首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Changes in the extracellular levels of excitatory and inhibitory amino acid transmitters were studied in the rat striatum during penumbral ischaemia using intracerebral microdialysis. Effects of penumbral forebrain ischaemia were compared with those of ischaemia with sustained anoxic depolarisation and K+ (100 m M ). Comparisons were also made between different groups of animals at 2 and 24 h after dialysis probe implantation. The K+ stimulus did not provoke any release of excitatory amino acids in the 24-h group, probably reflecting a decrease of functional synapses adjacent to the probe. During 30 min of penumbral ischaemia, excitatory amino acids did not reach critical concentrations in the extracellular fluid, and increases in levels of inhibitory/modulatory amino acids were similar. On the other hand, severe transient ischaemia resulted in massive synchronous release of many neuroactive excitatory and inhibitory compounds, in both the 2- and 24-h groups. These and other data suggest that changes during severe ischaemia may arise from both neurotransmitter and metabolic pools. It is concluded that is- chaemic damage in the penumbra may not be related to extracellular neuroactive amino acid changes generated within this region.  相似文献   

2.
Abstract— We have measured changes in the levels of do-pamine (DA), 5-hydroxytryptamine (5-HT), and their metabolites in striatal dialysates during 30 min of global ischaemia under simulated penumbral conditions, and compared these with neurological assessments over the following 7 days and histological damage at the end of this period. On the basis of dialysate DA levels during ischaemia, the animals fell into two subgroups; group I, with little or no DA increase (less than three times basal); and group II, with a much larger increase (greater than 30 times basal). Changes in 5-HT, though of lesser magnitude, showed a similar pattern. These findings may indicate that the amine changes depend on a critical reduction of blood flow within the range obtained by our experimental procedure. Levels of deaminated metabolites fell in all ischaemic animals, with comparable decreases of 3, 4-dihydroxyphenylacetic acid plus homovanillic acid in both groups. Decreases of 5-hydroxyindoleacetic acid were greater in group II than in group I, but the relative differences between the groups were much less marked than those of 5-HT. These neuro-chemical findings suggest that moderate ischaemia affects extracellular amine and deaminated metabolite levels by different mechanisms. Only one of the ischaemic rats (a member of group II) showed a marked neurological deficit, but histological damage, as indicated by neuronal loss and gliosis in vulnerable structures, was apparent in all ischaemic animals. Although damage tended to be greater in animals with marked increases in extracellular monoamines, differences were not significant. These findings suggest that the large increases of extracellular DA and 5-HT that sometimes occur in ischaemia may play a relatively small part in the genesis of neuronal damage, though these transmitters may well have a permissive role.  相似文献   

3.
The effect of a previous K± stimulation on striatal extracellular monoamine levels during global ischaemia, under simulated penumbral conditions, was investigated. Rats were implanted with microdialysis probes in both striata, monoamine release was stimulated unilaterally by adding K± (100 mM, 20 min) to the artificial CSF perfused through one probe, and bilateral partial ischaemia was imposed after monoamine levels had returned to basal values or below. Resultant increases in dialysate levels of dopamine and 5-hydroxytryptamine were markedly and significantly greater on the side previously exposed to K±, even though electrophysiological measurements indicated similarly severe ischaemia on both sides. Associated monoamine metabolite changes did not differ significantly between the two sides. There was no evidence of greater neuronal loss in the K±-stimulated striata 7 days after ischaemia. However, striatal tissue probably exposed to the highest concentrations of K± could not be examined because of extensive gliosis around the probe.  相似文献   

4.
Adenosine is well known to be released during cerebral metabolic stress and is believed to be neuroprotective. ATP release under similar circumstances has been much less studied. We have now used biosensors to measure and compare in real time the release of ATP and adenosine during in vitro ischaemia in hippocampal slices. ATP release only occurred following the anoxic depolarisation, whereas adenosine release was apparent almost immediately after the onset of ischaemia. ATP release required extracellular Ca2+. By contrast adenosine release was enhanced by removal of extracellular Ca2+, whilst TTX had no effect on either ATP release or adenosine release. Blockade of ionotropic glutamate receptors substantially enhanced ATP release, but had only a modest effect on adenosine release. Carbenoxolone, an inhibitor of gap junction hemichannels, also greatly enhanced ischaemic ATP release, but had little effect on adenosine release. The ecto-ATPase inhibitor ARL 67156, whilst modestly enhancing the ATP signal detected during ischaemia, had no effect on adenosine release. Adenosine release during ischaemia was reduced by pretreatment with homosysteine thiolactone suggesting an intracellular origin. Adenosine transport inhibitors did not inhibit adenosine release, but instead they caused a twofold increase of release. Our data suggest that ATP and adenosine release during ischaemia are for the most part independent processes with distinct underlying mechanisms. These two purines will consequently confer temporally distinct influences on neuronal and glial function in the ischaemic brain.  相似文献   

