首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many RNAs, including the ribosome, RNase P, and the group II intron, explicitly require monovalent cations for activity in vitro. Although the necessity of monovalent cations for RNA function has been known for more than a quarter of a century, the characterization of specific monovalent metal sites within large RNAs has been elusive. Here we describe a biochemical approach to identify functionally important monovalent cations in nucleic acids. This method uses thallium (Tl+), a soft Lewis acid heavy metal cation with chemical properties similar to those of the physiological alkaline earth metal potassium (K+). Nucleotide analog interference mapping (NAIM) with the sulfur-substituted nucleotide 6-thioguanosine in combination with selective metal rescue of the interference with Tl+ provides a distinct biochemical signature for monovalent metal ion binding. This approach has identified a K+ binding site within the P4-P6 domain of the Tetrahymena group I intron that is also present within the X-ray crystal structure. The technique also predicted a similar binding site within the Azoarcus group I intron where the structure is not known. The approach is applicable to any RNA molecule that can be transcribed in vitro and whose function can be assayed.  相似文献   

2.
Uchida T  He Q  Ralston CY  Brenowitz M  Chance MR 《Biochemistry》2002,41(18):5799-5806
We have explored the linkage of monovalent and divalent ion binding in the folding of the P4-P6 domain of Tetrahymena thermophila ribozyme by examining the Mg2+-induced folding and the urea-induced denaturation of the folded state as a function of Na+ under equilibrium folding conditions using hydroxyl radical footprinting. These studies allowed a thermodynamic examination of eight discrete protection sites within P4-P6 that are involved in several tertiary structure contacts. Monovalent ions compete with Mg2+ ions in mediating P4-P6 folding. The urea denaturation isotherms demonstrated DeltaDeltaG values of >2 kcal x mol(-1) in experiments conducted in 10 versus 200 mM NaCl at a constant 10 mM MgCl2. However, the individual-site isotherms reported by footprinting revealed that larger than average changes in DeltaG values were localized to specific sites within the Mg2+-rich A-bulge. The competitive effects of monovalent ions were less when K+ rather than Na+ was the monovalent cation present. This result indicates the importance of the specific K+ binding sites that are associated with AA-platform structures to P4-P6 folding and stability. These site-specific footprinting data provide quantitative and site-specific measurements of the ion-linked stability for P4-P6 that are interpreted with respect to crystallographic data.  相似文献   

3.
Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B. subtilis secondary citrate transporters, CitM and CitH, upon expression in Escherichia coli. CitM transported citrate in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+) but not in complex with Ca(2+), Ba(2+), and Sr(2+). CitH transported citrate in complex with Ca(2+), Ba(2+), and Sr(2+) but not in complex with Mg(2+), Ni(2+), Mn(2+), Co(2+), and Zn(2+). Both transporters did not transport free citrate. Nevertheless, free citrate uptake could be demonstrated in B. subtilis, indicating the expression of at least a third citrate transporter, whose identity is not known. For both the CitM and CitH transporters it was demonstrated that the metal ion promoted citrate uptake and, vice versa, that citrate promoted uptake of the metal ion, indicating that the complex is the transported species. The results indicate that CitM and CitH are secondary transporters that transport complexes of divalent metal ions and citrate but with a complementary metal ion specificity. The potential physiological function of the two transporters is discussed.  相似文献   

