首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two different recombinant constructs of the N-terminal domain in Escherichia coli DnaJ were uniformly labeled with nitrogen-15 and carbon-13. One, DnaJ(1-78), contains the complete "J-domain," and the other, DnaJ(1-104), contains both the "J-domain" and a conserved "G/F" extension at the C-terminus. The three-dimensional structures of these proteins have been determined by heteronuclear NMR experiments. In both proteins the "J-domain" adopts a compact structure consisting of a helix-turn-helix-loop-helix-turn-helix motif. In contrast, the "G/F" region in DnaJ(1-104) does not fold into a well-defined structure. Nevertheless, the "G/F" region has been found to have an effect on the packing of the helices in the "J-domain" in DnaJ(1-104). Particularly, the interhelical angles between Helix IV and other helices are significantly different in the two structures. In addition, there are some local conformational changes in the loop region connecting the two central helices. These structural differences in the "J-domain" in the presence of the "G/F" region may be related to the observation that DnaJ (1-78) is incapable of stimulating the ATPase activity of the molecular chaperone protein DnaK despite evidence that sites mediating the binding of DnaJ to DnaK are located in the 1-78 segment.  相似文献   

2.
Hsp40 proteins of bacterial and human origin are suspected to be involved in the pathogenesis of rheumatoid arthritis (RA). It has been shown that sera of RA patients contain increased levels of antibodies directed to bacterial and human Hsp40s. The aim of this work was to explore immunological similarities between the bacterial (DnaJ) and human (DNAJA1 and DNAJA2) Hsp40 proteins in relation to their possible involvement in the RA. Using polyclonal antibodies directed against a full-length DnaJ or its domains, against DNAJA1 and DNAJA2, as well as monoclonal anti-DnaJ antibodies, we found immunological similarities between the bacterial and human Hsp40s. Both ELISA and Western blotting showed that these similarities were not restricted to the conserved J domains but were also present in the C-terminal variable regions. We also found a positive correlation between the levels of the anti-DnaJ and anti-DNAJA1 antibodies in the sera of RA patients. This finding supports the molecular mimicry hypothesis that human Hsp40 could be the targets of antibodies originally directed against bacterial DnaJ in RA.  相似文献   

3.
Escherichia coli DnaJ (Hsp40) is suspected to participate in rheumatoid arthritis (RA) pathogenesis in humans by an autoimmune process. In this work a set of 6 anti-DnaJ monoclonal antibodies (mAbs) was raised and localization of the epitopes recognized by the mAbs was investigated. Western blotting and enzyme-linked immunosorbent assay (ELISA) experiments showed that the mAbs efficiently bound only native antigen. Using DnaJ mutant proteins with deletions of specified domains and ELISA, we found that AC11 mAb reacted with the best conserved in evolution N-terminal J domain, whereas BB3, EE11, CC5, CC8, and DC7 bound to the C-terminal part after residue 200. Mapping performed with the use of a random peptide library displayed by filamentous phage indicated that (1) AC11 mAb bound to a region between residues 33-48, including D-34 which belongs to the HPD triad, present in all DnaJ homologues, (2) BB3 recognized residues localized in the 204-224 region, (3) EE11 recognized the 291-309 region, (4) CC5--the region 326-359, and (5) CC8--the 346-366 region. All these mAbs, as well as the polyclonal antibodies against the N- or C-terminal domain, bound efficiently to HDJ-1, human Hsp40. These results show the presence of a significant immunological similarity between bacterial DnaJ and human HDJ-1, which is not restricted to the evolutionarily conserved parts of the proteins, and suggest that HDJ-1 could be a possible target of immune response triggered by DnaJ.  相似文献   

4.
Highly specific antibodies to cytochrome P-450scc and its F1 and F2 fragments, representing N- and C-terminal sequences of the hemeprotein respectively, were raised in rabbits. These antibodies were found to be inhibitory (up to 50-90%) for the cholesterol transformation into pregnenolone in the reconstituted system, indicating the involvement of both F1 and F2 domains formed by the respective fragments in monooxygenase catalysis. Cytochrome P-450scc in mitoplasts is not accessible for trypsin as revealed by immunological techniques. However, the treatment of submitochondrial particles with trypsin results in two main fragments identified by immunoblotting in the presence of the monospecific antibodies as F1 and F2 fragments. This indicates that the trypsin sensitive 250-257 region in cytochrome P-450scc molecule connecting both domains is exposed to the matrix side of the inner mitochondrial membrane.  相似文献   

