首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox poise of the mitochondrial glutathione pool is central in the response of mitochondria to oxidative damage and redox signaling, but the mechanisms are uncertain. One possibility is that the oxidation of glutathione (GSH) to glutathione disulfide (GSSG) and the consequent change in the GSH/GSSG ratio causes protein thiols to change their redox state, enabling protein function to respond reversibly to redox signals and oxidative damage. However, little is known about the interplay between the mitochondrial glutathione pool and protein thiols. Therefore we investigated how physiological GSH/GSSG ratios affected the redox state of mitochondrial membrane protein thiols. Exposure to oxidized GSH/GSSG ratios led to the reversible oxidation of reactive protein thiols by thiol-disulfide exchange, the extent of which was dependent on the GSH/GSSG ratio. There was an initial rapid phase of protein thiol oxidation, followed by gradual oxidation over 30 min. A large number of mitochondrial proteins contain reactive thiols and most of these formed intraprotein disulfides upon oxidation by GSSG; however, a small number formed persistent mixed disulfides with glutathione. Both protein disulfide formation and glutathionylation were catalyzed by the mitochondrial thiol transferase glutaredoxin 2 (Grx2), as were protein deglutathionylation and the reduction of protein disulfides by GSH. Complex I was the most prominent protein that was persistently glutathionylated by GSSG in the presence of Grx2. Maintenance of complex I with an oxidized GSH/GSSG ratio led to a dramatic loss of activity, suggesting that oxidation of the mitochondrial glutathione pool may contribute to the selective complex I inactivation seen in Parkinson's disease. Most significantly, Grx2 catalyzed reversible protein glutathionylation/deglutathionylation over a wide range of GSH/GSSG ratios, from the reduced levels accessible under redox signaling to oxidized ratios only found under severe oxidative stress. Our findings indicate that Grx2 plays a central role in the response of mitochondria to both redox signals and oxidative stress by facilitating the interplay between the mitochondrial glutathione pool and protein thiols.  相似文献   

2.
Modulation of cellular thiols is an effective therapeutic strategy, particularly in the treatment of AIDS. Lipoic acid, a metabolic antioxidant, functions as a redox modulator and has proven clinically beneficial effects. It is also used as a dietary supplement. We utilized the specific capabilities of N-ethylmaleimide to block total cellular thiols, phenylarsine oxide to block vicinal dithiols, and buthionine sulfoximine to deplete cellular GSH to flow cytometrically investigate how these thiol pools are influenced by exogenous lipoate treatment. Low concentrations of lipoate and its analogue lipoamide increased Jurkat cell GSH in a dose-dependent manner between 10 (25 μM for lipoamide) to 100 μM. This was also observed in mitogenically stimulated peripheral blood lymphocytes (PBL). Studies with Jurkat cells and its Wurzburg subclone showed that lipoate dependent increase in cellular GSH was similar in CD4+ and − cells. Chronic (16 week) exposure of cells to lipoate resulted in further increase of total cellular thiols, vicinal dithiols, and GSH. High concentration (2 and 5 mM) of lipoate exhibited cell shrinkage, thiol depletion, and DNA fragmentation effects. Based on similar effects of octanoic acid, the cytotoxic effects of lipoate at high concentration could be attributed to its fatty acid structure. In certain diseases such as AIDS and cancer, elevated plasma glutamate lowers cellular GSH by inhibiting cystine uptake. Low concentrations of lipoate and lipoamide were able to bypass the adverse effect of elevated extracellular glutamate. A heterogeneity in the thiol status of PBL was observed. Lipoate, lipoamide, or N-acetylcysteine corrected the deficient thiol status of cell subpopulations. Hence, the favorable effects of low concentrations of lipoate treatment appears clinically relevant. © 1997 Elsevier Science Inc.  相似文献   

