首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While conventional calpains, m- and mu-calpains named according to their calcium-dependence, are expressed in almost every tissues, mRNA of newly identified p94, which has a significant sequence similarity to the conventional calpain large subunits, is abundantly expressed only in skeletal muscle. In addition to this specific expression, p94 is distinct from conventional calpains in that it contains three unique regions showing no similarity to conventional calpain subunits. When rat and human p94 are compared, overall sequence similarity is 94.0%, which is close to those for m- and mu-calpain large subunits; 93.1% and 95.4% between human and rabbit, respectively, suggesting the evolutionary importance of p94. These calpain large subunit proteins, p94, m- and mu-types, can be considered to constitute a super family, whose p94, m- and mu-types represent the three major types. Sequences of the calpain large-subunit family members, including the recently reported Schistosoma calpain, are compared. Their evolutionary correlation and function are discussed on the basis of the results thus far obtained.  相似文献   

2.
Four genes for the calpain family locate on four distinct human chromosomes   总被引:5,自引:0,他引:5  
Calcium dependent proteases (calpains, CAPNs, E.C.3.4.22.17) constitute a family of proteins which share a homologous cysteine-protease domain (large subunits, L1, L2, and L3) and an E-F hand Ca2(+)-binding domain (L1, L2, L3, and small subunit, S). We have mapped the genes for four calpain proteins (L1, L2, L3, and S) on four distinct human chromosomes by a combination of spot-blot hybridization to flow-sorted chromosomes and Southern hybridization of DNAs from a human x mouse hybrid cell panel. The genes for calpain L1 (CAPN1, large subunit of calpain I), L2 (CAPN2, large subunit of calpain II), L3 (CAPN3, a protein related to the large subunits), and S (CAPN4, a small subunit common to calpains I and II) were assigned to human chromosomes 11, 1, 15, and 19, respectively.  相似文献   

3.
The two best known calpains, micro- and m-calpain, are Ca(2+)-dependent cysteine proteases found in all mammalian tissues. They are probably involved in many Ca(2+)-linked signal pathways, although the details are not yet clear. The enzymes are heterodimers of a specific large subunit (micro-80k or m-80k) and a common small subunit (28k). Recombinant calpains have been obtained by co-expression of large and small subunits in Escherichia coli and in Sf9 cells, with variable success. Expression with the 28k subunit is very low, but is much higher with a C-terminal 21k fragment of this subunit. Rat m-calpain (m-80k/21k) is well expressed in E. coli but mouse m-calpain (m-80k/21k) is poorly expressed, even though the amino acid sequences of rat-m-80k and mouse-m-80k are 92% identical. It had also been reported that human m-calpain could be expressed in Sf9 cells but not in E. coli. To investigate these differences, hybrid rat/mouse and rat/human m-calpains were cloned and expressed in E. coli. It was shown that Ile-6 and Pro-127, which are specific to the mouse m-80k sequence, caused poor expression. High expression of human m-calpain in E. coli could be achieved by providing the correct Shine-Dalgarno ribosome binding site. The results provide a simple method to obtain approximately 10mg amounts of human m-calpain and a slightly modified mouse m-calpain. Expression of m-80k-EGFP fusions was also studied, both in E. coli and in mammalian cells, varying both the small subunit and the promoters. m-80k-EGFP alone was not active, but with 21k or 28k subunits was active in both cell types. The EGFP domain was partially cleaved during expression, releasing an active m-80k/21k calpain.  相似文献   

4.
Two different forms of Ca2+-dependent cysteine proteinase, low-Ca2+-requiring calpain I and high-Ca2+-requiring calpain II, are known to be heterodimers, each composed of one heavy (called 80K) and one light (called 30K) subunit. The most probable identity of the 30K and the substantial difference between the 80K subunits of porcine calpains I and II were clearly demonstrated by comparing the tryptic peptide maps obtained upon running a high performance liquid chromatography which permitted parallel detection of tryptophan-containing peptides by fluorometry. Comparison of the amino acid compositions of the two 30K and 80K subunits also confirmed this conclusion. The same chromatographical analysis also revealed close structural similarity of the human calpain I 30K subunit, and even some similarity existing between the calpain I 80K subunits of human and porcine origins.  相似文献   