4.
Butcher SE  Allain FH  Feigon J 《Biochemistry》2000,39(9):2174-2182
Cations play an important role in RNA folding and stabilization. The hairpin ribozyme is a small catalytic RNA consisting of two domains, A and B, which interact in the transition state in an ion-dependent fashion. Here we describe the interaction of mono-, di-, and trivalent cations with the domains of the ribozyme, as studied by homo- and heteronuclear NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping, and intermolecular NOEs indicate that the B domain contains four to five metal binding sites, which bind Mn(2+), Mg(2+), and Co(NH(3))(6)(3+). There is no significant structural change in the B domain upon the addition of Co(NH(3))(6)(3+) or Mg(2+). No specific monovalent ion binding sites exist on the B domain, as determined by (15)NH(4)(+) binding studies. In contrast to the B domain, there are no observable metal ion interactions within the internal loop of the A domain. Model structure calculations of Mn(2+) interactions at two sites within the B domain indicate that the binding sites comprise major groove pockets lined with functional groups oriented so that multiple hydrogen bonds can be formed between the RNA and Mn(H(2)O)(6)(2+) or Co(NH(3))(6)(3+). Site 1 is very similar in geometry to a site within the P4-P6 domain of the Tetrahymena group I intron, while site 2 is unique among known ion binding sites. The site 2 ion interacts with a catalytically essential nucleotide and bridges two phosphates. Due to its location and geometry, this ion may play an important role in the docking of the A and B domains.  相似文献   

5.
The types of binding of different mono- and divalent ions to sites of the constitutive pectic acids of the Nitella cell walls were investigated by performing ion exchanges at different pH. The experimental results were then analysed in the framework of a model derived from the polyelectrolyte theory in which the competitive process of dissociation of the exchange sites and their complexation by counterions are taken into account. Divalent ions Ca2+ and Mn2+ interacted specifically with the exchange sites to give rise to strong thermodynamic association constants. They also induced conformational transitions of the pectic acids which allowed some site-specific association with monovalent ions, although the latter, in the absence of divalent ions, interacted only in a purely electrostatic manner with the charged sites. The complexation phenomenon of the monovalent ions also results in a feedback process which enhances or depletes the site-specific interactions of the divalent counterions. Changes in the counterion association with the wall exchange sites will take place without modification in the wall electrostatic field, when divalent ions are present at the usual pH. These specific interactions are supported by the values of the residual interaction energy, calculated from the variations of the apparent pKa of the polygalacturonic acids with their degree of protonation.  相似文献   

6.
Shim H  Raushel FM 《Biochemistry》2000,39(25):7357-7364
The active site of the bacterial phosphotriesterase (PTE) from Pseudomonas diminuta contains two divalent metal ions and a carboxylated lysine residue. The native enzyme contains two Zn(2+) ions, which can be replaced with Co(2+), Cd(2+), Ni(2+), or Mn(2+) without loss of catalytic activity. Carbon dioxide reacts with the side chain of lysine-169 to form a carbamate functional group within the active site, which then serves as a bridging ligand to the two metal ions. The activation of apo-PTE using variable concentrations of divalent metal ions and bicarbonate was measured in order to establish the mechanism by which the active site of PTE is self-assembled. The time courses for the activation of apo-PTE are pseudo-first-order, and the observed rate constants are directly proportional to the concentration of bicarbonate. In contrast, the apparent rate constants for the activation of apo-PTE decrease as the concentrations of the divalent cations are increased and then become constant at higher concentrations of the divalent metal ions. These results are consistent with a largely ordered kinetic mechanism for the assembly of the binuclear metal center where CO(2)/bicarbonate reacts with the apo-PTE prior to the binding of the two metal ions. When apo-PTE is titrated with 0-8 equiv of Co(2+), Cd(2+), or Zn(2+), the concentration of activated enzyme increases linearly until 2 equiv of metal ion is added and then remains constant at elevated levels of the divalent cations. These results are consistent with the synergistic binding of the two metal ions to the active site, and thus the second metal ion binds more tightly to the protein than does the first metal ion. Measurement of the mean dissociation constant indicates that metal binding to the binuclear metal center is strong [(K(alpha)K(beta))(1/2) = 6.0 x 10(-)(11) M and k(off) = 1.5 x 10(-)(3) min(-)(1) for Zn(2+)]. The removal of the carbamate bridge through the mutagenesis of Lys-169 demonstrates that the carbamate bridge is required for both efficient catalysis and overall stability of the metal center.  相似文献   