5.
In order to investigate changes in levels of monoamines and their related substances together with those of other neurotransmitters (acetylcholine and GABA), choline and substances related to energy metabolism (ATP, lactate and glucose) accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats (SHR) was utilized. Animals were subjected to 1 or 2 h ischemia. Then the concentrations of substances were measured in the cerebral cortex, hippocampus and striatum and compared with control values. Due to the incomplete ischemia, ATP showed a moderate decrease, while lactate and choline increased remarkably, and GABA underwent a moderate increase. With regard to monoamines, both noradrenaline and serotonin levels were reduced in the cerebral cortex and hippocampus, whereas dopamine levels increased in the hippocampus. All monoamine metabolites, i.e. metabolites by monoamine oxidase (MAO), metabolites by catechol-O-methyltransferase (COMT), and metabolites by both MAO and COMT, underwent increases. The 3-methoxytyramine level in particular showed marked increases. Furthermore levels of precursor amino acids as well as 5-hydroxytryptophan rose. Acetylcholine decreased moderately only in the cerebral cortex. Among these changes, sustained increases in all the monoamine metabolites were characteristic in the incompletely ischemic brain, suggesting that both COMT and MAO retain their activities in the incompletely ischemic brain.  相似文献   

6.
Severe cerebral ischaemia has been repeatedly shown to provoke a massive increase in striatal extracellular dopamine (DA). These experiments were undertaken to determine the duration of the DA increase produced by transient ischaemia, and the fate of the released DA during recirculation. Experiments were performed in anaesthetised rats subjected to 20 min of cerebral ischaemia, followed by 80 min of reperfusion, before cardiac arrest. Measurements of catechols were made in the striatum using in vivo differential pulse voltammetry (DPV), each 4 min, throughout the experiment and for 60 min after cardiac arrest. DPV data were substantiated with intracerebral dialysis; 20-min dialysate samples were analysed for DA and homovanillic acid (HVA) using HPLC. In 6 of 11 rats, ischaemia induced a massive DA release in the striatum, resulting in a marked increase in extracellular levels (350-1,200%), which persisted throughout ischaemia. DPV and intracerebral dialysis demonstrated that DA was totally cleared from the extracellular space within minutes of reperfusion, whereas both its acidic metabolites (3,4-dihydroxyphenylacetic acid and HVA) increased slightly. These results indicate that DA released during 20-min ischaemia is rapidly cleared during reperfusion, mainly via reuptake. In the five other rats, only a relatively small and transient increase in the DPV catechol peak was detectable, cleared before the end of ischaemia, probably reflecting less severe ischaemia; small or no changes were detectable in the corresponding dialysate. The latter data suggest that different change(s) in the nigrostriatal dopaminergic system may occur, according to the severity of ischaemia.  相似文献   

7.
Ischaemic stroke is a leading cause of death and disability. One of the major pathogenic mechanisms after ischaemia includes the switch to the glycolytic pathway, leading to tissue acidification. Carbonic anhydrase (CA) contributes to pH regulation. A new generation of CA inhibitors, AN11-740 and AN6-277 and the reference compound acetazolamide (ACTZ) were investigated in two models of brain ischaemia: in rat hippocampal acute slices exposed to severe oxygen, glucose deprivation (OGD) and in an in vivo model of focal cerebral ischaemia induced by permanent occlusion of the middle cerebral artery (pMCAo) in the rat. In vitro, the application of selective CAIs significantly delayed the appearance of anoxic depolarisation induced by OGD. In vivo, sub-chronic systemic treatment with AN11-740 and ACTZ significantly reduced the neurological deficit and decreased the infarct volume after pMCAo. CAIs counteracted neuronal loss, reduced microglia activation and partially counteracted astrocytes degeneration inducing protection from functional and tissue damage.  相似文献   