5.
Premature visual impairment due to lens opacification is a debilitating characteristic of untreated diabetes. Lens opacification is primarily due to the insolubilization of crystallins, proteins essential for lens optical properties, and recent studies have suggested that a major cause of this insolubilization may be the unregulated proteolysis of crystallins by calpains. These are intracellular cysteine proteases whose activation requires the presence of calcium (Ca2+) and elevated levels of lens Ca2+ is a condition associated with both diabetic cataractogenesis and other forms of the disorder. A number of calpains have been identified in the lens, including calpain 2, calpain 10 and two isozymes of calpain 3: Lp82 and Lp85. The use of animal hereditary cataract models have suggested that calpain 2 and/or Lp82 may be the major calpains involved in murine cataractogenesis with contributions from calpain 10 and Lp85. However, calpain 2 appears to be the major calpain involved in murine diabetic cataractogenesis and the strongest candidate of the calpains for a role in human types of cataractogenesis. Here, we present an overview of recent evidence on which these observations are based with an emphasis on the ability of calpains to proteolyse lens crystallins and calpain structural features, which appear to be involved in the Ca2+-mediated activation of these enzymes.  相似文献   

6.
Wound healing is a multistep phenomenon that relies on complex interactions between various cell types. Calpains are ubiquitously expressed proteases regulating several processes including cellular adhesion and motility as well as inflammation and angiogenesis. Calpains can be targeted by inhibitors, and their inhibition was shown to reduce organ damage in various disease models. We aimed to assess the role of calpains in skin healing and the potential benefit of calpain inhibition on scar formation. We used a pertinent model where calpain activity is inhibited only in lesional organs, namely transgenic mice overexpressing calpastatin (CPST), a specific natural calpain inhibitor. CPST mice showed a striking delay in wound healing particularly in the initial steps compared to wild types (WT). CPST wounds displayed reduced proliferation in the epidermis and delayed re-epithelization. Granulation tissue formation was impaired in CPST mice, with a reduction in CD45+ leukocyte infiltrate and in CD31+ blood vessel density. Interestingly, wounds on WT skin grafted on CPST mice (WT/CPST) showed a similar delayed healing with reduced angiogenesis and inflammation compared to wounds on WT/WT mice demonstrating the implication of calpain activity in distant extra-cutaneous cells during wound healing. CPST wounds showed a reduction in alpha-smooth muscle actin (αSMA) expressing myofibroblasts as well as αSMA RNA expression suggesting a defect in granulation tissue contraction. At later stages of skin healing, calpain inhibition proved beneficial by reducing collagen production and wound fibrosis. In vitro, human fibroblasts exposed to calpeptin, a pan-calpain inhibitor, showed reduced collagen synthesis, impaired TGFβ-induced differentiation into αSMA-expressing myofibroblasts, and were less efficient in a collagen gel contraction assay. In conclusion, calpains are major players in granulation tissue formation. In view of their specific effects on fibroblasts a late inhibition of calpains should be considered for scar reduction.  相似文献   