3.
The role of thiols in cellular response to radiation and drugs   总被引:3,自引:0,他引:3  
Cellular nonprotein thiols (NPSH) consist of glutathione (GSH) and other low molecular weight species such as cysteine, cysteamine, and coenzyme A. GSH is usually less than the total cellular NPSH, and with thiol reactive agents, such as diethyl maleate (DEM), its rate of depletion is in part dependent upon the cellular capacity for its resynthesis. If resynthesis is blocked by buthionine-S,R-sulfoximine(BSO), the NPSH, including GSH, is depleted more rapidly, Cellular thiol depletion by diamide, N-ethylmaleimide, and BSO may render oxygenated cells more sensitive to radiation. These cells may or may not show a reduction in the oxygen enhancement ratio (OER). Human A549 lung carcinoma cells depleted of their NPSH either by prolonged culture or by BSO treatment do not show a reduced OER but do show increased aerobic responses to radiation. Some nitroheterocyclic radiosensitizing drugs also deplete cellular thiols under aerobic conditions. Such reactivity may be the reason that they show anomalous radiation sensitization (i.e., better than predicted on the basis of electron affinity). Other nitrocompounds, such as misonidazole, are activated under hypoxic conditions to radical intermediates. When cellular thiols are depleted peroxide is formed. Under hypoxic conditions thiols are depleted because metabolically reduced intermediates react with GSH instead of oxygen. Thiol depletion, under hypoxic conditions, may be the reason that misonidazole and other nitrocompounds show an extra enhancement ratio with hypoxic cells. Thiol depletion by DEM or BSO alters the radiation response of hypoxic cells to misonidazole. In conclusion, we propose an altered thiol model which includes a mechanism for thiol involvement in the aerobic radiation response of cells. This mechanism involves both thiol-linked hydrogen donation to oxygen radical adducts to produce hydroperoxides followed by a GSH peroxidase-catalyzed reduction of the hydroperoxides to intermediates entering into metabolic pathways to produce the original molecule.  相似文献   

4.
Cultured human lung carcinoma cells (A549) were incubated in a calcium-free medium containing calcium chelators (EGTA, 1-10 mM or BAPTA, 5 mM) for 1 hour at 37 degrees C. With limited toxicity, the presence of calcium chelators resulted in a decrease of cellular GSH and detachment of the cells from the tissue culture flask. The permeable EGTA tetraacetoxymethyl ester (0.5mM-5 mM) caused a decrease in the cellular GSH content without cell detachment. GSH was not oxidized to GSSG nor formed mixed disulfides with protein thiols. AT-125, a gamma-glutamyl transpeptidase inhibitor, prevented detachment, but not the efflux of cellular GSH. Pretreatment with two impermeable compounds (ruthenium red, 100 microM and neomycin, 0.5-10 mM) protected the cells from detachment and prevented the decrease in intracellular GSH. The presence of calcium in the medium during the EGTA and BAPTA treatments also protected the cells. Calcium associated with the cytoplasmic membrane phospholipids or proteins appears important to limit membrane permeability for GSH efflux and to maintain cell attachment.  相似文献   