5.
ClpB is a heat-shock protein from Escherichia coli with an unknown function. We studied a possible molecular chaperone activity of ClpB in vitro. Firefly luciferase was denatured in urea and then diluted into the refolding buffer (in the presence of 5 mM ATP and 0.1 mg/ml bovine serum albumin). Spontaneous reactivation of luciferase was very weak (less than 0.02% of the native activity) because of extensive aggregation. Conventional chaperone systems (GroEL/GroES and DnaK/DnaJ/GrpE) or ClpB alone did not reactivate luciferase under those conditions. However, ClpB together with DnaK/DnaJ/GrpE greatly enhanced the luciferase activity regain (up to 57% of native activity) by suppressing luciferase aggregation. This coordinated function of ClpB and DnaK/DnaJ/GrpE required ATP hydrolysis, although the ClpB ATPase was not activated by native or denatured luciferase. When the chaperones were added to the luciferase refolding solutions after 5-25 min of refolding, ClpB and DnaK/DnaJ/GrpE recovered the luciferase activity from preformed aggregates. Thus, we have identified a novel multi-chaperone system from E. coli, which is analogous to the Hsp104/Ssa1/Ydj1 system from yeast. ClpB is the only known bacterial Hsp100 protein capable of cooperating with other heat-shock proteins in suppressing and reversing protein aggregation.  相似文献   

6.
To probe the secondary structure of the C-terminus (residues 165-243) of lipid-free human apolipoprotein A-I (apoA-I) and its role in protein stability, recombinant wild-type and seven site-specific mutants have been produced in C127 cells, purified, and studied by circular dichroism and fluorescence spectroscopy. A double substitution (G185P, G186P) increases the protein stability without altering the secondary structure, suggesting that G185 and G186 are located in a loop/disordered region. A triple substitution (L222K, F225K, F229K) leads to a small increase in the alpha-helical content and stability, indicating that L222, F225, and F229 are not involved in stabilizing hydrophobic core contacts. The C-terminal truncation Delta(209-243) does not change the alpha-helical content but reduces the protein stability. Truncation of a larger segment, Delta(185-243), does not affect the secondary structure or stability. In contrast, an intermediate truncation, Delta(198-243), leads to a significant reduction in the alpha-helical content, stability, and unfolding cooperativity. The internal 11-mer deletion Delta(187-197) has no significant effect on the conformation or stability, whereas another internal 11-mer deletion, Delta(165-175), dramatically disrupts and destabilizes the protein conformation, suggesting that the presence of residues 165-175 is crucial for proper apoA-I folding. Overall, the findings suggest the presence of stable helical structure in the C-terminal region 165-243 of lipid-free apoA-I and the involvement of segment 209-243 in stabilizing interactions in the molecule. The effect of the substitution (G185P, G186P) on the exposure of tryptophans located in the N-terminal half suggests an apoA-I tertiary conformation with the C-terminus located close to the N-terminus.  相似文献   

7.
The backbone dynamics of the N-terminal domain of the chaperone protein Escherichia coli DnaJ have been investigated using steady-state 1H-15N NOEs, 15N T1, T2, and T1 rho relaxation times, steady-state 13C alpha-13CO NOEs, and 13CO T1 relaxation times. Two recombinant constructs of the N-terminal domain of DnaJ have been studied. One, DnaJ(1-78), contains the most conserved "J-domain" of DnaJ, and the other, DnaJ(1-104), includes a glycine/phenylalanine rich region ("G/F" region) in addition to the "J-domain". DnaJ(1-78) is not capable of stimulating ATP hydrolysis by DnaK, despite the fact that all currently identified sites responsible for DnaJ-DnaK interaction are located in this region. DnaJ(1-104), on the other hand, retains nearly the full ATPase stimulatory activity of full length DnaJ. Recently, a structural analysis of these two molecules was presented in an effort to elucidate the origin of their functional differences [Huang, K., Flanagan, J. M., and Prestegard, J. H. (1999) Protein Science 8, 203-214]. Herein, an analysis of dynamic properties is presented in a similar effort. A generalized model-free approach with a full treatment of the anisotropic overall rotation of the proteins is used in the analysis of measured relaxation parameters. Our results show that internal motions on pico- to nanosecond time scales in the backbone of DnaJ(1-78) are reduced on the inclusion of the "G/F" region, while conformational exchange on micro- to millisecond time scales increases. We speculate that the enhanced flexibility of residues on the slow time scale upon the inclusion of the "G/F" region could be relevant to the ATPase stimulatory activity of DnaJ if an "induced-fit" mechanism applies to DnaJ-DnaK interactions.  相似文献   