8.
Abstract: The purpose of this study was to establish whether excessive lactate production associated with local application of K+ is reflected at the extracellular level during or after the K+ challenge. Changes in extracellular lactate were continuously monitored by microdialysis coupled to on-line fluorimetric analysis. K+-induced changes in dialysate lactate were closely related to those of the direct current potential. High K+ evoked a large and sustained negative shift of direct current potential onto which were superimposed a variable number of transient peaks of further depolarisation. The initial negative shift in direct current potential was associated with a decrease in dialysate lactate, but after each transient depolarisation, the positive shift in direct current potential indicating cell repolarisation was associated with a marked increase in extracellular lactate. When repetitive transient depolarisations occurred during a stimulus, only a small increase after each depolarisation was observed. However, recordings consistently revealed a marked and rapid increase in extracellular lactate after the K+ stimulus. These data indicate that extracellular lactate mostly increased during periods of repolarisation. This suggests strongly that lactic acid transport out of brain cells may be impaired when their transmembrane ionic gradients are disrupted.  相似文献   

9.
We studied metabolic, cardiovascular, and electrolyte responses of paralyzed bullfrogs to 6 hours of submerged anoxia at 15 degrees C, either with or without maintenance of extracellular pH at preanoxic values by NaHCO3 infusion. There were no differences in arterial PCO2 between acidemic and nonacidemic groups. Lactate appearance in arterial blood, as an indicator of anaerobic metabolic rate, was not significantly different between the anoxic groups, although both were significantly elevated over control. Heart rate in both anoxic groups was similar and significantly lower than in control. During anoxia, both systolic and diastolic pressures fell, and the group with maintained pH fell further. Plasma calcium concentration decreased in both anoxic groups, but the fall was more severe in the group in which pH was controlled. Survival was lower in this group, with a rapid decline in survival after 4 hours of anoxia. We conclude that the fall in extracellular pH seen during anoxia has a protective effect on cardiovascular function that may be partially due to maintenance of relatively high extracellular calcium levels.  相似文献   

10.
Abstract: The time course of changes in extracellular glutamic acid levels and their Ca2+ dependency were studied in the rat striatum during focal cerebral ischaemia, using microdialysis. Ischaemia-induced changes were compared with those produced by high K+-evoked local depolarization. To optimize time resolution, glutamate was analysed continuously as the dialysate emerged from the microdialysis probe by either enzyme fluorimetry or biosensor. The Ca2+ dependency of glutamate changes was examined by perfusing the probe with Ca2+-free medium. With normal artificial CSF, ischaemia produced a biphasic increase in extracellular glutamate, which started from the onset of ischaemia. During the first phase lasting ~10 min, dialysate glutamate level increased from 5.8 ± 0.9 µM· min?1 to 35.8 ± 6.2 µM where it stabilized for ~3 min. During the second phase dialysate glutamate increased progressively to its maximum (82 ± 8 µM), reached after 55 min of ischaemia, where it remained for as long as it was recorded (3 h). The overall changes in extracellular glutamate were similar when Ca2+ was omitted from the perfusion medium, except that the first phase was no longer detectable and, early in ischaemia, extracellular glutamate increased at a significantly slower rate than in the control group (2.2 ± 1 µM· min?1; p < 0.05). On the basis of these data, we propose that most of the glutamate released in the extracellular space in severe ischaemia is of metabolic origin, probably originating from both neurons and glia, and caused by altered glutamate uptake mechanisms. Comparison with high K+-induced glutamate release did not suggest that glutamate “exocytosis,” early after middle cerebral artery occlusion, was markedly limited by deficient ATP levels.  相似文献   

11.
The relationship between glutamate and dopamine release, apoptosis and ischaemic damage was studied following induction of transient focal cerebral ischaemia under normothermic (37 degrees C) and postischaemic (resuscitative) mild hypothermic (34 degrees C for 2 h) conditions in sevoflurane anaesthetized male Wistar rats. Focal ischaemia was induced by infusing endothelin-1 adjacent to the middle cerebral artery. In vivo microdialysis was used to sample glutamate and dopamine from striatum and parietal cortex of the ipsilateral hemisphere. The volume of ischaemic damage and the degree of apoptosis were determined 24 h after the insult. In both striatum and cortex of the normothermic group an initial increase in extracellular glutamate and dopamine levels following endothelin-1 infusion was observed. Striatal glutamate levels remained enhanced (250% of baseline) throughout the experiment, while the other neurotransmitter levels returned to baseline values. Hypothermia significantly attenuated the endothelin-1 induced glutamate release in the striatum. It also reduced apoptosis and infarct volume in the cortex. These results indicate that: (i) postischaemic mild hypothermia exerts its neuroprotective effect by inhibiting apoptosis in the ischaemic penumbral region; and (ii) this effect is not associated with an attenuation of glutamate or dopamine release in the cortex.  相似文献   

