首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary In light of the possible role peripheral nerves may play in bone metabolism, the morphology of calcitonin gene-related peptide (CGRP)-, vasoactive intestinal peptide (VIP)-, substance P (SP)-, neuropeptide Y (NPY)-, and dopamine--hydroxylase (DH)-immunoreactive nerve fibers was examined in whole-mount preparations of periosteum of membranous bones (calvaria, mandible) and long bones (tibia) from the rat. Periosteum from animals treated to remove selectively either the sympathetic or fine-caliber primary afferent nerves was also examined to determine the origin of the nerve fibers. We found a consistent and often dense innervation of the periosteum. The innervation patterns of the calvaria and mandible were similar, with networks of nerves spread across the surface of the bone. Nerves in the tibial periosteum were oriented in the longitudinal axis and were more numerous at the epiphyses than in the mid-shaft region. CGRP-immunoreactive fibers were widely and densely distributed. The presence of populations of CGRP-immunoreactive fibers of differing calibers and perivascular arrangements suggests that such nerves in bone tissues may serve different functions. SP-immunoreactivity was present in a fine network of varicose fibers in the superficial layers of the periosteum. CGRP- and SP-immunoreactive nerve fibers were dramatically reduced in periosteum of capsaicin-treated animals as compared to controls, indicating the sensory origin of these nerves. VIP-immunoreactive nerve fibers were distributed in the periosteum of mandible and calvaria as small networks and individual fine varicose fibers. In tibial periosteum, larger networks of these fibers were visible. VIP-immunoreactive nerve fibers in the periosteum were associated with both vascular and nonvascular elements within the layers of cells closest to the bone, suggesting that VIP may serve more than one function in periosteal tissues. NPY-immunoreactive fibers were largely confined to vascular elements; occasional fibers were observed among the bone-lining cells. DH-immunoreactivity was associated only with blood vessels. VIP-, NPY-, and DH-immunoreactivities were dramatically reduced in the periosteum of guanethidinetreated animals, indicating the sympathetic origin of these nerves.  相似文献   

2.
T Tervo  A Palkama 《Acta anatomica》1978,102(2):164-175
The innervation of the rabbit cornea was investigated histochemically and electron-microscopically with special reference to the autonomic nerves. Both formaldehyde- and glyoxylic-acid-induced fluorescence methods revealed adrenergic nerves in the stroma; a few fibres were also observed between the basal epithelial cells near the limbus. Acetylcholinesterase- (AChE-) positive nerves were found both in the stroma and in the epithelium, whereas nonspecific cholinesterase (NsChE) activity appeared only in the stromal nerves. Under the electron microscope, both AChE and NsChE activities were observed to be located in the axon membranes. A weak NsChE reaction also appeared in the Schwann cells. When the specimens fixed with KMnO4 were examined under the electron microscope, most nerve fibres did not contain any special axoplasmic structures, although several axons contained mitochondria. Moreover, two vesicle-containing axon types were found in the stromal nerves; axons with small granular vesicles and axons containing small agranular vesicles. In the epithelium, two types of fibres were observed; one type containing only mitochondria while the other showed both agranular vesicles and mitochondria.  相似文献   

3.
We identified a cDNA encoding mouse Tenascin-W (TN-W) upregulated by bone morphogenetic protein (Bmp)2 in ATDC5 osteo-chondroprogenitors. In adult mice, TN-W was markedly expressed in bone. In mouse embryos, during endochondral bone formation TN-W was localized in perichondrium/periosteum, but not in trabecular and cortical bones. During bone fracture repair, cells in the newly formed perichondrium/periosteum surrounding the cartilaginous callus expressed TN-W. Furthermore, TN-W was detectable in perichondrium/periosteum of Runx2-null and Osterix-null embryos, indicating that TN-W is expressed in preosteoblasts. In CFU-F and -O cells, TN-W had no effect on initiation of osteogenesis of bone marrow cells, and in MC3T3-E1 osteoblastic cells TN-W inhibited cell proliferation and Col1a1 expression. In addition, TN-W suppressed canonical Wnt signaling which stimulates osteoblastic differentiation. Our results indicate that TN-W is a novel marker of preosteoblasts in early stage of osteogenesis, and that TN-W inhibits cell proliferation and differentiation of preosteoblasts mediated by canonical Wnt signaling.  相似文献   