8.
Protein folding, refolding and degradation are essential for cellular life and are regulated by protein homeostatic processes such those that involve the molecular chaperone DnaK/Hsp70 and its co-chaperone DnaJ. Hsp70 action is initiated when proteins from the DnaJ family bind an unfolded protein for delivery purposes. In eukaryotes, the DnaJ family can be divided into two main groups, Type I and Type II, represented by yeast cytosolic Ydj1 and Sis1, respectively. Although sharing some unique features both members of the DnaJ family, Ydj1 and Sis1 are structurally and functionally distinct as deemed by previous studies, including the observation that their central domains carry the structural and functional information even in switched chimeras. In this study, we combined several biophysical tools for evaluating the stability of Sis1 and mutants that had the central domains (named Gly/Met rich domain and C-terminal Domain I) deleted or switched to those of Ydj1 to gain insight into the role of these regions in the structure and function of Sis1. The mutants retained some functions similar to full length wild-type Sis1, however they were defective in others. We found that: 1) Sis1 unfolds in at least two steps as follows: folded dimer to partially folded monomer and then to an unfolded monomer. 2) The Gly/Met rich domain had intrinsically disordered characteristics and its deletion had no effect on the conformational stability of the protein. 3) The deletion of the C-terminal Domain I perturbed the stability of the dimer. 4) Exchanging the central domains perturbed the conformational stability of the protein. Altogether, our results suggest the existence of two similar subdomains in the C-terminal domain of DnaJ that could be important for stabilizing each other in order to maintain a folded substrate-binding site as well as the dimeric state of the protein.  相似文献   

9.
S J McClue  G Milligan 《FEBS letters》1990,269(2):430-434
In membranes of undifferentiated neuroblastoma x glioma hybrid cell line NG108-15, the apparent specific binding of [3H]yohimbine measured in the presence of 1 microM noradrenaline, was increased substantially by the presence of the poorly hydrolysed analogue of GTP, guanylyl-imidodiphosphate (Gpp[NH]p) or by preincubation of membranes with antibodies against the C-terminal decapeptide of the alpha subunit of the G-protein Gi2. Such an effect was not produced by antibodies against the equivalent region of Go alpha Gi3 alpha or Gs alpha or from non-immune serum. By contrast, total specific binding of [3H]yohimbine was not modified by co-incubation with Gpp[NH]p or by preincubation with the antibodies from any of the anti-G protein antisera. These results demonstrate a direct interaction of the alpha 2B adrenergic receptor of NG108-15 cells with Gi2.  相似文献   

10.
DnaK, a Hsp70 homolog of Escherichia coli, together with its co-chaperones DnaJ and GrpE protects denatured proteins from aggregation and promotes their refolding by an ATP-consuming mechanism. DnaJ not only stimulates the gamma-phosphate cleavage of DnaK-bound ATP but also binds polypeptide substrates on its own. Unfolded polypeptides, such as denatured luciferase, thus form ternary complexes with DnaJ and DnaK. A previous study has shown that d-peptides compete with l-peptides for the same binding site in DnaJ but do not bind to DnaK (Feifel, B., Sch?nfeld, H.-J., and Christen, P. (1998) J. Biol. Chem. 273, 11999-12002). Here we report that d-peptides efficiently inhibit the refolding of denatured luciferase by the DnaK/DnaJ/GrpE chaperone system (EC50 = 1-2 microM). The inhibition of the chaperone action is due to the binding of d-peptide to DnaJ (Kd = 1-2 microM), which seems to preclude DnaJ from forming ternary (ATP.DnaK)m.substrate.DnaJn complexes. Apparently, simultaneous binding of DnaJ and DnaK to one and the same target polypeptide is essential for effective chaperone action.  相似文献   

