首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Osteopontin (OPN) is a secreted glycoprotein with mineral- and cell-binding properties that can regulate cell activities through integrin receptors. Previously, we identified an intracellular form of osteopontin with a perimembranous distribution in migrating fetal fibroblasts (Zohar et al., J Cell Physiol 170:88-98, 1997). Since OPN and CD44 expression are increased in migrating cells, we analyzed the relationship of these proteins with immunofluorescence and confocal microscopy. A distinct co-localization of perimembranous OPN and cell-surface CD44 was observed in fetal fibroblasts, periodontal ligament cells, activated macrophages, and metastatic breast cancer cells. The co-localization of OPN and CD44 was prominent at the leading edge of migrating fibroblasts, where OPN also co-localized with the ezrin/radixin/moesin (ERM) protein ezrin, as well as in cell processes and at attachment sites of hyaluronan-coated beads. The subcortical location of OPN in these cells was verified by cell-surface biotinylation experiments in which biotinylated CD44 and non-biotinylated OPN were isolated from complexes formed with hyaluronan-coated beads and identified with immunoblotting. That perimembranous OPN represents secreted protein internalized by endocytosis or phagocytosis appeared to be unlikely since exogenous OPN that was added to cell cultures could not be detected inside the cells. A physical association with OPN, CD44, and ERM, but not with vinculin or alpha-actin, was indicated by immunoadsorption and immunoblotting of cell proteins in complexes extracted from hyaluronan-coated beads. The functional significance of OPN in this complex was demonstrated using OPN-/- and CD-/- mouse fibroblasts which displayed impaired migration and a reduced attachment to hyaluronan-coated beads. These studies indicate that OPN exists as an integral component of a hyaluronan-CD44-ERM attachment complex that is involved in the migration of embryonic fibroblasts, activated macrophages, and metastatic cells.  相似文献   

4.
Rheumatoid synovial fibroblasts (RSF) are activated by toll-like receptor (TLR) signaling pathways during the pathogenesis of rheumatoid arthritis (RA). Cathepsin K is highly expressed by RSF, and is known to play a key role in the degradation of type I and type II collagen. Cathepsin K is considered to be implicated in the degradation of bone and cartilage in RA. Recent observations have shown that hyaluronan (HA) is an important inhibitor of inflammation. In the present study, we show that lipopolysaccharide (LPS) stimulation significantly increases cathepsin K expression by real-time PCR and western blotting analysis via a TLR-4 signaling pathway. Furthermore, we demonstrate that HA suppresses LPS-induced cathepsin K expression, which is dependent on CD44 but not intercellular adhesion molecule-1 (ICAM-1) interaction. We also show that HA suppresses LPS-induced matrix metalloproteinase-1 (MMP-1) expression, which is dependent on both CD44 and ICAM-1 interaction. We conclude that the anti-inflammatory effect of HA occurs through crosstalk between more than one HA receptor. Our study provides evidence for HA mediated suppression of LPS-induced cathepsin K and MMP-1 expression, supporting a protective effect of HA in RA.  相似文献   

5.
Hyaluronan (HA) is an extracellular matrix glycosaminoglycan that interacts with cell-surface receptors, including CD44. Although HA usually exists as a high molecular mass polymer, HA of a much lower molecular mass that shows a variety of biological activities can be detected under certain pathological conditions, particularly in tumors. We previously reported that low molecular weight HAs (LMW-HAs) of a certain size range induce the proteolytic cleavage of CD44 from the surface of tumor cells and promote tumor cell migration in a CD44-dependent manner. Here, we show that MIA PaCa-2, a human pancreatic carcinoma cell line, secreted hyaluronidases abundantly and generated readily detectable levels of LMW-HAs ranging from approximately 10- to 40-mers. This occurred in the absence of any exogenous stimulation. The tumor-derived HA oligosaccharides were able to enhance CD44 cleavage and tumor cell motility. Inhibition of the CD44-HA interaction resulted in the complete abrogation of these cellular events. These results are consistent with the concept that tumor cells generate HA oligosaccha-rides that bind to tumor cell CD44 through the expression of their own constitutive hyaluronidases. This enhances their own CD44 cleavage and cell motility, which would subsequently promote tumor progression. Such an autocrine/paracrine-like process may represent a novel activation mechanism that would facilitate and promote the malignant potential of tumor cells.  相似文献   