4.
The sympathetic nervous system controls bone remodeling by regulating bone formation and resorption. How nerves and bone cells influence each other remains elusive. Here we modulated the content or activity of the neuropeptide Vasoactive Intestinal Peptide to investigate nerve-bone cell interplays in the mandible periosteum by assessing factors involved in nerve and bone behaviors. Young adult rats were chemically sympathectomized or treated with Vasoactive Intestinal Peptide or Vasoactive Intestinal Peptide10-28, a receptor antagonist. Sympathectomy depleted the osteogenic layer of the periosteum in neurotrophic proNerve Growth Factor and neurorepulsive semaphorin3a; sensory Calcitonin-Gene Related Peptide-positive fibers invaded this layer physiologically devoid of sensory fibers. In the periosteum non-osteogenic layer, sympathectomy activated mast cells to release mature Nerve Growth Factor while Calcitonin-Gene Related Peptide-positive fibers increased. Vasoactive Intestinal Peptide treatment reversed sympathectomy effects. Treating intact animals with Vasoactive Intestinal Peptide increased proNerve Growth Factor expression and stabilized mast cells. Vasoactive Intestinal Peptide10-28 treatment mimicked sympathectomy effects. Our data suggest that sympathetic Vasoactive Intestinal Peptide modulate the interactions between nervous fibers and bone cells by tuning expressions by osteogenic cells of factors responsible for mandible periosteum maintenance while osteogenic cells keep nervous fibers at a distance from the bone surface.  相似文献   

5.
An anabolic response driven by osteoblasts is critical for the process of bone healing. Current evidence suggests that these osteoblasts may arise from multiple tissue types and cell lineages. Stem cells present in the bone marrow, periosteum, local soft tissues, vasculature, and/or circulation have been shown to have osteogenic potential. Transplanted cells from these sources have also been shown to incorporate into induced ectopic bone or repaired bone. While these experiments demonstrate the latent capacity of different lineages to assume an osteoblastic phenotype under pro-osteogenic conditions, the actual contribution of the different lineages to various repair situations in vivo remains unclear. This review explores the data arising from different bone formation and repair models. We propose a model suggesting that cells arising from the local tissues, particularly muscle cells, may play an important role in fracture repair under situations where the periosteal and/or bone marrow progenitor populations are depleted.  相似文献   

6.
A comparative study of the quantitative data of the frog extraocular muscles and the cranial nerves that innervate them was performed. Oculorotatory muscles contain muscle fibres of at least 4 types which are arranged in heterogeneous layers. The zonal arrangement of the muscles does not occur on the cross-sections in the vicinity of muscle insertions. In these regions only two muscle fibre types are present and the total number of fibres is smaller by 70% than in the central region of the muscle. Most numerous are muscle fibres in the rectus inferior muscle, while the smallest number of fibres is found in rectus interior muscle. Three distinct types of nerve fibres are distinguished according to the following criteria: occurrence and thickness of myelin sheath, fibre diameter and ratio "g". The fibres with thin myelin sheaths indicate small diameters (1-5--6- mum) and their ratio "g" equals 0-82 +/- 0-08. They constitute about 30% of the myelinated fibres in the nerve supply of the oculorotatory muscles and about 14% in the supply of the retractor bulbi muscle. Both the value of the ratio "g" and a greater number of these fibres in the nerve supply of the muscles that contain slow contracting muscle fibres indicate that they are rather slow conducting nerve fibres. The range of the diameters of the fibres with thick myelin sheaths is greater (3-5--13-5 mum) and their "g" equals 0-66 +/- 0-06. These fibres constitute about 70% of the myelinated ones in the nerve supply of the oculorotatory muscles and 86% in the supply of the retractor bulbi muscles. The value of the ratio "g" in these fibres indicates that they are fast contracting ones. The smallest diameters are found in the myelinated fibres (0-5--1-7 mum). These fibres occur frequently in all the examined nerves; they constitute 36--47% of the total number of all the nerve fibres. The frog extraocular muscles are characterized by an abundal nerve supply which is reflected in the low innervation ratio (1:4--1:5). On the distal cross-section of nerves the number of nerve fibres is greater than on the proximal ones. Ganglionic neurons occur sporadically around the nerves; in the nerve III synaptic contacts between two neurons were observed.  相似文献   

