首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Groups of germ-free and conventional mice were treated with 2,4',5-trichlorobiphenyl (triCB) and [35S]cysteine or [35S]methionine, respectively. Control animals received the labelled amino acids only. Conventional mice accumulated significantly more extractable radioactivity both in lung and kidney tissues when compared to germ-free mice. The extracted radioactivity in lung and kidney tissues was shown to be due to the accumulation of methyl-[35S]sulphonyl-triCB. The low radioactivity in lungs of the germ-free mice was also shown to be due to the accumulation of small amounts of the sulphones. The results indicate an involvement of the intestinal flora in the formation of methyl sulphone metabolites of triCB.  相似文献   

2.
The incorporation into the thiazole moiety of thiamine of several labeled compounds has been studied on short time incubations of washed-cells suspensions. No incorporation of radioactivity from [G-14C] methionine was found in a mutant auxotrophic for methionine. No radioactivity was incorporated from [U-14C] aspartate or from [U-14C] serine. The incorporation of 35S from sulphate was lowered by cysteine or glutathione but was unaffected by methionine or homocystine. Although the synthesis of thiazole is dependent on methionine, neither the sulphur atom nor the carbon chain of thiazole originate from methonine in E. coli. No carbon originates from cysteine which is the likely direct donor of sulphur.  相似文献   

3.
Labeling of sulfolipids in Nitzschia alba was studied after growth of the cells in media containing L-[35S]cystine, L-[35S], L-[35S]cysteine, L-[35S]-methionine or a mixture of L-[Me-3H]methionine and L-[35S]methionine, [35S]Cysteine or [35S]cystine labeled the deoxyceramide sulfonate and the sulfonium analog, phosphatidylsulfocholine (and its lyso derivative) but not the sterol sulfate nor the sulfoquinovosyl diglyceride; [35S]methionine labeled only the phosphatidylsulfocholine and its lyso derivative. With the [35S]- and [Me-3H]methionine mixture (3H/35S ratio 1.0) the phosphatidylsulfocholine had a 3H/35 S ratio of 1.5 indicating that both sulfonium methyl groups were derived from methionine. Probable biosynthetic pathways for these novel sulfolipids are discussed.  相似文献   

4.
The incorporation of the sulfur atom of 35S-labeled amino acids into thiamin in Escherichia coli and Saccharomyces cerevisiae was studied. The specific radioactivity of the S atoms was incorporated at similar levels into thiamin and cysteine residues in cell proteins. However, the specific radioactivity of the S atoms from [35S]methionine was not incorporated into thiamin but into methionine residues in cell proteins. Thus, the origin of the S atom of thiamin was established as being the S atom of cysteine. No activity from [U-14C]cysteine was recovered in thiamin, proving that the carbon skeleton of this amino acid was not utilized in synthesizing the thiazole moiety of thiamin.  相似文献   

5.
A study of the sulphur amino acids of rat tissues   总被引:2,自引:2,他引:0       下载免费PDF全文
1. In a study of the metabolism of l-[(35)S]methionine in vivo, the labelled sulphur compounds of rat liver and brain were separated first by ion-exchange chromatography into two fractions containing (i) free sulphur amino acids such as methionine, cystathionine, cyst(e)ine and homocyst(e)ine and (ii) glutathione. 2. Two-dimensional paper chromatography with butan-1-ol-acetic acid or propionic acid-water in the first direction and 80% acetone or acetone-ethyl methyl ketone-water in the second direction was found superior to other solvent systems for separating the sulphur amino acids. 3. At 10min. after injection of [(35)S]methionine only a small part of the (35)S was found combined in free methionine or other free sulphur amino acids. 4. Evidence was obtained of the presence of adenosyl[(35)S]methionine and adenosyl[(35)S]homocysteine in perchloric acid extracts of rat liver and brain. 5. The trans-sulphuration pathway was active in brain as well as in liver.  相似文献   

6.
The metabolic pathways of methionine sulphoxide and methionine sulphone were investigated employing a combination of gas chromatography, thin-layer chromatography, paper chromatography, and radioactive methods of analyses. Gas chromatographic analysis demonstrated that methionine, methionine sulphoxide, and methionine sulphone all yielded qualitatively similar volatile sulphur compounds, namely, methyl mercaptan, dimethyl disulphide, and small amounts of dimethyl sulphide. The study indicated that the principal pathway of methionine sulphoxide and methionine sulphone metabolism is mediated via methionine which gives rise to methyl mercaptan, part of which is oxidized to dimethyl disulphide. Whereas methionine sulphoxide was readily reduced to methionine, the reduction of methionine sulphone proceeded at a considerably slower rate.  相似文献   