5.
Conway ME  Coles SJ  Islam MM  Hutson SM 《Biochemistry》2008,47(19):5465-5479
Redox regulation of proteins through oxidation and S-thiolation are important regulatory processes, acting in both a protective and adaptive role in the cell. In the current study, we investigated the sensitivity of the neuronal human cytosolic branched-chain aminotransferase (hBCATc) protein to oxidation and S-thiolation, with particular attention focused on functionality and modulation of its CXXC motif. Thiol specific reagents showed significant redox cycling between the reactive thiols and the TNB anion, and using NEM, four of the six reactive thiols are critical to the functionality of hBCATc. Site-directed mutagenesis studies supported these findings where a reduced kcat (ranging from 50-70% of hBCATc) for C335S, C338S, C335/8S, and C221S, respectively, followed by a modest effect on C242S was observed. However, only the thiols of the CXXC motif (C335 and C338) were directly involved in the reversible redox regulation of hBCATc through oxidation (with a loss of 40-45% BCAT activity on air oxidation alone). Concurrent with these findings, under air oxidation, the X-ray crystallography structure of hBCATc showed a disulphide bond between C335 and C338. Further oxidation of the other four thiols was not evident until levels of hydrogen peroxide were elevated. S-thiolation experiments of hBCATc exposed to GSH provided evidence for significant recycling between GSH and the thiols of hBCATc, which implied that under reducing conditions GSH was operating as a thiol donor with minimal S-glutathionylation. Western blot analysis of WT hBCATc and mutant proteins showed that as the ratio of GSH:GSSG decreased significant S-glutathionylation occurred (with a further loss of 20% BCAT activity), preferentially at the thiols of the CXXC motif, suggesting a shift in function toward a more protective role for GSH. Furthermore, the extent of S-glutathionylation increased in response to oxidative stress induced by hydrogen peroxide potentially through a C335 sulfenic acid intermediate. Deglutathionylation of hBCATc-SSG using the GSH/glutaredoxin system provides evidence that this protein may play an important role in cellular redox regulation. Moreover, redox associations between hBCATc and several neuronal proteins were identified using targeted proteomics. Thus, our data provides strong evidence that the reactive thiol groups, in particular the thiols of the CXXC motif, play an integral role in redox regulation and that hBCATc has redox mediated associations with several neuronal proteins involved in G-protein cell signaling, indicating a novel role for hBCATc in cellular redox control.  相似文献   

6.
Human lung carcinoma cells (A549) were oxidatively stressed with mildly-toxic or non-toxic amounts of hydrogen peroxide (H2O2, 0.1 mM to 120 mM) for 5 min. Hydrogen peroxide exposure resulted in a dose dependent inhibition of binding (pH 7) of the thiol reagent iodoacetic acid (IAA) to a 38 kDa cell protein. Incubation of cells in saline for 60 min following H2O2 removal restored the ability of IAA to bind to the protein. Treatment with 20 mM dithiothreitol or 2 M urea also restored IAA binding, but 10% Triton X102 or 1 mM Brij 58 had no effect. Increasing to pH 11 during the IAA binding also increased thiol availability. Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) has been identified as the protein undergoing thiol/disulfide redox status and enzymic activity changes.  相似文献   

7.
The skeletal muscle Ca(2+) release channel/ryanodine receptor (RyR1) is a prototypic redox-responsive ion channel. Nearly half of the 101 cysteines per RyR1 subunit are kept in a reduced (free thiol) state under conditions comparable with resting muscle. Here we assessed the effects of physiological determinants of cellular redox state (oxygen tension, reduced (GSH) or oxidized (GSSG) glutathione, and NO/O(2) (released by 3-morpholinosydnonimine)) on RyR1 redox state and activity. Oxidation of approximately 10 RyR1 thiols (from approximately 48 to approximately 38 thiols/RyR1 subunit) had little effect on channel activity. Channel activity increased reversibly as the number of thiols was further reduced to approximately 23/subunit, whereas more extensive oxidation (to approximately 13 thiols/subunit) inactivated the channel irreversibly. Neither S-nitrosylation nor tyrosine nitration contributed to these effects. The results identify at least three functional classes of RyR1 thiols and suggest that 1) the channel may be protected from oxidation by a large reservoir of functionally inert thiols, 2) the channel may be designed to respond to moderate oxidative stress by a change in activation setpoint, and 3) the channel is susceptible to oxidative injury under more extensive conditions.  相似文献   