7.
Ion interactions with nucleic acids (both DNA and RNA) are an important and evolving field of investigation. Positively charged cations may interact with highly negatively charged nucleic acids via simple electrostatic interactions to help screen the electrostatic repulsion along the nucleic acids and assist their folding and/or compaction. Cations may also bind at specific sites and become integral parts of the structures, possibly playing important enzymatic roles. Two popular methods for computationally exploring a nucleic acid’s ion atmosphere are atomistic molecular dynamics (MD) simulations and the Poisson–Boltzmann (PB) equation. In general, monovalent ion results obtained from MD simulations and the PB equation agree well with experiment. However, Bai et al. (2007) observed discrepancies between experiment and the PB equation while examining the competitive binding of monovalent and divalent ions, with more significant discrepancies for divalent ions. The goal of this project was to thoroughly investigate monovalent (Na+) and divalent (Mg2+) ion distributions formed around a DNA duplex with MD simulations and the PB equation. We simulated three different cation concentrations, and matched the equilibrated bulk ion concentration for our theoretical calculations with the PB equation. Based on previous work, our Mg2+ ions were fully solvated, the expected state of Mg2+ ions when interacting with a duplex, when the production simulations began and remained throughout the simulations (Kirmizialtin, 2010; Robbins, 2012). Na+ ion distributions and number of Na+ ions within 10?Å of the DNA obtained from our two methods agreed well. However, results differed for Mg2+ ions, with a lower number of ions within the cut-off distance obtained from the PB equation when compared to MD simulations. The Mg2+ ion distributions around the DNA obtained via the two methods also differed. Based on our results, we conclude that the PB equation will systematically underestimate Mg2+ ions bound to DNA, and much of this deviation is attributed to dielectric saturation associated with high valency ions.  相似文献   

8.
In this study emission and synchronous-scan fluorescence spectroscopy have been used to investigate the interaction of the class A (oxygen seeking 'hard acid') metal Al(3+), with Suwannee River fulvic acid (SRFA), as well as competition between Al(3+) and several other metal ions (Ca(2+), Mg(2+), Cu(2+), Pd(2+), La(3+), Tb(3+) and Fe(3+)) for binding sites on SRFA. Of the four metal ions possessing very similar (and relatively low) ionic indices (Ca(2+), Mg(2+), Cu(2+) and Pd(2+)) only the latter two paramagnetic ions significantly quenched SRFA fluorescence emission intensity. Of the four metal ions possessing very similar (and relatively low) covalent indices (Ca(2+), Mg(2+), La(3+) and Tb(3+)) only the last paramagnetic ion (Tb(3+)) significantly quenched SRFA fluorescence. None of these metals was able to significantly compete with SRFA-bound Al(3+).Fe(3+), which differs substantially from all of the other metals examined in this study in that it possesses a relatively high ionic index (but not as high as Al(3+)) and a relatively low covalent index (but not as low as Al(3+)), was able not only to quench SRFA fluorescence but also to compete (at least to some extent) with SRFA-bound Al(3+). Synchronous-scan fluorescence SRFA spectra taken in the absence and presence of Fe(3+) and/or Al(3+) support the view that these two metal ions can compete for sites on SRFA. The results of these fluorescence experiments further confirm the Al(3+), and metal ions that have electronic properties somewhat similar to Al(3+) (such as Fe(3+)) are somewhat unique in their ability to interact strongly with binding sites on fulvic acids.  相似文献   

9.
Lead(II)-induced cleavage can be used as a tool to probe conformational changes in RNA. In this report, we have investigated the conformation of M1 RNA, the catalytic subunit of Escherichia coli RNase P, by studying the lead(II)-induced cleavage pattern in the presence of various divalent metal ions. Our data suggest that the overall conformation of M1 RNA is very similar in the presence of Mg(2+), Mn(2+), Ca(2+), Sr(2+) and Ba(2+), while it is changed compared to the Mg(2+)-induced conformation in the presence of other divalent metal ions, Cd(2+) for example. We also observed that correct folding of some M1 RNA domains is promoted by Pb(2+), while folding of other domain(s) requires the additional presence of other divalent metal ions, cobalt(III) hexamine or spermidine. Based on the suppression of Pb(2+) cleavage at increasing concentrations of various divalent metal ions, our findings suggest that different divalent metal ions bind with different affinities to M1 RNA as well as to an RNase P hairpin-loop substrate and yeast tRNA(Phe). We suggest that this approach can be used to obtain information about the relative binding strength for different divalent metal ions to RNA in general, as well as to specific RNA divalent metal ion binding sites. Of those studied in this report, Mn(2+) is generally among the strongest RNA binders.  相似文献   