7.
Little is understood about the role of the recipient site in the revascularization and incorporation of autogenous inlay bone grafts in the craniofacial skeleton. Clinical experience demonstrates that secondary complex cranial vault reconstruction performed with scarred avascular dura or poor soft-tissue coverage may undergo significant resorption, thus compromising the aesthetic outcome. This study was designed to determine the effect of isolating autogenous orthotopic inlay calvarial bone grafts from the surrounding dura and/or periosteum on graft revascularization, healing, and volume maintenance in the adult rabbit. Adult rabbits were randomized into four groups (n = 10 per group); in each rabbit, the authors created a circular, 15-mm in diameter, full-thickness cranial defect followed by reconstruction with an autogenous calvarial bone graft, which was replaced orthotopically and held with microplate fixation. Silicone sheeting (0.5 mm thickness) was used to isolate the dura (group II), the periosteum (group II), or both dura and periosteum (group IV) from the graft interface. No silicone was placed in group I. Animals were killed 10 weeks postoperatively, and calvaria were harvested to assess graft surface area, morphology, quantitative histology, fluorochrome staining, and revascularization. Grafts isolated from both the dura and periosteum exhibited significant decreases in total bone (cortical and trabecular) surface area, blood vessel count, and interface healing compared with nonisolated control grafts. Isolation of either the dura or periosteum significantly (p < 0.05) decreased blood vessel count but had no significant effect on interface healing. Isolation of the dura alone was associated with a significant (p < 0.05) decrease in graft cross-sectional surface area and dural cortical thickness compared with nonisolated control grafts, but this effect was not observed when the periosteum alone was isolated. Quantitative histology performed 10 weeks after surgery indicated that graft isolation was associated with increased marrow fibrosis and necrosis compared with nonisolated controls; it also demonstrated evidence of increased activity in bone remodeling (osteoblast and osteocyte count, new trabecular bone, and surface resorption). Triple fluorochrome staining suggested increased bone turnover in the nonisolated grafts compared with isolated grafts at 1 and 5 weeks postoperatively. This study demonstrates that isolating a rabbit calvarial inlay autogenous bone graft from the dura and/or periosteum results in significantly (p < 0.05) decreased revascularization, interface healing, and cross-sectional areas of amount of mature bone compared with nonisolated control grafts 10 weeks after surgery. At this time point, histologic examination demonstrates a paradoxical increase in bone remodeling in isolated bone grafts compared with controls. It is possible that the inhibition of revascularization results in a delayed onset of the remodeling phase of graft incorporation. However, in the model studied, it is not known whether the quantitative histologic and morphometric parameters measured in these isolated grafts exhibit a "catch-up" phenomenon at time points beyond 10 weeks after surgery. The results of this study emphasize the importance of a healthy recipient site in the healing and incorporation of calvarial bone grafts but stress the need for further investigation at later time points.  相似文献   

8.
Guided bone regeneration (GBR) is commonly used for alveolar bone augmentation. The paracrine mechanism in the field of bone tissue engineering has been emphasized in recent years and exosomes are considered to have the potential of promoting osteogenesis. We aimed to study the influence of sinus mucosa and periosteum on bone regeneration through paracrine stimulation, especially via exosomes, and compare the differences between them. Here, we report that conditioned medium (CM) from sinus mucosa-derived cells (SMCs) and periosteum-derived cells (PCs) and the isolated exosomes enhanced the proliferation, migration and osteogenic differentiation of bone marrow–derived mesenchymal stem cells (BM-MSCs) in vitro. A rat model of femoral bone defects was used to demonstrate that the exosomes derived from SMCs (SMC-Exos) and PCs (PC-Exos) can accelerate bone formation in vivo. Furthermore, we present a preliminary discussion of the possible functional components involved in the effects of SMC-Exos and PC-Exos on bone regeneration. In conclusion, these results demonstrated that the sinus mucosa and periosteum can accelerate osteogenesis through paracrine effects and the exosomes play important roles in this process.  相似文献   