12.
Fluoxetine (Prozac) is a serotonin reuptake inhibitor. It increases extracellular levels of serotonin and is used in relieving the depressive symptoms of cancer patients. It has been reported that the drug may enhance the growth of certain cancer cells. This study investigates whether fluoxetine enhances the growth of a human colon cancer cell line (COLO320 DM) and if it affects the extracellular levels of serotonin or its metabolite, 5-hydroxyindole-3-acetic acid (5-HIAA) and other monoamines and metabolites at two cell densities. The extracellular levels of serotonin, 5-HIAA and other monoamines and metabolites were measured simultaneously by high performance liquid chromatography from cell-culture media after incubation of cells both with and without fluoxetine for 3 days. The viability of COLO320 DM cells was evaluated using 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). At low cell densities (1.25x10(5) cells ml-1), fluoxetine at 1-10 microM significantly increased the extracellular levels of serotonin (p<0.005), 5-HIAA (p<0.005), and 3-methoxy-4-hydroxyphenylglycol (MHPG; p<0.001) as compared to the controls. Fluoxetine at 10-100 microM significantly inhibited the growth of COLO320 DM (p<0.005). At high cell densities (2x10(6) cells ml-1), fluoxetine at 1-10 microM significantly increased the extracellular levels of MHPG (p<0.01), and at 10 microM it significantly increased the extracellular levels of 5-HIAA (p<0.05). Fluoxetine at 100 microM significantly inhibited the growth of the cells (p<0.0001). These results suggest that fluoxetine at 1 microM of effective concentration may increase the extracellular levels MHPG, in addition to serotonin and 5-HIAA levels, yet not inhibit the growth of COLO320 DM.  相似文献   

13.
L-Lactate (4-32 mM) added exogenously to resting or depolarised rat forebrain synaptosomes led to a significant decrease in intrasynaptosomal pH. Similarly depolarisation-induced increases in intrasynaptosomal calcium, calcium uptake, and acetylcholine release were all inhibited. These effects mimicked those previously observed in synaptosomes under anoxic conditions and suggest that lactate may be involved in limiting the damage due to calcium accumulation occurring during ischaemia. D-Lactate (added exogenously up to 32 mM) did not produce similar effects on these parameters even though the concentrations of intrasynaptosomal D-lactate reached levels comparable to those obtained with L-lactate (at 8-16 mM exogenous concentration). The results suggest that the mechanism of action of lactate on these parameters is stereospecific for the L-enantiomer. The effect of glucose availability on lactate production was assessed to explore the role of substrate availability on ischaemia/anoxic events. When exogenous glucose was increased (10-60 mM), there was no further increase in lactate production in normoxic synaptosomes, which suggests that glucose is not limiting under these conditions. When glucose was removed, as may occur in complete ischaemia, there was a significant decrease in lactate production after 60 min under anoxic or normoxic conditions. It would seem likely therefore that the mechanism underlying the changes observed in synaptosomes incubated under conditions reflecting complete ischaemia does not involve lactate.  相似文献   