11.
12.
Each polypeptide chain of the beta 2 subunit of Escherichia coli tryptophan synthase (EC 4.2.1.20) is made of two domains, F1 (N-terminal) and F2 (C-terminal). To determine the relative position of these domains in the native protein, complexes between beta 2 and Fab fragments from two monoclonal antibodies, one specific for F1 (68-1) and the other for F2 (93-6), have been prepared and purified. Small-angle X-ray scattering measurements have been made on solutions of each complex. From the experimental scattering curves obtained, computer modeling leads to structural models of the two beta 2-Fab complexes. Though relatively low, the resolution of these models allows the localization on beta 2 of the antigenic sites recognized by the two antibodies, to show that the C-terminal F2 domains lie at the distal ends of the elongated beta 2 protein, and to show how steric hindrance prevents beta 2, though structurally and functionally dimeric, from binding more than one Fab 93-6 fragment per dimer.  相似文献   

13.
Inhibitors of both heat shock proteins Hsp90 and Hsp70 have been identified in assays measuring luciferase refolding containing rabbit reticulocyte lysate or purified chaperone components. Here, we report the discovery of a series of phenoxy-N-arylacetamides that disrupt Hsp70-mediated luciferase refolding by binding to DnaJ, the bacterial homolog of human Hsp40. Inhibitor characterization experiments demonstrated negative cooperativity with respect to DnaJ and luciferase concentration, but varying the concentration of ATP had no effect on potency. Thermal shift analysis suggested a direct interaction with DnaJ, but not with Hsp70. These compounds may be useful tools for studying DnaJ/Hsp40 in various cellular processes.  相似文献   

14.
The Escherichia coli heat-shock protein DnaJ cooperates with the Hsp70 homolog DnaK in protein folding in vitro and in vivo. Little is known about the structural features of DnaJ that mediate its interaction with DnaK and unfolded polypeptide. DnaJ contains at least four blocks of sequence representing potential functional domains which have been conserved throughout evolution. In order to understand the role of each of these regions, we have analyzed DnaJ fragments in reactions corresponding to known functions of the intact protein. Both the N-terminal 70 amino acid 'J-domain' and a 35 amino acid glycine-phenylalanine region following it are required for interactions with DnaK. However, only complete DnaJ can cooperate with DnaK and a third protein, GrpE, in refolding denatured firefly luciferase. As demonstrated by atomic absorption and extended X-ray absorption fine structure spectroscopy (EXAFS), the 90 amino acid cysteine-rich region of DnaJ contains two Zn atoms tetrahedrally coordinated to four cysteine residues, resembling their arrangement in the C4 Zn binding domains of certain DNA binding proteins. Interestingly, binding experiments and cross-linking studies indicate that this Zn finger-like domain is required for the DnaJ molecular chaperone to specifically recognize and bind to proteins in their denatured state.  相似文献   

15.
DnaJ, an Escherichia coli Hsp40 protein composed of 376 amino acid residues, is a chaperone with thioldisulfide oxidoreductase activity. We present here for the first time a small angle x-ray scattering study of intact DnaJ and a truncated version, DnaJ (1-330), in solution. The molecular weight of DnaJ and DnaJ (1-330) determined by both small angle x-ray scattering and size-exclusion chromatography provide direct evidence that DnaJ is a homodimer and DnaJ (1-330) is a monomer. The restored models show that DnaJ is a distorted omega-shaped dimeric molecule with the C terminus of each subunit forming the central part of the omega, whereas DnaJ (1-330) exists as a monomer. This indicates that the deletion of the C-terminal 46 residues of DnaJ impairs the association sites, although it does not cause significant conformational changes. Biochemical studies reveal that DnaJ (1-330), while fully retaining its thiol-disulfide oxidoreductase activity, is structurally less stable, and its peptide binding capacity is severely impaired relative to that of the intact molecule. Together, our results reveal that the C-terminal (331-376) residues are directly involved in dimerization, and the dimeric structure of DnaJ is necessary for its chaperone activity but not required for the thiol-disulfide oxidoreductase activity.  相似文献   