9.
Osseointegration of bone marrow-PLGA-coated, preformed polymethylmethacrylate cranioplasties offers the possibility of reducing: operative time, periimplant seroma and infection, metallic fixation, and periprosthetic resorption following surgical skull remodeling. These alloplastic materials are FDA-approved but previously have not been used together to promote cranioplasty incorporation. The objective of this study was to determine whether the use of PLGA foam coating improves host osseointegration of preformed, textured, polymethylmethacrylate prosthetic cranioplasties. A critical-sized cranial defect was created in two groups of 10 and one group of three rabbits. The defect was filled with either a textured, preformed polymethylmethacrylate disc or a textured, preformed polymethylmethacrylate disc coated with poly (DL-lactic-co-glycolic acid). Both implants were immersed in autologous bone marrow for 20 minutes before implantation. Half of each group of 10 were killed at 3 weeks, and the remainder at 6 weeks. A third group of three rabbits with excised periosteum was evaluated at 6 weeks. Histologic analysis of the discs determined relative amounts of cancellous bone formation adjacent to the prostheses. Woven trabecular bone was present at each host bone to implant perimeter interface at 3 weeks, with fine fibrous capsular formation around the implants. Thicker, lamellar trabeculae were present at 6 weeks with an increased fibrous layer surrounding both types of implants. Bone formed on the superficial and deep implant surfaces in a noncontiguous fashion. Two of five measures showed that total bone formation was significantly greater in the PLGA-coated implants. Polymethylmethacrylate discs coated with bone marrow-impregnated PLGA foam demonstrate increased bone formation at 3 and 6 weeks as compared with non-coated preformed polymethylmethacrylate discs. Only implants with preserved periosteum showed bone formation away from the host-implant interface (centrally) on the superficial surface at 6 weeks.  相似文献   

10.
Two sets of experiments were carried out. The first one involved chimeric mice, obtained by intravenously injections of bone marrow derived cells taken from transgenic C57BL/6 mice, expressing GFP, to 5 Gy X-ray irradiated mdx or C57BL/6 mice. In 2 months M. quadriceps femoris of chimeric mice were destroyed by surgical clamp. Following the next 4-5 weeks, the same muscles were studied for the presence of GFP-positive striated muscle fibres. In the case of chimeric C57BL/6 mice GFP-positive striated muscle fibres were observed in 0.3 +/- 0.5 and in 0.2 +/- 0.3 % of destroyed muscle, and in lateral (control) muscle, consequently. In the case of chimeric mdx mice, positive results were observed in 1.7 +/- 0.4 and in 0.5 +/- 0.3 % of destroyed and control muscles, respectively. In the second set of experiments, the GFP-positive bone marrow cells were used for multiple intramuscular injections to M. quadriceps femoris of C57BL/6 or mdx mice in a dose of 2 x 10(5)-5 x 10(5) cells per mouse. Before injection, GFP-positive bone marrow cells were fractionated in a 63 % Percoll solution and then were exhausted from differentiated cells by magnetic manner using CD4, CD8, CD38, CD45R, CD119, Ly-6G, and F4/80 antibodies. After 2-3 weeks, as many as 0.15 +/- 0.40 and 0.1 +/- 0.2 % of GFP-positive muscle fibres were found in injected and control muscles of C57BL/6 mice, respectively. In the case of mdx mice, the frequency of GFP-positive striated muscle fibres was 2.0 +/- 0.8 and 1.2 +/- 0.6 % for injected and control muscles, respectively. A conclusion is made that bone marrow stem cells can take part in differentiation of mdx mouse muscles after their delivery by needle injections.  相似文献   