7.
《Insect Biochemistry》1988,18(6):599-605
When two clones of Myzus persicae were maintained on a defined diet with inorganic sulphate as sole sulphur source, their growth and survival were inferior to that on diets containing the sulphur amino acid, methionine. This discrepancy is due, at least in part, to the phagostimulatory properties of methionine, which stimulated aphid feeding rate by 50–150%. Myzus persicae incorporated radioactivity from dietary [35S]sulphate into protein and low molecular weight compounds, including cysteine and methionine. Two lines of evidence indicate that the mycetocyte-symbionts are responsible for the reductive assimilation of sulphate. (1) [35S]sulphate incorporation is abolished by treatment of the aphids with the antibiotic chlortetracycline, which disrupts the symbionts; and (2) [35S]sulphate is utilized by isolated embryos (which contain mycetocyte-symbionts but no gut flora) but not by isolated guts. Tracer studies suggest that 20% of dietary radiosulphur is translocated to the aphid tissues, and it is hypothesized that methionine may be the principal product released by the symbionts.  相似文献   

8.
Four enzymes necessary for the metabolism of methionine by the trans-sulfuration pathway, methionine adenosyltransferase (EC 2.5.1.6), adenosylhomocysteinase (EC 3.3.1.1), cystathionine beta-synthase (EC 4.2.1.22) and cystathionine gamma-lyase (EC 4.4.1.1) were identified in Tetrahymean pyriformis. The ability of these cells to transfer 35S from E135S]methionine to form [35S] cysteine was also observed and taken as direct evidence for the functional existence of this pathway in Tetrahymena. An intermediate in the pathway and an active methyl donor, S-adenosylmethionine, was qualitatively identified in Tetrahymena and its concentration was found to be greater in late stationary phase cells than in early stationary phase cells.  相似文献   

9.
The uptake and metabolism of 35S-labelled sulphur amino acids were compared in periportal (PP) and perivenous (PV) rat hepatocytes, isolated by digitonin/collagenase perfusion, to identify the factors underlying the previously observed [Kera, Penttilä & Lindros, Biochem. J. (1988) 254, 411-417] higher rate of GSH replenishment in PP cells. The buthionine sulphoximine-inhibitable synthesis of GSH was faster in PP than in PV hepatocytes with both cysteine (6.1 versus 5.0 mumol/h per g of cells) and methionine (4.5 versus 3.3 mumol/h per g) as well as with endogenous precursors and L-2-oxo-4-thiazolidinecarboxylate as substrates. However, the uptake of cysteine by PP cells was slower than by PV cells (8.6 versus 10.3 mumol/h per g of cells), whereas methionine was taken up at similar rates. The activity of gamma-glutamylcysteine synthetase (GCS) was slightly higher in digitonin lysates from the PP than from the PV zone. Production of sulphate, the major catabolite of [35S]cysteine sulphur, as well as incorporation of the label into protein occurred at similar rates in PP and PV cells. Taurine, on the other hand, was produced from [35S]cysteine much faster by PV than by PP cells (0.7 versus 0.1 mumol/h per g of cells). Accordingly, the taurine content of PV hepatocytes tended to be higher and to increase faster during incubation with methionine. These results imply that metabolism of taurine is highly zonated within the acinus. They also suggest that both the slightly lower GCS activity and the fast metabolism of cysteine to taurine limit the capacity of PV hepatocytes to synthesize GSH.  相似文献   

10.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5beta-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

11.
A yeast strain highly resistant to propargylglycine (an inhibitor of cystathionine gamma-lyase) was isolated from air. It was partially characterized, but it has not been identified with any known yeast species. Its sulphur amino acid metabolism differed from that of other fungi by the lack of the reverse transsulphuration pathway from methionine to cysteine, as no activity of cystathionine beta-synthase or cystathionine gamma-lyase was found. The functional lack of this pathway was confirmed by growth tests and by experiments with [35S]methionine. In contrast to Saccharomyces cerevisiae neither homocysteine synthase nor the sulphate assimilation pathway were repressible by methionine in the new strain; on the contrary, a regulatory effect of cysteine was observed.  相似文献   