10.
Edwards TE  Sigurdsson ST 《Biochemistry》2005,44(38):12870-12878
Electron paramagnetic resonance (EPR) spectroscopy was used to examine changes in internal structure and dynamics of the hammerhead ribozyme upon metal ion induced folding, changes in pH, and the presence and absence of ribozyme inhibitors. A nitroxide spin-label was attached to nucleotide U7 of the HH16 catalytic core, and this modified ribozyme was observed to retain catalytic activity. U7 was shown by EPR spectroscopy to be more mobile in the ribozyme-product complex than in either the unfolded ribozyme or the ribozyme-substrate complex. A two-step divalent metal ion dependent folding pathway was observed for the ribozyme-substrate complex with a weak first transition observed at 0.25 mM Mg2+ and a strong second transition observed around 10 mM Mg2+, in agreement with studies using other biophysical and biochemical techniques. Previously, ribozyme activity was observed in the absence of divalent metal ions and the presence of high concentrations of monovalent metal ions, although the activity was less than that observed in the presence of divalent metal ions. Here, we observed similar dynamics for U7 in the presence of 4 M Na+ or Li+, which were distinctively different than that observed in the presence of 10 mM Mg2+, indicating that U7 of the catalytic core forms a different microenvironment under monovalent versus divalent metal ion conditions. Interestingly, the catalytically efficient microenvironment of U7 was similar to that observed in a solution containing 1 M Na+ upon addition of one divalent metal ion per ribozyme. In summary, these results demonstrate that changes in local dynamics, as detected by EPR spectroscopy, can be used to study conformational changes associated with RNA folding and function.  相似文献   

11.
Counterions are required for RNA folding, and divalent metal ions such as Mg(2+) are often critical. To dissect the role of counterions, we have compared global and local folding of wild-type and mutant variants of P4-P6 RNA derived from the Tetrahymena group I ribozyme in monovalent and in divalent metal ions. A remarkably simple picture of the folding thermodynamics emerges. The equilibrium folding pathway in monovalent ions displays two phases. In the first phase, RNA molecules that are initially in an extended conformation enforced by charge-charge repulsion are relaxed by electrostatic screening to a state with increased flexibility but without formation of long-range tertiary contacts. At higher concentrations of monovalent ions, a state that is nearly identical to the native folded state in the presence of Mg(2+) is formed, with tertiary contacts that involve base and backbone interactions but without the subset of interactions that involve specific divalent metal ion-binding sites. The folding model derived from these and previous results provides a robust framework for understanding the equilibrium and kinetic folding of RNA.  相似文献   

12.
Nucleic acids generally reside in cellular aqueous solutions with mixed divalent/monovalent ions, and the competitive binding of divalent and monovalent ions is critical to the structures of nucleic acids because of their polyanionic nature. In this work, we first proposed a general and effective method for simulating a nucleic acid in mixed divalent/monovalent ion solutions with desired bulk ion concentrations via molecular dynamics (MD) simulations and investigated the competitive binding of Mg2+/Na+ ions to various nucleic acids by all-atom MD simulations. The extensive MD-based examinations show that single MD simulations conducted using the proposed method can yield desired bulk divalent/monovalent ion concentrations for various nucleic acids, including RNA tertiary structures. Our comprehensive analyses show that the global binding of Mg2+/Na+ to a nucleic acid is mainly dependent on its structure compactness, as well as Mg2+/Na+ concentrations, rather than the specific structure of the nucleic acid. Specifically, the relative global binding of Mg2+ over Na+ is stronger for a nucleic acid with higher effective surface charge density and higher relative Mg2+/Na+ concentrations. Furthermore, the local binding of Mg2+/Na+ to a phosphate of a nucleic acid mainly depends on the local phosphate density in addition to Mg2+/Na+ concentrations.  相似文献   