14.
ATP and adenosine are well-known neuroactive compounds. Other nucleotides and nucleosides may also be involved in different brain functions. This paper reports on extracellular concentrations of nucleobases and nucleosides (uracil, hypoxanthine, xanthine, uridine, 2'-deoxycytidine, 2'-deoxyuridine, inosine, guanosine, thymidine, adenosine) in response to sustained depolarisation, using in vivo brain microdialysis technique in the rat thalamus. High-potassium solution, the glutamate agonist kainate, and the Na(+)/K(+) ATPase blocker ouabain were applied in the perfusate of microdialysis probes and induced release of various purine and pyrimidine nucleosides. All three types of depolarisation increased the level of hypoxanthine, uridine, inosine, guanosine and adenosine. The levels of measured deoxynucleosides (2'-deoxycytidine, 2'-deoxyuridine and thymidine) decreased or did not change, depending on the type of depolarisation. Kainate-induced changes were TTX insensitive, and ouabain-induced changes for inosine, guanosine, 2'-deoxycytidine and 2'-deoxyuridine were TTX sensitive. In contrast, TTX application without depolarisation decreased the extracellular concentrations of hypoxanthine, uridine, inosine, guanosine and adenosine.Our data suggest that various nucleosides may be released from cells exposed to excessive activity and, thus, support several different lines of research concerning the regulatory roles of nucleosides.  相似文献   

15.
The crucian carp (Carassius carassius) seems unique among vertebrates in its ability to maintain cardiac performance during prolonged anoxia. We investigated whether this phenomenon arises in part from a myocardium tolerant to severe acidosis or because the anoxic crucian carp heart may not experience a severe extracellular acidosis due to the fish's ability to convert lactate to ethanol. Spontaneously contracting heart preparations from cold-acclimated (6-8°C) carp were exposed (at 6.5°C) to graded or ungraded levels of acidosis under normoxic or anoxic conditions and intrinsic contractile performance was assessed. Our results clearly show that the carp heart is tolerant of acidosis as long as oxygen is available. However, heart rate and contraction kinetics of anoxic hearts were severely impaired when extracellular pH was decreased below 7.4. Nevertheless, the crucian carp heart was capable of recovering intrinsic contractile performance upon reoxygenation regardless of the severity of the anoxic + acidotic insult. Finally, we show that increased adrenergic stimulation can ameliorate, to a degree, the negative effects of severe acidosis on the intrinsic contractile properties of the anoxic crucian carp heart. Combined, these findings indicate an avoidance of severe extracellular acidosis and adrenergic stimulation are two important factors protecting the intrinsic contractile properties of the crucian carp heart during prolonged anoxia, and thus likely facilitate the ability of the anoxic crucian carp to maintain cardiac pumping.  相似文献   

16.
Heat shock proteins (HSPs) may play a cardioprotective role during hypoxia or ischemia. We hypothesized that cardiac tissue from hypoxia-tolerant animals might have high levels of specific HSPs. We measured myocardial HSP60 and HSP72/73 in painted and softshell turtles during normoxia and anoxia (12 h) and after recovery (12 or 24 h). We also measured myocardial HSPs in normoxic rats and rabbits. During normoxia, hearts from the most highly anoxia-tolerant species, the painted turtle, expressed the highest levels of HSP60 (22.6+/-2.0 mg/g total protein) followed by softshells (11.5+/-0.8 mg/g), rabbits (6.8+/-0.9 mg/g), and rats (4.5+/-0.5 mg/g). HSP72/73 levels, however, were not significantly different. HSP60 levels in hearts from both painted and softshell turtles did not deviate significantly from control values after either 12 h of anoxia or 12 or 24 h of recovery. The pattern of changes observed in HSP72/73 was quite different in the two turtle species. In painted turtles anoxia induced a significant increase in myocardial HSP72/73 (from 2.8+/-0.1 mg/g normoxic to 3.9+/-0.2 mg/g anoxic, P<0.05). By 12 h of recovery, HSP72/73 had returned to control levels (2.7+/-0.1 mg/g) and remained there through 24 h (2.6+/-0.2 mg/g). In softshell turtles, HSP72/73 decreased significantly after 12 h of anoxia (from 2.4+/-0.4 mg/g normoxic to 1.3+/-0.2 mg/g anoxic, P<0.05). HSP72/73 levels were still slightly below control after 12 h of recovery (2.1+/-0.1 mg/g) and then rose to significantly above control after 24 h of recovery (4.1+/-0.7 mg/g, P<0.05). We also conclude that anoxia-tolerant and anoxia-sensitive turtles exhibit different patterns of myocardial HSP changes during anoxia and recovery. Whether these changes correlate with their relative degrees of anoxia tolerance remains to be determined.  相似文献   