12.
E DeMoll  R H White  W Shive 《Biochemistry》1984,23(3):558-562
Two steps in the biosynthesis of biotin in Escherichia coli, incorporation of the nitrogen atom of methionine into 7-keto-8-aminopelargonic acid and of the sulfur atom into dethiobiotin, were examined. Sulfur and nitrogen metabolism were monitored by gas chromatography-mass spectrometry of volatile derivatives of internal (protein-bound) amino acids and excreted biotin. We were able to show that internal cysteine and excreted biotin were labeled to the same extent with 34S from either of two exogenous sulfur sources, 34SO4(2)-or L-[sulfane-34S]thiocystine. Internal methionine was eliminated from consideration, while cysteine, or possibly a closely related intermediate, was implicated as providing the sulfur atom for biotin biosynthesis. Also, in experiments designed to follow the metabolism of the nitrogen atom of methionine, it was found that biotin excreted into the culture medium by this organism grown with 95 atom % [15N]methionine contained greater than 70 atom % excess 15N in one of the nitrogens over that obtained from cultures grown with methionine of natural abundance 15N. These results provide evidence for the direct transfer of the methionine nitrogen as the role of S-adenosylmethionine in the conversion of 7-keto-8-aminopelargonic acid to 7,8-diaminopelargonic acid.  相似文献   

13.
 In order to determine why the activated methyl cycle is up-regulated in plants undergoing defence responses to fungal pathogens we have monitored the utilisation of methyl groups derived from methionine in cell-suspension cultures of alfalfa (Medicago sativa L.) treated for various times with fungal elicitor, by carrying out a parallel labelling study with [35S]methionine and [methyl-3H]methionine. The distribution of the two radiolabels among the medium, soluble cellular components and cell wall was then determined. In the absence of elicitor the utilisation of the two radiolabels was similar. However, in the presence of the elicitor the total incorporation of radioactivity from [methyl-3H]methionine into metabolites was far greater than from [35S]methionine, indicating that the methyl label had been utilised in methylation reactions. Elicitor treatment resulted in up to a sixfold increase in the use of 3H-methyl groups in the methylation of hydrophobic metabolites. In the period 0–24 h after elicitor treatment, increased methylation was directed largely into the synthesis of the isoflavonoid phytoalexin medicarpin and related metabolites. Newly synthesized phytoalexins were exported into the medium, while a significant proportion of the medicarpin accumulating in the cell in the early stages of elicitation was derived from the hydrolysis of its respective conjugate. Elicitor treatment also modified the incorporation of 3H-methyl groups into the cell wall. Between 0 and 24 h after elicitor treatment the methylation of pectin in the cell wall declined. After 24 h, pectin methylation recovered and was associated with an increase in the methylation of other wall-bound polysaccharide components. Since no other major metabolic sink for the increased methylation was determined we conclude that the increased activity of the activated methyl cycle during defence interactions in alfalfa is required to support phytoalexin synthesis and cell wall modifications. Received: 1 August 1996 / Accepted: 24 October 1996  相似文献   

14.
The mode of biosynthesis of the thiazole moiety of thiamine, 4-methyl-5β-hydroxyethyl thiazole (MHET) was studied using Salmonella typhimurium as test organism. It was shown by isotope incorporation experiments, that the sulfur atom, but not carbon-3, of cysteine is incorporated into MHET, indicating a separation of the sulfur atom of cysteine from the carbon chain during incorporation. Isotope competition experiments revealed that the incorporation of [35S]cysteine is not significantly diluted by the presence of methionine, homocysteine, and glutathione. No incorporation of label from [14C]glutamate and [14C]formate was observed, leaving the origin of the five-carbon unit still in doubt.  相似文献   

15.
Incubation of [35S]methionine and [35S]cysteine with bovine albumin, globulin, catalase, hemoglobin, or human globulin resulted in incorporation of the 35S label into each of these proteins. Trichloroacetic acid (TCA) precipitation revealed that the percentage of label incorporated ranged from 1 to 15%. The 35S labeling was resistant to dissociation by reducing SDS-PAGE, prolonged dialysis against 4 M urea, heating, TCA precipitation, and dilution by gel filtration. The labeling effect was more efficient with [35S]cysteine than [35S]methionine. Incubation of 35S label with proteins differing in methionine and cysteine content revealed no requirement for sulfur-containing amino acids in the target protein. Protein carboxymethylation reduced but did not prevent 35S label incorporation. Amino acid analysis of labeled proteins revealed that the radioactive label was not consistently associated with an individual amino acid. Differences in the ability of various proteins to spontaneously label with these amino acids suggest caution in the interpretation of metabolic labeling experiments and the necessity for inclusion of additional controls. Alternatively, our experience indicates a potentially useful method for labeling proteins in the absence of cells.  相似文献   

