.
Diacylglycerol generated from inositolphospholipid hydrolysis and tumor-promoting phorbol esters stimulate protein kinase C. The synthetic diacylglycerol 1-oleoyl-2-acetyl-rac-glycerol and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) have been used in pure rat peritoneal mast cells. Both caused histamine release associated with exocytosis. The release by the stimulation of protein kinase C alone in the absence of secretagogues was slow although up to 50% of the histamine content was released by TPA in 120 min. Remarkable potentiation of histamine release was observed when the mast cells were preincubated with TPA before exposure to the calcium ionophore A23187. The potentiation of histamine release corresponded with an intensification of exocytosis. The potentiation is consistent with a participation of protein kinase C in the secretory process. An inhibitory effect due to protein kinase C activity was also demonstrated using TPA and mast cells from sensitized rats. When sensitized mast cells preincubated with 50 nM TPA for 5 min were exposed to the antigen, the histamine release was substantially reduced compared to the sum of the release by the antigen and TPA or by the antigen alone. There was a corresponding decrease in exocytosis. The inhibition of exocytosis and histamine release seems to reflect a regulatory function of protein kinase C for the termination of the response, as demonstrated in other types of cells apparently acting through an inhibition of inositolphospholipid hydrolysis.  相似文献   

19.
Differential down-regulation of protein kinase C subspecies in KM3 cells   总被引:13,自引:0,他引:13  
The down-regulation of protein kinase C (PKC) subspecies in KM3 cells (a pre-B, pre-T cell line) has been examined. The PKC from KM3 cells was resolved into two subspecies, type II (mainly beta II) and type III (alpha), upon hydroxyapatite column chromatography. Biochemical and immunocytochemical analysis revealed that, when these cells were treated with 12-O-tetradecanoylphorbol 13-acetate (TPA), the time course of down-regulation of the PKC subspecies was different; type II PKC was translocated and depleted from the cell more quickly than type III enzyme. The results suggest that each PKC subspecies plays a different role in the cellular response to TPA and probably to other external stimuli.  相似文献   

20.
Neutrophils up-regulate beta2 integrins like CD11b/CD18 in response to lipopolysaccharide (LPS). Up-regulation of beta2 integrins causes neutrophils to adhere to surfaces, and to release superoxide anion (O2-). When neutrophils are exposed to LPS plus plasma under conditions not favorable for adherence (absence of Mg2+), the cells do not spontaneously release O2-, but instead they are primed for enhanced release of O2- after subsequent triggering by fMLP. In the presence of Mg2+, neutrophils adhere in response to LPS but fMLP-triggered O2- release by LPS-primed neutrophils is diminished. To understand why adherence interferes with the response of neutrophils to N-formyl-methionyl-leucyl-phenylalanine (fMLP), beta2 integrins were cross-linked by mouse monoclonal antibodies that had been immobilized by surface-bound anti-mouse antibody. When unprimed neutrophils were trapped on the surface by these cross-linked monoclonal antibodies, O2- release was triggered, and priming by LPS for fMLP-triggered O2- release was diminished, indicating that this cross-linking of beta2 integrins mimicked adherence. Alkaline phosphatase is up-regulated by LPS or tumor necrosis factor-alpha, and this response was also diminished by the cross-linking antibodies. The diminished alkaline phosphatase up-regulation was reversed by genistein, a general inhibitor of tyrosine kinases, and by piceatannol, an inhibitor for Syk kinase. Piceatannol also inhibited the phosphorylation of Syk caused by cross-linking of beta2 integrins. These results suggested that adherence-induced triggering and Syk kinase activation might be responsible for the diminished response of LPS-primed neutrophils to fMLP when neutrophils were adherent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号