11.
Bone renews itself and changes shape throughout life to account for the changing needs of the body; this requires co-ordinated activities of bone resorbing cells (osteoclasts), bone forming cells (osteoblasts) and bone’s internal cellular network (osteocytes). This review focuses on paracrine signaling by the IL-6 family of cytokines between bone cells, bone marrow, and skeletal muscle in normal physiology and in pathological states where their levels may be locally or systemically elevated. These functions include the support of osteoclast formation by osteoblast lineage cells in response to interleukin 6 (IL-6), interleukin 11 (IL-11), oncostatin M (OSM) and cardiotrophin 1 (CT-1). In addition it will discuss how bone-resorbing osteoclasts promote osteoblast activity by secreting CT-1, which acts as a “coupling factor” on osteocytes, osteoblasts, and their precursors to promote bone formation. OSM, produced by osteoblast lineage cells and macrophages, stimulates bone formation via osteocytes. IL-6 family cytokines also mediate actions of other bone formation stimuli like parathyroid hormone (PTH) and mechanical loading. CT-1, OSM and LIF suppress marrow adipogenesis by shifting commitment of pluripotent precursors towards osteoblast differentiation. Ciliary neurotrophic factor (CNTF) is released as a myokine from skeletal muscle and suppresses osteoblast differentiation and bone formation on the periosteum (outer bone surface in apposition to muscle). Finally, IL-6 acts directly on marrow-derived osteoclasts to stimulate release of “osteotransmitters” that act through the cortical osteocyte network to stimulate bone formation on the periosteum. Each will be discussed as illustrations of how the extended family of IL-6 cytokines acts within the skeleton in physiology and may be altered in pathological conditions or by targeted therapies.  相似文献   

12.
Granulocyte colony-stimulating factor (G-CSF) demonstrates neuroprotective effects through different mechanisms, including mobilization of bone marrow cells. However, the influence of G-CSF-mediated mobilization of bone marrow-derived cells on injured sciatic nerves remains to be elucidated. The administration of G-CSF promoted a short-term functional recovery 7 days after crush injury in sciatic nerves. A double-immunofluorescence study using green fluorescent protein-chimeric mice revealed that bone marrow-derived CD34+ cells were predominantly mobilized and migrated into injured nerves after G-CSF treatment. G-CSF-mediated beneficial effects against sciatic nerve injury were associated with increased CD34+ cell deposition, vascular endothelial growth factor (VEGF) expression, and vascularization/angiogenesis as well as decreased CD68+ cell accumulation. However, cell differentiation and VEGF expression were not demonstrated in deposited cells. The results suggest that the promotion of short-term functional recovery in sciatic nerve crush injury by G-CSF involves a paracrine modulatory effect and a bone marrow-derived CD34+ cell mobilizing effect.  相似文献   

13.
Fixed, undecalcified mouse long bones were embedded in glycol methacrylate (GMA), sectioned, and incubated for acid phosphatase in the presence or absence of tartrate, to investigate the feasibility of tartrate-resistant acid phosphatase as a histochemical marker for osteoclast identification. Naphthol AS-BI phosphate was used as the substrate and hexazonium pararosanaline as coupler. Cytocentrifuge preparations of mouse, rat, and quail bone marrow or frozen and GMA sections of mouse splenic tissue were used as controls to specify acid phosphatase activity. After adequate fixation, acid phosphatase activity sensitive to tartrate inhibition (TS-AP) was demonstrated in macrophages from spleen, bone marrow, and loose connective tissue surrounding bone rudiments. Acid phosphatase activity resistant to tartrate inhibition (TR-AP), was detected in multi-nuclear osteoclasts and in some mononuclear cells from bone marrow and periosteum. In cytocentrifuge preparations and frozen sections of mouse spleen, TR-AP was demonstrated after simultaneous incubation with substrate and tartrate. In GMA sections, however, TR-AP could only be demonstrated after pre-incubation with tartrate before application of substrate. We suggest that histochemical demonstration of TR-AP versus TS-AP on GMA-embedded bone sections by means of a pre-incubation method can be used as an identification marker of (pre)osteoclasts. Plastic embedding is recommended for its excellent preservation of morphology and enzyme activity.  相似文献   

