首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tissue inhibitor of metalloproteinase-2 (TIMP-2) is an endogenous and bi-functional inhibitor of angiogenesis. TIMP-2 is expressed in an insoluble form in Escherichia coli and secreted at a very low level from yeast. Here, we report on a high level of secretion of TIMP-2 fused with human serum albumin (HSA) from the yeast Saccharomyces cerevisiae. The secreted HSA–TIMP-2 fusion protein (87 kDa) was purified to greater than 95% homogeneity. The HSA–TIMP-2 protein inhibited approximately 81% of tube formation of human umbilical vein endothelial cells (HUVECs) when studied at a concentration of 187 μM. The systemic administration of HSA–TIMP-2 at 40 mg/kg to the C57B1/6 mouse inhibited the growth of B16BL6 tumors. Furthermore, a combination treatment of HSA–TIMP-2 with 5-fluorouracil (50 mg/kg) showed significant effects on tumor growth in this model. The high level of secretion of the biologically active angiogenesis inhibitor from S. cerevisiae should facilitate fundamental research and application studies of HSA–TIMP-2, as an attractive candidate for therapeutic agents treating angiogenesis-related diseases.  相似文献   

2.
Invertase liberation from Saccharomyces cerevisiae was detected after application of series of rectangular millisecond electric pulses. Maximal yield (60% from the activity in crude extract) was achieved within 8 h after pulsation. As shown by staining SDS-PAGE for invertase activity, the main part of liberated enzyme is a high molecular weight periplasmic invertase.  相似文献   

3.
4.
The SUC2 gene of Saccharomyces cerevisiae encodes two differently regulated mRNAs (1.8 and 1.9 kilobases) that differ at their 5' ends. The larger RNA encodes a secreted, glycosylated form of invertase and the smaller RNA encodes an intracellular, nonglycosylated form. We have determined the nucleotide sequence of the amino-terminal coding region of the SUC2 gene and its upstream flanking region and have mapped the 5' ends of the SUC2 mRNAs relative to the DNA sequence. The 1.9-kilobase RNA contains a signal peptide coding sequence and presumably encodes a precursor to secreted invertase. The 1.8-kilobase RNA does not include the complete coding sequence for the signal peptide. The nucleotide sequence data prove that SUC2 is a structural gene for invertase, and translation of the coding information provides the complete amino acid sequence of an S. cerevisiae signal peptide.  相似文献   

5.
6.
There has been a recent resurgence of interest in the post-translational modification of serine and threonine hydroxyl groups by glycosylation, because the resulting O-linked oligosaccharide chains tend to be clustered over short stretches of peptide and hence they can present multivalent carbohydrate antigenic or functional determinants for antibody recognition, mammalian cell adhesion and microorganism binding. Co-operativity can greatly increase the affinity of interactions with antibodies or carbohydrate binding proteins. Thus, in addition to their known importance in bearing tumour associated antigens in the gastrointestinal and respiratory tracts, glycoproteins with O-linked chains have been implicated as ligands or co-receptors for selectins (mammalian carbohydrate binding proteins). Microorganisms may have adopted similar mechanisms for interactions with mammalian cells in infection, by having relatively low affinity ligands (adhesins) for carbohydrate binding, which may bind with higher affinity due to the multivalency of the host ligand and which are complemented by other virulence factors such as interactions with integrin-type molecules. In addition to specific adhesion signals from O-linked carbohydrate chains, multivalent O-glycosylation is involved in determining protein conformation and forming conjugate oligosaccharide-protein antigenic, and possible functional determinants.  相似文献   

7.
Subunit structure of external invertase from Saccharomyces cerevisiae.   总被引:16,自引:0,他引:16  
Because 50% of the mass of the external invertase of Saccharomyces cerevisiae consists of carbohydrate, it has been extremely difficult to obtain an accurate molecular weight of this enzyme by centrifugal or electrophoretic techniques. However, on removing almost all of the oligosaccharide chains of this enzyme with the endo-beta-N-acetyl-glucosaminidase H from Streptomyces plicatus, it has been possible to show that carbohydrate-free invertase is composed of two 60,000-dalton subunits. Terminal sequence analysis with carboxypeptidases A, B, and Y provided strong evidence that the subunits are identical.  相似文献   

8.
Summary Repair of methylated bases in Saccharomyces cerevisiae was measured by two methods: in vitro in cell extracts, and in vivo, by determining the loss of methylated bases from yeast DNA after treatment of stationary cultures with [3H]-N-methyl-N-nitro-N-nitrosoguanidine. Whereas no repair activity could be detected by the in vitro method, the methylated bases were removed in vivo very efficiently. These contradictory results of in vitro and in vivo repair measurements suggest that either the repair enzymes of yeast are sufficiently different from those of bacteria and mammalian cells that they are not active in the in vitro assay, or that methylated bases are repaired in yeast by a different pathway.  相似文献   