17.
The electrical and mechanical failures observed during sustained and intermittent electrically triggered (30 Hz) contractions of human flexor carpi ulnaris were compared with the blood lactate concentration. The changes recorded during contractions sustained for 60 s were compared with those observed during a series of sixty 1 s contractions separated by 1 s intervals, and also with the changes during the first 30 min of recovery. No significant (P less than 0.05) difference in force reduction or maximal venous lactate concentration was observed in either fatigue test, although electrical failure differed significantly (P less than 0.05). The recovery of electrical failure was poorly correlated with the reduction in lactate concentration following both sustained (r = -0.70) and intermittent contractions (r = 0.72). In contrast, the recovery in tetanic tension, rate of tension development and time to half relaxation correlated closely with the reduction in venous lactate concentration (r = -0.95, -0.93 and 0.96 respectively). It is suggested that, of the peripheral processes which appear to play a dominant role in peripheral fatigue, lactate production controls mechanical failure directly.  相似文献   

18.
S Q Wu  L M Fu  J R Koke  N Bittar 《Cytobios》1987,50(200):7-12
Provision of AMP or adenosine to heart cells during recovery from episodes of myocardial ischaemia accelerates physiological, biochemical, and structural recovery. Inhibition of adenosine loss from the tissue during ischaemia should have a similar effect. This hypothesis was tested in dog heart by infusion of adenosine and inhibitors of adenosine catabolism prior to, during, and following ischaemia. Post-ischaemic recovery of ATP and contractile function was accelerated significantly by adenosine and by inhibitors of adenosine catabolism both singly and in combination. Contractility and ATP levels during ischaemia were also increased by these inhibitors.  相似文献   

19.
Translational repression induced during reperfusion of the ischaemic brain is significantly attenuated by ischaemic preconditioning. The present work was undertaken to identify the components of the translational machinery involved and to determine whether translational attenuation selectively modifies protein expression patterns during reperfusion. Wistar rats were preconditioned by 5-min sublethal ischaemia and 2 days later, 30-min lethal ischaemia was induced. Several parameters were studied after lethal ischaemia and reperfusion in rats with and without acquired ischaemic tolerance (IT). The phosphorylation pattern of the alpha subunit of eukaryotic initiation factor 2 (eIF2) in rats with IT was exactly the same as in rats without IT, reaching a peak after 30 min reperfusion and returning to control values within 4 h in both the cortex and hippocampus. The levels of phosphorylated eIF4E-binding protein after lethal ischaemia and eIF4E at 30 min reperfusion were higher in rats with IT, notably in the hippocampus. eIF4G levels diminished slightly after ischaemia and reperfusion, paralleling calpain-mediated alpha-spectrin proteolysis in rats with and without IT, but they did not show any further decrease after 30 min reperfusion in rats with IT. The phosphorylated levels of eIF4G, phosphatidylinositol 3-kinase-protein B (Akt) and extracellular signal-regulated kinases (ERKs) were very low after lethal ischaemia and increased following reperfusion. Ischaemic preconditioning did not modify the observed changes in eIF4G phosphorylation. All these results support that translation attenuation may occur through multiple targets. The levels of the glucose-regulated protein (78 kDa) remained unchanged in rats with and without IT. Conversely, our data establish a novel finding that ischaemia induces strong translation of growth arrest and DNA damage protein 34 (GADD34) after 4 h of reperfusion. GADD34 protein was slightly up-regulated after preconditioning, besides, as in rats without IT, GADD34 levels underwent a further clear-cut increase during reperfusion, this time as earlier as 30 min and coincident with translation attenuation.  相似文献   

20.
(+)-Amphetamine and two structurally related analogues, 4-methoxyamphetamine and a recent "designer drug," 4-ethoxyamphetamine, were given to rats via subcutaneous osmotic minipumps for 1-14 days. Regional brain levels of the drugs as well as monoamine neurotransmitters and some of their major acidic metabolites were determined. Amphetamine produced depletions of dopamine in the striatum after at least 3 days of treatment but not in the nucleus accumbens of olfactory tubercle, even after 14 days of treatment. In contrast, the two ring-substituted amphetamine analogues increased levels of the monoamines and decreased levels of their acid metabolites. These data indicate that the two ring-substituted amphetamine analogues, at least one of which is a potent hallucinogen, have potent monoamine oxidase inhibition properties that are sustained during chronic treatment. Furthermore, these two compounds do not share amphetamine's regionally selective neurotoxic effects on dopamine-releasing terminals, even though brain and striatal drug levels are the same or higher than those of amphetamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号