14.
Summary The pelvic ganglia supply cholinergic and noradrenergic nerve pathways to many organs. Other possible transmitters are also present in these nerves, including peptides. Multiple labelling immunofluorescence techniques were used in this study of the male rat major pelvic ganglion (MPG) to examine: (1) the peptides present in noradrenergic (tyrosine hydroxylase (TH)-positive) and non-noradrenergic (putative cholinergic) neurons, and (2) the types of peptide-containing nerve fibres closely associated with these two groups of neurons. The distribution of the peptide galanin (GAL) within the MPG was also investigated. All of the TH-neurons contained neuropeptide Y (NPY), but none of the other tested peptides. However, many NPY neurons did not contain TH and may have been cholinergic. TH-negative neurons also displayed vasoactive intestinal peptide (VIP), enkephalin (ENK) or GAL. VIP and NPY formed the most common types of putative cholinergic pelvic neurons, but few cells contained both peptides. Many ENK neurons exhibited VIP, NPY or GAL. Varicose nerve terminals surrounding ganglion cells contained ENK, GAL, somatostatin (SOM) and cholecystokinin (CCK). These peptide-immunoreactive fibres were more often associated with the non-noradrenergic (putative cholinergic) than the noradrenergic neurons; two types (SOM and CCK) were preferentially associated with the non-noradrenergic NPY neurons. GAL was distributed throughout the MPG, in small neurons, scattered small, intensely fluorescent (SIF) cells, and both varicose and non-varicose nerve fibres. The nerve fibres were concentrated near the pelvic and penile nerves; most of the varicose fibres formed baskets surrounding individual GAL-negative somata.  相似文献   

15.
The purpose of the present works was to clarify whether the cranial nerves III, IV and VI carry proprioceptive afferent fibres from the extrinsic ocular muscles. In sheep the picture is now clear. The cranial nerves III, IV and VI carry many large proprioceptive fibres (12-16 micrometer) to the central nervous system. These nerves also contain many small fibres of the y-range (2-6 micrometer) which innervate the intrafusal muscle fibres in the spindles. In man the picture is still vague: most of the spindles are not typical, the large proprioceptive fibres (12-16 micrometer) and the small y-fibres (2-6 micrometer) are very few in the cranial nerves III, IV and VI. It is to be concluded that in sheep the cranial nerves III, IV and VI are not purely motor nerves to the extrinsic ocular muscles, but they also carry many of the large fibres of the proprioceptive function. In man, such large fibres are not found and the pathway of proprioceptive afferents from the orbital muscles is still not certain.  相似文献   

16.
There is significant potential for the use of adult mesenchymal stem cells in regenerating musckuloskeletal tissues. The sources of these stem cells discussed in this review are bone marrow, blood, adipose tissue, synovium, periosteum & cartilage. Adult mesenchymal stem cells of bone marrow origin are the cells which are heavily investigated in many studies and have been shown capable of producing a variety of connective tissues especially cartilage and bone. It has recently been suggested that bone marrow derived mesenchymal stem cells originate from microvascular pericytes, and, indeed, many of the tissues from which stem cells have been isolated have good vascularisation and they may give a varied source of cells for future treatments. Clinical trials have shown that these cells are able to be successfully used to regenerate tissues with good clinical outcome. Other sources are showing promise, however, is yet to be brought to the clinical level in humans.  相似文献   

17.
Serial and interval electron micrograph series were used to examine the rostral and anterodorsal nerves of 12.5‐day‐old amphioxus larvae and trace selected fibres to their targets in the nerve cord. The nerves contain a variety of fibre types, including axons from at least two types of epithelial sensory cells and neurites derived from dorsal (Retzius) bipolar cells located within the cord. The rostral epithelial cells form basal synapses with a population of peripheral neurites that probably derive from the dorsal bipolar cells, though other sources are possible. Varicosities containing dense‐core vesicles occur at the tip of the rostrum, indicating the presence of efferent innervation at this site. Within the cord, some peripherally derived rostral afferents terminate at the level of the anterior cerebral vesicle, others synapse directly with both motoneurones and the notochord, but those in the largest bundle target the dendrites of the large paired neurones (LPNs) located in the primary motor centre. LPN dendrites also receive synapses from sensory fibres arriving via the anterodorsal nerves, from the anterior‐most of the dorsal bipolar cells, referred to here as tectal cells, and from a single fibre derived from the frontal eye. This convergence of multiple inputs accords with other evidence that the LPNs are key intermediaries in the sensorimotor pathway that activates the larval escape response. The rostral nerves are much larger at metamorphosis, but the ventral tracts that derive from them are still comparatively small. This is because the majority of rostral fibres are diverted into a late‐developing dorsal tract that travels within the cord to the front end of the dorsolateral neuropile, where most of its fibres disperse and form synapses. The positioning of the dorsal and ventral tracts strongly suggests homology with vertebrate olfactory and terminal nerves, respectively. This, and the question of whether the amphioxus central nervous system has anything comparable to the olfactory bulb, a telencephalic structure, is discussed.  相似文献   