8.
We have studied erythrocyte Ca2+-ATPase as a model target for elucidating effects of activated oxygen on the erythrocyte membrane. Either intracellular or extracellular generation of activated oxygen causes parallel decrements in Ca2+-ATPase activity and cytoplasmic GSH, oxidation of membrane protein thiols, and lipid peroxidation. Subsequent incubation with either dithiothreitol or glucose allows only partial recovery of Ca2+-ATPase, indicating both reversible and irreversible components which are modeled herein using diamide and t-butyl hydroperoxide. The reversible component reflects thiol oxidation, and its recovery depends upon GSH restoration. The irreversible component is largely due to lipid peroxidation, which appears to act through mechanisms involving neither malondialdehyde nor secondary thiol oxidation. However, some portion of the irreversible component could also reflect oxidation of thiols which are inaccessible for reduction by GSH, since we demonstrate existence of different classes of thiols relevant to Ca2+-ATPase activity. Activated oxygen has an exaggerated effect on Ca2+-ATPase of GSH-depleted cells. Sickle erythrocytes treated with dithiothreitol show a heterogeneous response of Ca2+-ATPase activity. These findings are potentially relevant to oxidant-induced hemolysis. They also may be pertinent to oxidative alteration of functional or structural membrane components in general, since many components share with Ca2+-ATPase both free thiols and close proximity to unsaturated lipid.  相似文献   

9.
Inhibition of influenza infection by glutathione   总被引:6,自引:0,他引:6  
Infection by RNA virus induces oxidative stress in host cells. Accumulating evidence suggests that cellular redox status plays an important role in regulating viral replication and infectivity. In this study, experiments were performed to determine whether the thiol antioxidant glutathione (GSH) blocked influenza viral infection in cultures of Madin-Darby canine kidney cells or human small airway epithelial cells. Protection against production of active virus particles was observed at a low (0.05-0.1) multiplicity of infection (MOI). GSH inhibited expression of viral matrix protein and inhibited virally induced caspase activation and Fas upregulation. In BALB/c mice, inclusion of GSH in the drinking water decreased viral titer in both lung and trachea homogenates 4 d after intranasal inoculation with a mouse-adapted influenza strain A/X-31. Together, the data suggest that the thiol antioxidant GSH has an anti-influenza activity in vitro and in vivo. Oxidative stress or other conditions that deplete GSH in the epithelium of the oral, nasal, and upper airway may, therefore, enhance susceptibility to influenza infection.  相似文献   

10.
Biological thiol compounds are classified into high-molecular-mass protein thiols and low-molecular-mass free thiols. Endogenous low-molecular-mass thiol compounds, namely, reduced glutathione (GSH) and its corresponding disulfide, glutathione disulfide (GSSG), are very important molecules that participate in a variety of physiological and pathological processes. GSH plays an essential role in protecting cells from oxidative and nitrosative stress and GSSG can be converted into the reduced form by action of glutathione reductase. Measurement of GSH and GSSG is a useful indicator of oxidative stress and disease risk. Many publications have reported successful determination of GSH and GSSG in biological samples. In this article, we review newly developed techniques, such as liquid chromatography coupled with mass spectrometry and tandem mass spectrometry, for identifying GSH bound to proteins, or for localizing GSH in bound or free forms at specific sites in organs and in cellular locations.  相似文献   

11.
The thiol redox status of cultured human bronchial fibroblasts has been characterized at various growth conditions using thiol-reactive monobromobimane, with or without the combination of dithiotreitol, a strong reducing agent. This procedure has enabled measurement of the cellular content of reduced glutathione (GSH), total glutathione equivalents, cysteine, total cysteine equivalents, protein sulfhydryls, protein disulfides, and mixed disulfides. Passage of cells with trypsin perturbs the cellular thiol homeostasis and causes a 50% decrease in the GSH content, whereas the total cysteine content is subsequently increased severalfold during cell attachment. During subsequent culture, transient severalfold increased levels of GSH, protein-bound thiols, and protein disulfides are reached, whereas the total cysteine content gradually declines. These changes in the redox balance of both low-molecular-weight thiols and protein-bound thiols correlate with cell proliferation and mostly precede the major growth phase. When the onset of proliferation is inhibited by maintenance of cells in medium containing decreased amounts of serum, the GSH content remains significantly increased. Subsequent stimulation of growth by addition of serum results in decreased GSH levels at the onset of proliferation. In thiol-depleted medium, proliferation is also inhibited, whereas GSH levels are increased to a lesser extent than in complete medium. Exposure to buthionine sulfoximine inhibits growth, prevents GSH synthesis, and results in accumulation of total cysteine, protein-bound cysteine, and protein disulfides. For extracellular cystine, variable rates of cellular uptake correlate with the initial increase in the total cysteine content observed following subculture and with the GSH peak that precedes active proliferation. The results strongly suggest that specific fluctuations in the cellular redox balance of both free low-molecular-weight thiols and protein sulfhydryls are involved in growth regulation of normal human fibroblasts.  相似文献   