16.
We describe a procedure that allows cysteine and methionine content to be determined on microgram amounts of partially purified protein. The only requirements are that the protein can be obtained as a pure band after electrophoresis on a polyacrylamide gel and that some data on amino acid content be available. This method involves double labeling by growing bacterial cells with [3H]leucine and [35S]SO4 and determining the ratio of these radioisotopes incorporated into the ribonucleic acid polymerase subunits. The relative specific activities of [3H]leucine and [35S]cysteine and methionine are determined from the ratio of these isotopes incorporated into beta-galactosidase, the leucine, cysteine, and methionine contents of which are known. We have used this procedure to determine the sulfur content of the subunits of Escherichia coli ribonucleic acid polymerase. These new data are necessary to quantitate the rates of synthesis of these subunits by in vivo labeling with [35S]SO4.  相似文献   

17.
Radiolabel from the methyl groups of serine and methyltetrahydrofolate was readily incorporated into methionine in adult Fasciola hepatica, and a substantial proportion of the label from [35S]methionine appeared in cysteine. The data suggest that methionine synthesis is via methyltetrahydrofolate-homocysteine methyltransferase and that there is cysteine synthesis from methionine. Cystathionine-β-synthase and γ-cystathionase activities were demonstrated in homogenates.  相似文献   

18.
Three white rot fungi were compared for their ability to attack polychlorinated biphenyl (PCB) congeners in the presence and absence of the non-ionic Triton X-100 or the anionic Dowfax 8390 surfactants at half their critical micelle concentrations. Neither surfactant affected PCB biodegradation monitored by gas chromatography but the release of 14CO2 from 2,4',5-[U-14C]trichlorobiphenyl by Trametes versicolor was stimulated 12% by Triton X-100. Since mineralization is the complete metabolism of the congener and biodegradation was measured as substrate disappearance, Triton X-100 is proposed to aid intracellular solubilization of 2,4',5-trichlorobiphenyl for complete oxidation by T. versicolor.  相似文献   

19.
Suspensions of rat spleen lymphocyte, murine L1210 lymphoma and HeLa cells were partially depleted of glutathione (GSH) with diethyl maleate and allowed to utilize either [35S]methionine, [35S]cystine or [35S]-cysteine for GSH synthesis. Lymphocytes preferentially utilized cysteine, compared to cystine, at a ratio of about 30 to 1, which was not related to differences in the extent of amino acid uptake. Only HeLa cells displayed a slight utilization of methionine via the cystathionine pathway for cysteine and GSH biosynthesis. HeLa and L1210 cells readily utilized either cystine or cysteine for GSH synthesis. The three cell types accumulated detectable levels of intracellular cysteine glutathione mixed disulfide when incubated in a medium containing a high concentration of cystine. Various enzyme activities were measured including gamma-glutamyl transpeptidase, GSH S-transferase and gamma-cystathionase. These results support the concept of a dynamic interorgan relationship of GSH to plasma cyst(e)ine that may have importance for growth of various cell types in vivo.  相似文献   

20.
Nineteen mutants of Salmonella typhimurium responding to either cysteine or methionine (cym) have been identified amongst cysteine (cys) and methionine (met) auxotrophs. Their growth responses to known intermediates in the related pathways of cysteine and methionine biosynthesis and complementation patterns in abortive transduction tests divided the mutants into six groups. Results of conjugation, cotransduction and deletion mapping experiments substantiated these groups, each of which carried a lesion within known cys genes. Enzyme assays on cym mutants from five of the six groups confirmed their cys gene deficiencies. Growth response and enzyme assay data were not consistent with mutants being leaky cys mutants (spared by methionine). None of eight cym mutants tested were able to convert [35S]methionine into [35S]cysteine. Selenate specifically inhibits the early enzymes of cysteine synthesis. In cym mutants this inhibition was relieved by cysteine but not by methionine, indicating that cym mutants require active cys enzymes for growth on methionine. There was evidence that methionine stimulated in vivo activity of cys enzymes in a cym mutant. Resistance to inhibition by 1,2,4-triazole results in reduced levels of the O-acetyl serine sulphydrylase. In cym mutants triazole resistance gave unstable suppression of the cym phenotype. Cym mutants may result from mutation in regulatory regions common to each of the cys genes, with the precise role of methionine as yet unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号