16.
Human cytidine deaminases APOBEC3F (A3F) and APOBEC3G (A3G) inhibit human immunodeficiency virus type-1 (HIV-1) replication. In the absence of HIV-1 Vif, A3F and/or A3G are incorporated into assembling virions and exert antiviral functions in subsequently infected target cells. Encapsidation of A3F or A3G within the protease-matured virion core following their incorporation into virions is hypothesized to be important for the antiviral function of these proteins. In this report, we demonstrated that A3F was quantitatively encapsidated in the mature virion core. In distinct contrast, A3G was distributed both within and outside of the virion core. Analysis of a series of A3F-A3G chimeras comprised of exchanged N- and C-terminal deaminase domains identified a 14 amino acid segment in the A3F C-terminal deaminase domain that contributed to preferential encapsidation and anti-HIV activity. Amino acid residue L306 in this C-terminal segment was determined to be necessary, but not sufficient, for these effects. Amino acid residue W126 in the N-terminal deaminase domain was determined also to contribute to preferential encapsidation and antiviral activity of A3F. Analysis of the A3F (W126A L306A) double mutant revealed that both residues are required for full anti-HIV function. The results reported here advance our understanding of the mechanisms of A3F virion encapsidation and antiviral function and may lead to innovative strategies to inhibit HIV-1 replication.  相似文献   

17.
18.
G protein-sensitive inwardly rectifying potassium (GIRK) channels are activated through direct interactions of their cytoplasmic N- and C-terminal domains with the beta gamma subunits of G proteins. By using a combination of biochemical and electrophysiological approaches, we identified minimal N- and C-terminal G beta gamma -binding domains responsible for stimulation of GIRK4 channel activity. Within these domains one N-terminal residue, His-64, and one C-terminal residue, Leu-268, proved critical for G beta gamma-mediated GIRK4 activity. Moreover, mutations at these GIRK4 sites reduced significantly binding of the channel domains to G beta gamma . The corresponding residues in GIRK1 also showed a critical involvement in G beta gamma sensitivity. In GIRK4/GIRK1 heteromers the GIRK4 His-64 and Leu-268 residues showed greater contributions to G beta zeta sensitivity than did the corresponding GIRK1 His-57 and Leu-262 residues. These results identify functionally important channel interaction sites with the beta gamma subunits of G proteins, critical for channel activity.  相似文献   

19.
Functional and structural properties of several truncated or mutated variants of Candida albicans Gfa1p (glucosamine-6-phosphate synthase) were compared with those of the wild-type enzyme. Fragments encompassing residues 1-345 and 346-712 of Gfa1p, expressed heterogeneously in bacterial host as His6 fusions, were identified as the functional GAH (glutamine amidehydrolysing) and ISOM (hexose phosphate-isomerizing) domains respectively. It was found that the native GAH domain is monomeric, whereas the native ISOM domain forms tetramers, as does the whole enzyme. Spectrofluorimetric and kinetic studies of the isolated domains, the Delta218-283Gfa1p mutein and the wild-type enzyme revealed that the binding site for the feedback inhibitor, uridine 5'-diphospho-N-acetyl-D-glucosamine, is located in the ISOM domain. Inhibitor binding affects amidohydrolysing activity of the GAH domain and, as a consequence, the GlcN-6-P (D-glucosamine-6-phosphate)-synthetic activity of the whole enzyme. The fragment containing residues 218-283 is neither involved in ligand binding nor in protein oligomerization. Comparison of the catalytic activities of Gfa1p(V711F), Delta709-712Gfa1p, Gfa1p(W97F) and Gfa1p(W97G) with those of the native Gfa1p and the isolated domains provided evidence for an intramolecular channel connecting the GAH and ISOM domains of Gfa1p. The channel becomes leaky upon deletion of amino acids 709-712 and in the W97F and W97G mutants. The Trp97 residue was found to function as a molecular gate, opening and closing the channel. The W97G and V711F mutations resulted in an almost complete elimination of the GlcN-6-P-synthetic activity, with the retention of the amidohydrolase and sugar phosphate-isomerizing activities.  相似文献   

20.
We report details of the chemical synthesis of two fragments reproducing the C-terminal sequences 71-108 and 70-108 of Saccharomices cerevisiae cytochrome c. Preparation of the fragments employed classical solution methods and a fragment-condensation strategy; they have been used, together with a third fragment (sequence 67-108) [L. Moroder, B. Filippi, G. Borin & F. Marchiori (1975) Biopolymers 14 , 2061–2074], in the semisynthesis of chimeric cytochromes [C. J. A. Wallace, G. Corradin, F. Marchiori & G. Borin (1986) Biopolymers 25 , 2121–2132].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号