12.
Garant MJ  Kole S  Maksimova EM  Bernier M 《Biochemistry》1999,38(18):5896-5904
In this study, we used maleimidobutyrylbiocytin to examine possible alteration that may occur in the redox state of the insulin receptor (IR) sulfhydryl groups in response to reduced glutathione (GSH) or N-acetyl-L-cysteine (NAC). Short-term treatment of intact cells expressing large numbers of IR with GSH or NAC led to a rapid and reversible reduction of IR alpha-subunit disulfides, without affecting the receptor beta-subunit thiol reactivity. The overall integrity of the oligomeric structure of IR was maintained, indicating that neither class I nor class II disulfides were targeted by these agents. Similar findings were obtained in cells transfected with IR mutants lacking cysteine524, one of the class I disulfides that link the two IR alpha-subunits. Membrane-associated thiols did not participate in GSH- or NAC-mediated reduction of IR alpha-subunit disulfides. No difference in insulin binding was observed in GSH-treated cells; however, ligand-mediated increases in IR autophosphorylation, tyrosine phosphorylation of cellular substrates, and dual phosphorylation of the downstream target mitogen-activated protein kinase were inhibited at concentrations of GSH (10 mM or greater) that yielded a significant increase in IR alpha-subunit thiol reactivity. GSH did not affect IR signaling in the absence of insulin. Our results provide the first evidence that the IR alpha-subunit contains a select group of disulfides whose redox status can be rapidly altered by the reducing agents GSH and NAC.  相似文献   

13.
alpha-Hederin, a pentacyclic triterpene saponin isolated from the seeds of Nigella sativa, was recently reported to have potent in vivo antitumor activity against LL/2 (Lewis Lung carcinoma) in BDF1 mice. In this study we observed that alpha-hederin caused a dose- and time-dependent increase in apoptosis of murine leukemia P388 cells. In order to evaluate the possible mechanisms for apoptosis, the effects of alpha-hederin on intracellular thiol concentration, including reduced glutathione (GSH), and protein thiols, and the effects of pretreatment with N-acetlycysteine (NAC), a precursor of intracellular GSH synthesis, or buthionine sulfoxime (BSO), a specific inhibitor of intracellular GSH synthesis, on alpha-hederin-induced apoptosis were investigated. It was found that alpha-hederin rapidly depleted intracellular GSH and protein thiols prior to the occurrence of apoptosis. NAC significantly alleviated alpha-hederin-induced apoptosis, while BSO augmented alpha-hederin-induced apoptosis significantly. The depletion of cellular thiols observed after alpha-hederin treatment caused disruption of mitochondrial membrane potential (deltapsi(m)) and subsequently increased the production of reactive oxygen species (ROS) in P388 cells at an early time point. Bongkrekic acid (BA), a ligand of the mitochondrial adenine nucleotide translocator, and cyclosporin (CsA) attenuated the alpha-hederin-induced loss of deltapsi(m), and ROS production. Thus, oxidative stress after alpha-hederin treatment is an important event in alpha-hederin-induced apoptosis. As observed in this study, permeability transition of mitochondrial membrane occurs after depletion of GSH and precedes a state of reactive oxygen species (ROS) generation. Further, we observed that alpha-hederin caused the release of cytochrome c from the mitochondria to cytosol, leading to caspase-3 activation. Our findings thus demonstrate that changes in intracellular thiols and redox status leading to perturbance of mitochondrial functions are important components in the mechanism of alpha-hederin-induced cell death.  相似文献   