13.
Group II introns are catalytic RNA molecules that require divalent metal ions for folding, substrate binding, and chemical catalysis. Metal ion binding sites in the group II core have now been elucidated by monitoring the site-specific RNA hydrolysis patterns of bound ions such as Tb(3+) and Mg(2+). Major sites are localized near active site elements such as domain 5 and its surrounding tertiary interaction partners. Numerous sites are also observed at intron substructures that are involved in binding and potentially activating the splice sites. These results highlight the locations of specific metal ions that are likely to play a role in ribozyme catalysis.  相似文献   

14.
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.  相似文献   

15.
The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.  相似文献   

16.
Ion selectivities for Ca(2+) signaling pathways of 33 metal ions were examined based on the Ca(2+)-dependent on/off switching mechanism of calmodulin (CaM): Ca(2+) ion-induced selective binding of CaM-Ca(2+) ion complex to the target peptide was observed as an increase in surface plasmon resonance (SPR) signals. As the target peptide, M13 of 26-amino-acid residues derived from skeletal muscle myosin light-chain kinase was immobilized in the dextran matrix, over which sample solutions containing CaM and each metal ion were injected in a flow system. Large changes in SPR signals were also observed for Sr(2+), Ba(2+), Cd(2+), Pb(2+), Y(3+) and trivalent lanthanide ions, thereby indicating that not only Ca(2+) but also these metal ions induce the formation of CaM-M13-metal ion ternary complex. No SPR signal was, however, induced by Mg(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+) and all monovalent metal ions examined. The latter silent SPR signal indicates that these ions, even if they bind to CaM, are incapable of forming the CaM-M13-metal ion ternary complex. Comparing the obtained SPR results with ionic radii of those metal ions, it was found that all cations examined with ionic radii close to or greater than that of Ca(2+) induced the formation of the CaM-metal-M13 ternary complex, whereas those with smaller ionic radii were not effective, or much less so. Since these results are so consistent with earlier systematic data for the effects of various metal ions on the conformational changes of CaM, it is concluded that the present SPR analysis may be used for a simple screening and evaluating method for physiologically relevant metal ion selectivity for the Ca(2+) signaling via CaM based on CaM/peptide interactions.  相似文献   

17.
Batey RT  Doudna JA 《Biochemistry》2002,41(39):11703-11710
The signal recognition particle (SRP) targets proteins to the endoplasmic reticulum in eukaryotes or to the inner membrane in prokaryotes by binding to hydrophobic signal sequences. Signal peptide recognition occurs within the highly conserved RNA-protein core of the SRP, underscoring the importance of this complex in SRP function. Structural analysis of the RNA and protein components of the prokaryotic SRP in the free and bound states revealed that the RNA undergoes a significant conformational change upon protein binding involving the uptake of several monovalent and divalent cations. To investigate the role of these metal ions in formation of the functional SRP complex, we used binding affinity assays and X-ray crystallography to analyze the specificity and energetic contributions of mono- and divalent metal ions bound in the RNA. Our results demonstrate that several metal ion binding sites important for RNA conformation can accommodate chemically distinct ions, often without affecting the structure of the complex. Thus, while these metal ions are highly ordered and essential for the formation and stability of the SRP complex, they behave like nonspecific metal ions.  相似文献   