7.
Identification of both calpains I and II in nucleated chicken erythrocytes   总被引:2,自引:0,他引:2  
Chicken erythrocytes were found to contain two species of calpains which differ in elution profile from DEAE-cellulose and in Ca2+ requirement. After partial purification, one of them was half-maximally activated by 10 microM Ca2+ and the other by 180 microM Ca2+. The low- and high-Ca2+-requiring proteases cross-reacted only with the respective monospecific antibodies for mammalian calpain I and calpain II, respectively. Approximately 5 times more calpain I than calpain II is present in chicken erythrocytes. By immunoelectrophoretic blot analysis, both calpains I and II from chicken erythrocytes were proved to be heterodimers composed of 76 and 28 kDa, and 80 and 28 kDa subunits, respectively. Our present finding that the heavy subunit of calpain I is smaller than that of calpain II is noteworthy, since the opposite is known to be true of various mammalian calpains. An immunological study has revealed that the calpain I newly found in chicken erythrocytes is not derived from calpain II. Thus, the co-existence of calpains I and II in one animal species also holds in chickens, contrary to the previously advocated notion that chickens have only one type of calpain.  相似文献   

8.
The desmin-specific calpain I from chicken gizzard smooth muscle is a dimer of 83 and 35 kDalton subunits. A monoclonal antibody to the large subunit did not cross-react with chicken gizzard and hamster skeletal muscle calpain II, but it did recognize hamster skeletal muscle desmin-specific calpain I and the denatured calpain II from chicken gizzard smooth muscle. These results indicate that different desmin-specific calpains have similar large subunits which differ significantly from the large subunit of calpain II in the same tissue.  相似文献   

9.
The calpains are a family of calcium-dependent thiol proteases involved in intracellular processing of proteins. They occur as heterodimers containing one of various large subunits and a common small subunit. Some of the large subunits are expressed ubiquitously and others are expressed in a restricted set of tissues. We have cloned the cDNA for mouse calpain 11 and demonstrated that it is expressed specifically in the mouse testis. The mRNA begins to accumulate in the testis between days 14 and 16 after birth, corresponding to the period of pachytene spermatocyte development. The protein is detected by day 18 after birth, during mid to late pachytene spermatocyte development, and is present in the acrosomal region of spermatozoa from the cauda epididymis. The expression of calpain 11 during spermatogenesis and its localization in spermatozoa suggest that it is involved in regulating calcium-dependent signal transduction events during meiosis and sperm functional processes.  相似文献   

10.
To clarify phosphorylation of calpains I and II in vivo, we purified both calpains concurrently from the [32P] metabolic-labeled human chronic myelogenous leukemia cell line K-562. By Ultragel AcA34 column chromatography, enzymatic activity of calpain I was separated from [32P] radioactivity. Whereas calpain II activity was closely associated with [32P] radioactivity on Ultragel AcA34 and Blue Sepharose CL-6B column chromatographies. By the above purification procedures, calpain I was purified 1300-fold from the crude extract and calpain II was 920-fold from the original sample, respectively. Autoradiographies of purified calpains I and II from [32P] labeled K-562 cells revealed that both calpains were not specifically phosphorylated in vivo. The autophosphorylation in vitro on calpains and modulation of their proteolytic activities reported recently thus may not occur within cells.  相似文献   