9.
Summary We have investigated the effects of UV irradiation of Saccharomyces cerevisiae in order to distinguish whether UV-induced recombination results from the induction of enzymes required for homologous recombination, of the production of substrate sites for recombination containing regions of DNA damage. We utilized split-dose experiments to investigate the induction of proteins required for survival, gene conversion, and mutation in a diploid strain of S. cerevisiae. We demonstrate that inducing doses of UV irradiation followed by a 6 h period of incubation render the cells resistant to challenge doses of UV irradiation. The effects of inducing and challenge doses of UV irradiation upon interchromosomal gene conversion and mutation are strictly additive. Using the yeast URA3 gene cloned in non-replicating single- and double-stranded plasmid vectors that integrate into chromosomal genes upon transformation, we show that UV irradiation of haploid yeast cells and homologous plasmid DNA sequences each stimulate homologous recombination approximately two-fold, and that these effects are additive. Non-specific DNA damage has little effect on the stimulation of, homologous recombination, as shown by studies in which UV-irradiated heterologous DNA was included in transformation/recombination experiments. We further demonstrate that the effect of competing single- and double-stranded heterologous DNA sequences differs in UV-irradiated and unirradiated cells, suggesting an induction of recombinational machinery in UV-irradiated S. cerevisiae cells.  相似文献   

10.
11.
Sex-specific agglutinins from the cell surface of haploid cells of Saccharomyces cerevisiae (X2180, mta and mt) were purified and analysed. The constitutive agglutinin from mta cells was extractable with 3 mM dithiothreitol. It was shown to be a glycoprotein (3% mannose) with an apparent Mr of 43,000 based on gel filtration, but in SDS-PAGE it behaved as a much smaller molecule (Mr between 18,000 and 26,000). About one in three amino acids was a hydroxyamino acid. Its biological activity was resistant to boiling for 1 h, but sensitive to pronase. Intact mt cells retained their agglutinability in the presence of dithiothreitol but limited trypsinizing released a biologically active agglutinin fragment. It had an apparent Mr of 320,000 (gel filtration). When analysed by SDS-PAGE, a single diffuse band with an apparent Mr of 225,000 was observed. The protein was 94% (w/w) mannose with a trace of N-acetyl glucosamine. Its biological activity was almost completely lost after boiling for 1 h. Both agglutinins behaved as monovalent molecules and specifically inhibited the biological activity of both noninduced and pheromone-induced cells. Pheromone treatment of mta cells resulted in an apparent 32-fold increase in agglutinin activity at the cell surface, whereas pheromone treatment of mt cells only doubled the apparent agglutinin activity.Abbreviations mt mating type - DTT dithiothreitol - SDS-PAGE sodium dodecyl sulphate polyacrylamide gel electrophoresis - YPG yeast-peptone-glucose - PAS periodic-acid-Schiff reagent  相似文献   

12.
Low levels of invertase (EC 3.2.1.26) activity were observed in most diploid strains of S. cerevisiae used in this work. There was no effect of mating type on invertase levels, and cell surface was not a limiting factor, because an increase in ploidy did not cause further decrease in specific invertase activity. Finally, some diploids showed the activity expected from the additive effects of different SUC genes, and haploid strains possessing two SUC genes expressed very variable invertase activities depending on the strain. This suggested the existence of one or more additional genes which control the levels of invertase. Genetic analysis of SUC5 strains provided evidence of the existence of a new gene, RPS5, which drastically reduced the specific invertase activity in strains possessing active SUC alleles. The recessive allele of this gene (rps5) allows expression of higher levels of invertase. We suggest that genes similar RPS5 are responsible for the low levels of invertase activity observed in diploid strains of S. cerevisiae.  相似文献   

13.
Saccharomyces cerevisiae ACR2 gene encodes an arsenate reductase   总被引:4,自引:0,他引:4  
The ACR2 gene of Saccharomyces cerevisiae was disrupted by insertion of a HIS3 gene. Cells with the disruption were sensitive to arsenate. This phenotype could be complemented by ACR2 on a plasmid. The ACR2 gene was cloned and expressed in Escherichia coli as a malE gene fusion with a C-terminal histidine tag. The combination of chimeric MBP-Acr2-6H protein and yeast cytosol from an ACR2-disrupted strain exhibited arsenate reductase activity.  相似文献   