18.
Wrzesinski J  Ciesiolka J 《Biochemistry》2005,44(16):6257-6268
Studies on RNA motifs capable of binding metal ions have largely focused on Mg(2+)-specific motifs, therefore information concerning interactions of other metal ions with RNA is still very limited. Application of the in vitro selection approach allowed us to isolate two RNA aptamers that bind Co(2+) ions. Structural analysis of their secondary structures revealed the presence of two motifs, loop E and "kissing" loop complex, commonly occurring in RNA molecules. The Co(2+)-induced cleavage method was used for identification of Co(2+)-binding sites after the determination of the optimal cleavage conditions. In the aptamers, Co(2+) ions seem to bind to N7 atoms of purines, inducing cleavage of the adjacent phosphodiester bonds, similarly as is the case with yeast tRNA(Phe). Although the in vitro selection experiment was carried out in the presence of Co(2+) ions only, the aptamers displayed broader metal ions specificity. This was shown by inhibition of Co(2+)-induced cleavages in the presence of the following transition metal ions: Zn(2+), Cd(2+), Ni(2+), and Co(NH(3))(6)(3+) complex. On the other hand, alkaline metal ions such as Mg(2+), Ca(2+), Sr(2+), and Ba(2+) affected Co(2+)-induced cleavages only slightly. Multiple metal ions specificity of Co(2+)-binding sites has also been reported for other in vitro selected or natural RNAs. Among many factors that influence metal specificity of the Co(2+)-binding pocket, chemical properties of metal ions, such as their hardness as well as the structure of the coordination site, seem to be particularly important.  相似文献   

19.
Four different techniques, equilibrium dialysis, protection of enzymatic activity against chemical inactivation, 31P relaxation rats, and water proton relaxation rates, are used to study divalent metal ion, inorganic phosphate, and inorganic phosphate analogue binding to yeast inorganic pyrophosphatase, EC 3.6.1.1. A major new finding is that the binding of a third divalent metal ion per subunit, which has elsewhere been implicated as being necessary for enzymatic activity [Springs, B., Welsh, K. M., & Cooperman, B. S. (1981) Biochemistry (in press)], only becomes evident in the presence of added inorganic phosphate and that, reciprocally, inorganic phosphate binding to both its high- and low-affinity sites on the enzyme is markedly enhanced in the presence of divalent metal ions, with Mn2+ causing an especially large increase in affinity. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide. The results obtained allow evaluation of all of the relevant equilibrium constants for the binding of Mn2+ and inorganic phosphate or of Co2+ and inorganic phosphate to the enzyme and show that the high-affinity site has greater specificity for inorganic phosphate than the low-affinity site. In addition, they provide evidence against divalent metal ion inner sphere binding to phosphate for enzyme subunits having one or two divalent metal ions bound per subunit and evidence for a conformational change restricting active-site accessibility to solvent on the binding of a third divalent metal ion per subunit.  相似文献   

20.
Both monovalent cations and magnesium ions are well known to be essential for the folding and stability of large RNA molecules that form complex and compact structures. In the atomic structure of the large ribosomal subunit from Haloarcula marismortui, we have identified 116 magnesium ions and 88 monovalent cations bound principally to rRNA. Although the rRNA structures to which these metal ions bind are highly idiosyncratic, a few common principles have emerged from the identities of the specific functional groups that coordinate them. The nonbridging oxygen of a phosphate group is the most common inner shell ligand of Mg++, and Mg++ ions having one or two such inner shell ligands are very common. Nonbridging phosphate oxygens and the heteroatoms of nucleotide bases are common outer shell ligands for Mg++ ions. Monovalent cations usually interact with nucleotide bases and protein groups, although some interactions with nonbridging phosphate oxygens are found. The most common monovalent cation binding site is the major groove side of G-U wobble pairs. Both divalent and monovalent cations stabilize the tertiary structure of 23S rRNA by mediating interactions between its structural domains. Bound metal ions are particularly abundant in the region surrounding the peptidyl transferase center, where stabilizing cationic tails of ribosomal proteins are notably absent. This may point to the importance of metal ions for the stabilization of specific RNA structures in the evolutionary period prior to the appearance of proteins, and hence many of these metal ion binding sites may be conserved across all phylogenetic kingdoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号