11.
Calpain I prepared from human erythrocytes was half-maximally and maximally activated at 23 and 35 microM calcium ion, and two preparations of calpain II from human liver and kidney were half-maximally activated at 340 and 220 microM calcium ion and maximally activated at 900 microM calcium ion, respectively. High molecular weight (HMW) and low molecular weight (LMW) kininogens isolated from human plasma and the heavy chain prepared from these proteins inhibited calpain I as well as calpain II. The molar ratios of calpains to HMW kininogen to give complete inhibition of calpains were 1.4 for calpain I and 2.0 for calpain II, and those of calpains to heavy chain were 0.40-0.66 for calpain I and 0.85 for calpain II. LMW kininogen did not completely inhibit the calpains even with an excess amount of kininogen. The apparent binding ratio of calpain to HMW kininogen estimated from the disc gel electrophoretic analysis, however, was found to be 2:1, whereas those of calpain to LMW kininogen and of calpain to heavy chain were found to be 1:1. Calpains and kininogens failed to form complexes in the absence of calcium ion. In the presence of calcium ion, however, they formed the complexes, which were dissociable by the addition of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. The minimum concentrations of calcium ion required to induce complex formation between calpain I and kininogens and calpain II and kininogens were 70 and 100 microM, respectively. Some other divalent cations such as Mn2+, Sr2+, and Ba2+ were also able to induce the complex formation between calpains and kininogens.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Premature visual impairment due to lens opacification is a debilitating characteristic of untreated diabetes. Lens opacification is primarily due to the insolubilization of crystallins, proteins essential for lens optical properties, and recent studies have suggested that a major cause of this insolubilization may be the unregulated proteolysis of crystallins by calpains. These are intracellular cysteine proteases whose activation requires the presence of calcium (Ca2+) and elevated levels of lens Ca2+ is a condition associated with both diabetic cataractogenesis and other forms of the disorder. A number of calpains have been identified in the lens, including calpain 2, calpain 10 and two isozymes of calpain 3:Lp82 and Lp85. The use of animal hereditary cataract models have suggested that calpain 2 and/or Lp82 may be the major calpains involved in murine cataractogenesis with contributions from calpain 10 and Lp85. However, calpain 2 appears to be the major calpain involved in murine diabetic cataractogenesis and the strongest candidate of the calpains for a role in human types of cataractogenesis. Here, we present an overview of recent evidence on which these observations are based with an emphasis on the ability of calpains to proteolyse lens crystallins and calpain structural features, which appear to be involved in the Ca2+-mediated activation of these enzymes. (Mol Cell Biochem 261: 151–159, 2004)  相似文献   

13.
Neutrophil chemotactic activity was found in the autodigest of calcium dependent cysteine proteinase (calpain) I purified from human erythrocytes, an active peptide was isolated, and its structure was determined. It was an N-acetyl nonapeptide with the sequence: N-acetyl Ser-Glu-Glu-Ile-Ile-Thr-Pro-Val-Tyr. This peptide was identical with the N-terminal amino acid sequence of the large subunit of calpain I deduced from cDNA sequence, except that the peptide was lacking a methionine residue and was acetylated at the N-terminus. A number of N-acetyl peptides with N-terminal amino acid sequences of large and small subunits of calpains I and II were synthesized and their chemotactic activity was estimated. In addition to the N-acetyl nonapeptide from calpain I large subunit, several peptides of different lengths from the small subunit showed dose-dependent migrations of neutrophils. They include N-acetyl tetra, hepta, octa, nona and larger size peptides. Further, it was also revealed that when calpain was incubated with high molecular weight (HMW) or low molecular weight (LMW) kininogen, kinin liberation occurred with simultaneous inhibition of calpains by kininogens. These data suggest that chemical mediators generated from the calpain-kininogen system may participate in migration and accumulation of neutrophils to the inflammatory locus.  相似文献   

14.
Ubiquitously expressed calpains are Ca(2+)-dependent, intracellular cysteine proteases comprising a large catalytic subunit (domains DI-DIV) and a noncovalently bound small regulatory subunit (domains DV and DVI). It is unclear whether Ca(2+)-induced calpain activation is followed by subunit dissociation or not. Here, we have applied advanced fluorescence microscopy techniques to study calpain subunit interactions in living cells using recombinant calpain subunits or domains fused to enhanced cyan and enhanced yellow fluorescent reporter proteins. All of the overexpressed variants of the catalytic subunit (DI-IV, DI-III, and DI-IIb) were active and Ca(2+)-dependent. The intact large subunit, but not its truncated variants, associates with the small subunit under resting and ionomycin-activated conditions. All of the variants were localized in cytoplasm and nuclei, except DI-IIb, which accumulates in the nucleus and in nucleoli as shown by microscopy and cell fractionation. Localization studies with mutated and chimeric variants indicate that nuclear targeting of the DI-IIb variant is conferred by the two N-terminal helices of DI. Only those variants that contain DIII migrated to membranes upon the addition of ionomycin, suggesting that DIII is essential for membrane targeting. We propose that intracellular localization and in particular membrane targeting of activated calpain, but not dissociation of its intact subunits, contribute to regulate its proteolytic activity in vivo.  相似文献   