14.
When Saccharomyces cerevisiae are grown on a mixture of glucose and another fermentable sugar such as sucrose, maltose or galactose, the metabolism is diauxic, i.e. glucose is metabolized first, whereas the other sugars are metabolized when glucose is exhausted. This phenomenon is a consequence of glucose repression, or more generally, catabolite repression. Besides glucose, the hexoses fructose and mannose are generally also believed to trigger catabolite repression. In this study, batch fermentations of S. cerevisiae in mixtures of sucrose and either glucose, fructose or mannose were performed. It was found that the utilization of sucrose is inhibited by concentrations of either glucose or fructose higher than 5 g/l, and thus that glucose and fructose are equally capable of exerting catabolite repression. However, sucrose was found to be hydrolyzed to glucose and fructose, even when the mannose concentration was as high as 17 g/l, indicating, that mannose is not a repressing sugar. It is suggested that the capability to trigger catabolite repression is connected to hexokinase PII, which is involved in the in vivo phosphorylation of glucose and fructose. Received: 5 May 1998 / Received revision: 3 August 1998 / Accepted: 8 August 1998  相似文献   

15.
A new method for detecting invertase activity in Saccharomyces cerevisiae colonies was used to screen for mutants resistant to catabolite repression of invertase. Mutations causing the highest level of derepression were located in two previously identified genes, cyc8 and tup1. Several of the cyc8 mutations, notably cyc8-10 and cyc8-11, were temperature dependent, repressed at 23 degrees C, and derepressed at 37 degrees C. The kinetics of derepression of invertase mRNA in cyc8-10 cells shifted from 23 to 37 degrees C was determined by Northern blots. Invertase mRNA was detectable at 5 min after the shift, with kinetics of accumulation very similar to that of wild-type cells shifted from high-glucose to low-glucose medium. Assays of representative enzymes showed that many but not all glucose-repressible enzymes are derepressed in both cyc8 and tup1 mutants. cyc8 and tup1 appear to be the major negative regulatory genes controlling catabolite repression in yeasts.  相似文献   

16.
17.
By pulse and chase labeling experiments, two independent mannoprotein pools have been found associated with the Saccharomyces cerevisiae envelope. One of them probably corresponds to mannoproteins localized in the periplasmic space. These molecules showed a high turnover rate at 28° C. The second pool is formed by intrinsic wall mannoproteins which are apparently stable for long periods of time, after a small initial turnover. These results suggest that at least part of the mannoproteins initially found in the periplasmic space may move into the wall.The time lag between the addition of the radioactive precursors and their incorporation in the cell envelope (20–30 min for amino acids and about 10 min for carbohydrate) indicates that protein formation and carbohydrate incorporation take place in succession. Moreover, bulk glycosylation of mannoproteins seems to occur close in time to the moment of secretion into the periplasmic space.  相似文献   

18.
Saccharomyces cerevisiae growing under repressible conditions (1% of glucose or more) produces a burst of external invertase when shifted to higher temperatures. The secretion of this invertase requires protein synthesis, but was found to be independent of RNA formation. The level of mRNA accumulated and translated was inversely proportional to the glucose present in the growth medium. These results are consistent with the hypothesis that invertase is continuously synthesized both in the presence and absence of glucose, but under repressible conditions is degraded before secretion takes place.  相似文献   

19.
The aim of this study is to determine the medium feeding strategy to maximize the invertase productivity of recombinant Saccharomyces Cerevisiae using a fed-batch mode of operation. The yeast contains the plasmid, pRB58, which contains the yeast SUC2 gene, coding for the enzyme invertase. The expression of this gene is repressed at high glucose levels. A Goal-oriented model is development to describe the kinetics of fed-batch fermentations. This simple model could quantitatively describe previous experimental results. A conjugate gradient algorithm is then used, in conjunction gradient algorithm is then used, in conjunction with this mathematical model, to compute the optimum feed rate for maximization of invertase productivity. The optimal feeding procedure results in an initial high cell growth phase followed by a high invertase production phase. (c) 1993 Wiley & Sons, Inc.  相似文献   

20.
The enzyme GDP mannose:dolichyl-phosphate O-beta-D-mannosyltransferase (GDP-Man:DolP mannosyltransferase) catalyzing the reaction: GDP-man + DolP in equilibrium DolP-Man + GDP has been purified from Saccharomyces cerevisiae to homogeneity. The purification was achieved using a combination of column chromatographic methods with preparative gel electrophoresis. The enzyme has an apparent molecular mass of 30 kDa on SDS/polyacrylamide gels. Enzymatic activity could be correlated directly with this band. Antibodies against the transferase were raised in rabbits. The immune serum obtained removed enzymatic activity from a detergent extract of yeast membranes and reacted specifically with the 30-kDa band on immunoblots. Experiments addressing the orientation of this enzyme in the endoplasmic reticulum membrane are presented by using selective trypsin and N-ethylmaleimide treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号