14.
Radical-free biology of oxidative stress   总被引:3,自引:0,他引:3  
  相似文献   

15.
The tripeptide glutathione (GSH) and its oxidized form glutathione disulfide (GSSG) constitute a key redox couple in cells. In particular, they partner protein thiols in reversible thiol–disulfide exchange reactions that act as switches in cell signaling and redox homeostasis. Disruption of these processes may impair cellular redox signal transduction and induce redox misbalances that are linked directly to aging processes and to a range of pathological conditions including cancer, cardiovascular diseases and neurological disorders. Glutaredoxins are a class of GSH-dependent oxidoreductase enzymes that specifically catalyze reversible thiol–disulfide exchange reactions between protein thiols and the abundant thiol pool GSSG/GSH. They protect protein thiols from irreversible oxidation, regulate their activities under a variety of cellular conditions and are key players in cell signaling and redox homeostasis. On the other hand, they may also function as metal-binding proteins with a possible role in the cellular homeostasis and metabolism of essential metals copper and iron. However, the molecular basis and underlying mechanisms of glutaredoxin action remain elusive in many situations. This review focuses specifically on these aspects in the context of recent developments that illuminate some of these uncertainties.  相似文献   

16.
To understand and eventually predict the effects of changing redox conditions and oxidant levels on the physiology of an organism, it is essential to gain knowledge about its redoxome: the proteins whose activities are controlled by the oxidation status of their cysteine thiols. Here, we applied the quantitative redox proteomic method OxICAT to Saccharomyces cerevisiae and determined the in vivo thiol oxidation status of almost 300 different yeast proteins distributed among various cellular compartments. We found that a substantial number of cytosolic and mitochondrial proteins are partially oxidized during exponential growth. Our results suggest that prevailing redox conditions constantly control central cellular pathways by fine-tuning oxidation status and hence activity of these proteins. Treatment with sublethal H(2)O(2) concentrations caused a subset of 41 proteins to undergo substantial thiol modifications, thereby affecting a variety of different cellular pathways, many of which are directly or indirectly involved in increasing oxidative stress resistance. Classification of the identified protein thiols according to their steady-state oxidation levels and sensitivity to peroxide treatment revealed that redox sensitivity of protein thiols does not predict peroxide sensitivity. Our studies provide experimental evidence that the ability of protein thiols to react to changing peroxide levels is likely governed by both thermodynamic and kinetic parameters, making predicting thiol modifications challenging and de novo identification of peroxide sensitive protein thiols indispensable.  相似文献   

17.
Protein thiol oxidation subserves important biological functions and constitutes a sequel of reactive oxygen species toxicity. We developed two distinct thiol-labeling approaches to identify oxidized cytoplasmic protein thiols in Saccharomyces cerevisiae. Inone approach, we used N-(6-(biotinamido)hexyl)-3'-(2'-pyridyldithio)-propionamide to purify oxidized protein thiols, and in the other, we used N-[(14)C]ethylmaleimide to quantify this oxidation. Both approaches showed a large number of the same proteins with oxidized thiols ( approximately 200), 64 of which were identified by mass spectrometry. We show that, irrespective of its mechanism, protein thiol oxidation is dependent upon molecular O(2). We also show that H(2)O(2) does not cause de novo protein thiol oxidation, but rather increases the oxidation state of a select group of proteins. Furthermore, our study reveals contrasted differences in the oxidized proteome of cells upon inactivation of the thioredoxin or GSH pathway suggestive of very distinct thiol redox control functions, assigning an exclusive role for thioredoxin in H(2)O(2) metabolism and the presumed thiol redox buffer function for GSH. Taken together, these results suggest the high selectivity of cytoplasmic protein thiol oxidation.  相似文献   