15.
Ubiquitously expressed mu- and m-calpain proteases are implicated in development and apoptosis. They consist of 80-kDa catalytic subunits encoded by the capn1 and capn2 genes, respectively, and a common 28-kDa regulatory subunit encoded by the capn4 gene. The regulatory subunit is required to maintain the stability and activity of mu- and m-calpains. Accordingly, genetic disruption of capn4 in the mouse eliminated both ubiquitous calpain activities. In embryonic fibroblasts derived from these mice, calpain deficiency correlated with resistance to endoplasmic reticulum (ER) stress-induced apoptosis, and this was directly related to a calpain requirement for activation of both caspase-12 and the ASK1-JNK cascade. This study provides compelling genetic evidence for calpain's role in caspase-12 activation at the ER, and reveals a novel role for the ubiquitous calpains in ER-stress induced apoptosis and JNK activation.  相似文献   

16.
Calpains constitute a superfamily of Ca2+-dependent cysteine proteases, indispensable for various cellular processes. Among the 15 mammalian calpains, calpain 8/nCL-2 and calpain 9/nCL-4 are predominantly expressed in the gastrointestinal tract and are restricted to the gastric surface mucus (pit) cells in the stomach. Possible functions reported for calpain 8 are in vesicle trafficking between ER and Golgi, and calpain 9 are implicated in suppressing tumorigenesis. These highlight that calpains 8 and 9 are regulated differently from each other and from conventional calpains and, thus, have potentially important, specific functions in the gastrointestinal tract. However, there is no direct evidence implicating calpain 8 or 9 in human disease, and their properties and physiological functions are currently unknown. To address their physiological roles, we analyzed mice with mutations in the genes for these calpains, Capn8 and Capn9. Capn8−/− and Capn9−/− mice were fertile, and their gastric mucosae appeared normal. However, both mice were susceptible to gastric mucosal injury induced by ethanol administration. Moreover, the Capn8−/− stomach showed significant decreases in both calpains 9 and 8, and the same was true for Capn9−/−. Consistent with this finding, in the wild-type stomach, calpains 8 and 9 formed a complex we termed “G-calpain,” in which both were essential for activity. This is the first example of a “hybrid” calpain complex. To address the physiological relevance of the calpain 8 proteolytic activity, we generated calpain 8:C105S “knock-in” (Capn8CS/CS) mice, which expressed a proteolytically inactive, but structurally intact, calpain 8. Although, unlike the Capn8−/− stomach, that of the Capn8CS/CS mice expressed a stable and active calpain 9, the mice were susceptible to ethanol-induced gastric injury. These results provide the first evidence that both of the gastrointestinal-tract-specific calpains are essential for gastric mucosal defense, and they point to G-calpain as a potential target for gastropathies caused by external stresses.  相似文献   

17.
Calcium-dependent, neutral cysteine-proteases (calpain) were purified from human blood flukes, Schistosoma mansoni. The electrophoretic mobilities, Western blot analyses and high specificity to peptide inhibitors confirmed the presence of both calpain I and II in the purified preparation. The schistosome calpains were localized in the surface syncytial epithelium and underlying musculature. Using peptide inhibitors, calpain was shown to function as a mediator of the surface membrane synthetic process. Since there was also no immunological cross-reactivity between vertebrate and schistosome calpains using antibodies affinity-purified from native and recombinant schistosome calpains, this protease may be usefully investigated as forming the basis of a molecular vaccine against schistosomiasis.  相似文献   