18.
Adipose derived adult stem cells (ASCs) are multipotent cells that are able to differentiate into osteoblasts in presence of certain factors. The histological characteristics of periosteum makes it a specific tissue with a unique capacity to be engineered. Higher flexibility of the greater omentum is useful for reconstructive surgery. These criteria make it suitable for tissue engineering. The present study was designed to evaluate bone tissue engineering with periosteal free graft concurrent with ASCs and pedicle omentum in dog model. Twelve young female indigenous dogs were used in this experiment. In omental group (n = 4), end of omentum was wrapped by periosteum of the radial bone in abdomen of each dog. In omental-autogenously ASCs group (n = 4), 1 ml of ASCs was injected into the wrapped omentum with periosteum while in omental-allogenously ASCs group (n = 4), 1 ml of allogenous ASCs was injected. Lateral view radiographs were taken from the abdominal cavity postoperatively at the 2nd, 4th, 6th and 8th weeks post-surgery. Eight weeks after operation the dogs were re-anesthetized and the wrapped omenum by periosteum in all groups was found and removed for histopathological evaluation. Our results showed that omentum–periosteum, omental-periosteum-autogenous ASCs and omental-periosteum-allogenous ASCs groups demonstrated bone tissue formation in the abdominal cavity in dog model. The radiological, macroscopical and histological findings of the present study by the end of 8 weeks post-surgery indicate bone tissue engineering in all three groups in an equal level. The present study has shown that the wrapped omentum with periosteum concurrent with ASCs (autogenous or allogenous ASCs) lead to a favorable bone tissue formation. We suggested that it may be useful when pedicle graft omentum used concurrent with periosteum in the bone defect reconstruction, and this phenomenon should be studied in future.  相似文献   

19.
We have previously demonstrated that Goto-Kakizaki (GK) rats with spontaneous type-2 diabetes and peripheral neuropathy exhibit regional osteopathic changes. In the present study on 18 GK rats and 21 control Wistar rats, the occurrence of the sensory neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP), and the autonomic neuropeptide Y (NPY) was analysed in bone and joints, dorsal root ganglia and lumbar spinal cord by immunohistochemistry and radioimmunoassay (RIA). Immunohistochemistry disclosed a predominance of immunoreactivities in vessel-related nerve fibers, although some were also seen in free terminals. While SP, CGRP and NPY in periosteum, cortical bone and synovium was confined to neuronal tissue, the bone marrow in addition exhibited an abundance of NPY-positive megakaryocytes. Apart from this cellular source of NPY, the observations suggest that the three neuropeptides analysed in bone and joints are of neuronal origin. Quantification by RIA showed a significant decrease of NPY in cortical bone (-36%), bone marrow (-66%) and ankle (-29%) of GK rats. CGRP was decreased in the spinal cord (-19%) and dorsal root ganglia (-26%) but was unchanged in bone and joints, as with SP. Given the suggested anabolic role of NPY and CGRP on bone, neuropeptidergic deficit in diabetes may prove to be an important factor underlying the development of regional osteopenia.  相似文献   

20.
《Organogenesis》2013,9(1):23-27
Mesenchymal stem cells (MSCs) are of great interest to both clinicians and researchers for their great potential to enhance tissue engineering. Their ease of isolation, manipulability, and potential for differentiation are specifically what have made them so attractive. These multipotent cells have been found to differentiate into cartilage, bone, fat, muscle, tendon, skin, hematopoietic-supporting stroma and neural tissue. Their diverse in vivo distribution includes bone marrow, adipose, periosteum, synovial membrane, skeletal muscle, dermis, pericytes, blood, trabecular bone, human umbilical cord, lung, dental pulp, and periodontal ligament. Despite their frequent use in research, no standardized criteria exist for the identification of mesenchymal stem cells; The International Society for Cellular Therapy has sought to change this with a set of guidelines elucidating the major surface markers found on these cells. While many studies have shown MSCs to be just as effective as unipotent cells for certain types of tissue regeneration, limitations do exist due to their immunosuppressive properties. This paper serves as a review pertaining to these issues, as well as others related to the use of MSCs in tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号