18.
Reaction of certain amino acids, peptides, and proteins with singlet oxygen yields substrate-derived peroxides. Recent studies have shown that these species are formed within intact cells and can inactivate key cellular enzymes. This study examines potential mechanisms by which cells might remove or detoxify such peroxides. It is shown that catalase, horseradish peroxidase, and Cu/Zn superoxide dismutase do not react rapidly with these peroxides. Oxymyoglobin and oxyhemoglobin, but not the met (Fe3+) forms of these proteins, react with peptide but not protein, peroxides with oxidation of the heme iron. Glutathione peroxidase, in the presence of reduced glutathione (GSH) rapidly removes peptide, but not protein, peroxides, consistent with substrate size being a key factor. Protein thiols, GSH, other low-molecular-weight thiols, and the seleno-compound ebselen react, in a nonstoichiometric manner, with both peptide and protein peroxides. Cell lysate studies show that thiol consumption and peroxide removal occur in parallel; the stoichiometry of these reactions suggests that thiol groups are the major direct, or indirect, reductants for these species. Ascorbic acid and some derivatives can remove both the parent peroxides and radicals derived from them, whereas methionine and the synthetic phenolic antioxidants Probucol and BHT show little activity. These studies show that cells do not have efficient enzymatic defenses against protein peroxides, with only thiols and ascorbic acid able to remove these materials; the slow removal of these species is consistent with protein peroxides playing a role in cellular dysfunction resulting from oxidative stress.  相似文献   

19.

Background

There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols.

Methodology/Principal Findings

To test this hypothesis, we used the sesquiterpene lactone parthenolide, a known anti-cancer agent. Using flow cytometry, and western blotting to label free thiols with Alexa Fluor 633 C5 maleimide dye and N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM), respectively, we show that parthenolide decreases the level of free exofacial thiols on Granta mantle lymphoma cells. In addition, we used immuno-precipitation techniques to identify the central redox regulator thioredoxin, as one of the surface protein thiol targets modified by parthenolide. To examine the functional role of parthenolide induced surface protein thiol modification, we pretreated Granta cells with cell impermeable glutathione (GSH), prior to exposure to parthenolide, and showed that GSH pretreatment; (a) inhibited the interaction of parthenolide with exofacial thiols; (b) inhibited parthenolide mediated activation of JNK and inhibition of NFκB, two well established mechanisms of parthenolide activity and; (c) blocked the cytotoxic activity of parthenolide. That GSH had no effect on the parthenolide induced generation of intracellular reactive oxygen species supports the fact that GSH had no effect on intracellular redox. Together these data support the likelihood that GSH inhibits the effect of parthenolide on JNK, NFκB and cell death through its direct inhibition of parthenolide''s modulation of exofacial thiols.

Conclusions/Significance

Based on these data, we postulate that one component of parthenolide''s anti-lymphoma activity derives from its ability to modify the redox state of critical exofacial thiols. Further, we propose that cancer cell exofacial thiols may be important and novel targets for therapy.  相似文献   

20.
Vitamin E protection against chemical-induced toxicity to isolated hepatocytes was examined during an imbalance in the thiol redox system. Intracellular reduced glutathione (GSH) was depleted by two chemicals of distinct mechanisms of action: adriamycin, a cancer chemotherapeutic agent that undergoes redox cycling, producing reactive oxygen species that consume GSH, and ethacrynic acid, a direct depleter of GSH. The experimental system used both nonstressed vitamin E-adequate isolated rat hepatocytes and compromised hepatocytes subjected to physiologically induced stress, generated by incubation in calcium-free medium. At doses whereby intracellular GSH was near total depletion, cell injury induced by either chemical was found to follow the depletion of cellular alpha-tocopherol, regardless of the status of the GSH redox system. Changes in protein thiol contents of the cells closely paralleled the changes in alpha-tocopherol contents throughout the incubation period. Supplementation of the calcium-depleted hepatocytes with alpha-tocopheryl succinate (25 microM) markedly elevated their alpha-tocopherol content and prevented the toxicities of both drugs. The prevention of cell injury and the elevation in alpha-tocopherol contents were both associated with a prevention of the loss in cellular protein thiols in the near total absence of intracellular GSH. The mechanism of protection by vitamin E against chemical-induced toxicity to hepatocytes may therefore be an alpha-tocopherol-dependent maintenance of cellular protein thiols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号