18.
The rate of autolysis of mu- and m-calpain from bovine skeletal muscle was measured by using densitometry of SDS polyacrylamide gels and determining the rate of disappearance of the 28 and 80 kDa subunits of the native, unautolyzed calpain molecules. Rate of autolysis of both the 28 and 80 kDa subunits of mu-calpain decreased when mu-calpain concentration decreased and when beta-casein, a good substrate for the calpains, was present. Hence, autolysis of both mu-calpain subunits is an intermolecular process at pH 7.5, 0 or 25.0 degrees C, and low ionic strength. The 78 kDa subunit formed in the first step of autolysis of m-calpain was not resolved from the 80 kDa subunit of the native, unautolyzed m-calpain by our densitometer, so autolysis of m-calpain was measured by determining rate of disappearance of the 28 kDa subunit and the 78/80 kDa complex. At Ca2+ concentrations of 1000 microM or higher, neither the m-calpain concentration nor the presence of beta-casein affected the rate of autolysis of m-calpain. Hence, m-calpain autolysis is intramolecular at Ca2+ concentrations of 1000 microM or higher and pH 7.5. At Ca2+ concentrations of 350 microM or less, the rate of m-calpain autolysis decreased with decreasing m-calpain concentration and in the presence of beta-casein. Thus, m-calpain autolysis is an intermolecular process at Ca2+ concentrations of 350 microM or less. If calpain autolysis is an intermolecular process, autolysis of a membrane-bound calpain would require selective participation of a second, cytosolic calpain, making it an inefficient process. By incubating the calpains at Ca2+ concentrations below those required for half-maximal activity, it is possible to show that unautolyzed calpains degrade a beta-casein substrate, proving that unautolyzed calpains are active proteases.  相似文献   

19.
Mitochondrial localization of mu-calpain   总被引:1,自引:0,他引:1  
Calcium-dependent cysteine proteases, calpains, have physiological roles in cell motility and differentiation but also play a pathological role following insult or disease. The ubiquitous calpains are widely considered to be cytosolic enzymes, although there has been speculation of a mitochondrial calpain. Within a highly enriched fraction of mitochondria obtained from rat cortex and SH-SY5Y human neuroblastoma cells, immunoblotting demonstrated enrichment of the 80kDa mu-calpain large subunit and 28kDa small subunit. In rat cortex, antibodies against domains II and III of the large mu-calpain subunit also detected a 40kDa fragment, similar to the autolytic fragment generated following incubation of human erythrocyte mu-calpain with Ca(2+). Mitochondrial proteins including apoptosis inducing factor and mitochondrial Bax are calpain substrates, but the mechanism by which calpains gain access to these proteins is uncertain. Mitochondrial localization of mu-calpain places the enzyme in proximity to its mitochondrial substrates and to Ca(2+) released from mitochondrial stores.  相似文献   

20.
cDNA coding for calpain of Schistosoma japonicum were cloned and sequenced, and serological basis of host responses to calpain were analyzed. cDNA of calpain from S. japonicum of two different isolates, Yamanashi strain (Sj-J) and Hunan strain (Sj-C), were 2, 468 bp and 2, 465 bp in length, including the same number (2, 274) of open reading frame. Nucleotide sequence and amino acid sequence between the two calpains are 99.1% and 98.8% identity, respectively. Sj-J and Sj-C calpains were considered to be translated as a preproenzyme, and a 746-amino acid mature enzyme contains eight motifs without a signal peptide at the N-terminal based on the deduced amino acid sequences. mRNA for calpain were detectable in different developmental stages, however, sera obtained from mice immunized with recombinant calpain showed enhanced binding to cercarial antigen. Human sera from S. japonicum-infected individuals recognized the large subunit of schistosomal calpain, and light-infected sera showed stronger reactivities to the recombinant calpain than moderate/high infection cases. When we tested synthetic peptides, there were four common human B cell epitopes in schistosomal calpain, all of which are shared with S. mansoni. Together with these results, calpain of S. japonicum seems to be not only a vaccine candidate, but also a target antigen for immunodiagnosis of human schistosomiasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号