6.
Hyaluronan (HA) degradation produces small oligosaccharides that are able to increase pro-inflammatory cytokines in rheumatoid arthritis synovial fibroblasts (RASF) by activating both CD44 and the toll-like receptor 4 (TLR-4). CD44 and TLR-4 stimulation in turn activate the NF-kB that induces the production of pro-inflammatory cytokines. Degradation of HA occurs via two mechanisms: one exerted by reactive oxygen species (ROS) and one controlled by different enzymes in particular hyaluronidases (HYALs). We aimed to investigate the effects of inhibiting HA degradation (which prevents the formation of small HA fragments) on synovial fibroblasts obtained from normal DBA/J1 mice (NSF) and on synovial fibroblasts (RASF) obtained from mice subjected to collagen induced arthritis (CIA), both fibroblast types stimulated with tumor necrosis factor alpha (TNF-α). TNF-α stimulation produced high mRNA expression and the related protein production of CD44 and TLR-4 in both NSF and RASF, and activation of NF-kB was also found in all fibroblasts. TNF-α also up-regulated the inflammatory cytokines, interleukin-1beta (IL-1beta) and interleukin-6 (IL-6), and other pro-inflammatory mediators, such as matrix metalloprotease-13 (MMP-13), inducible nitric oxide synthase (iNOS), as well as HA levels and small HA fragment production. Treatment of RASF with antioxidants and specific HYAL1, HYAL2, and HYAL3 small interference RNA (siRNAs) significantly reduced TLR-4 and CD44 increase in the mRNA expression and the related protein synthesis, as well as the release of inflammatory mediators up-regulated by TNF-α. These data suggest that the inhibition of HA degradation during arthritis may contribute to reducing TLR-4 and CD44 activation and the inflammatory mediators response.  相似文献   

7.
CD44 is a multi-functional receptor with multiple of isoforms engaged in modulation of cell trafficking and transmission of apoptotic signals. We have previously shown that injection of anti-CD44 antibody into NOD mice induced resistance to type 1 diabetes (T1D). In this communication we describe our efforts to understand the mechanism underlying this effect. We found that CD44-deficient NOD mice develop stronger resistance to T1D than wild-type littermates. This effect is not explained by the involvement of CD44 in cell migration, because CD44-deficient inflammatory cells surprisingly had greater invasive potential than the corresponding wild type cells, probably owing to molecular redundancy. We have previously reported and we show here again that CD44 expression and hyaluronic acid (HA, the principal ligand for CD44) accumulation are detected in pancreatic islets of diabetic NOD mice, but not of non-diabetic DBA/1 mice. Expression of CD44 on insulin-secreting β cells renders them susceptible to the autoimmune attack, and is associated with a diminution in β-cells function (e.g., less insulin production and/or insulin secretion) and possibly also with an enhanced apoptosis rate. The diabetes-supportive effect of CD44 expression on β cells was assessed by the TUNEL assay and further strengthened by functional assays exhibiting increased nitric oxide release, reduced insulin secretion after glucose stimulation and decreased insulin content in β cells. All these parameters could not be detected in CD44-deficient islets. We further suggest that HA-binding to CD44-expressing β cells is implicated in β-cell demise. Altogether, these data agree with the concept that CD44 is a receptor capable of modulating cell fate. This finding is important for other pathologies (e.g., cancer, neurodegenerative diseases) in which CD44 and HA appear to be implicated.  相似文献   

8.
Hyaluronan uptake by adult human skin fibroblasts in vitro   总被引:3,自引:0,他引:3  
Low and high molecular weight hyaluronan (HA) was added to adult human fibroblasts grown in monolayer to assess its influence on CD44 expression, its internalisation and effect on cell growth. CD44 expression on the surface of in vitro fibroblasts was not modified by different concentrations of FCS, whereas it was sensitive to cell cycle, being higher in the growing than in the resting phase. Independently from molecular weight, upon addition of exogenous HA (from 0.1 up to 1 mg/mL) to fibroblasts in the growing phase, a slight but constant decrease of the expression of CD44 on the surface of fibroblasts was observed; moreover, HA induced a rearrangement of CD44 into patches in close relationship with the terminal regions of stress fibers, which became thicker and more rigid after a few hours from the addition of HA to the medium. Fluorescent HA, added to the culture medium, rapidly attached to the plasma membrane and in less than two minutes was observed within cells, partly in association with its receptor CD44. By the contemporary use of neutral red, which accumulates into functional lysosomes, the great majority of internalised HA was found within lysosomes. HA receptor RHAMM-IHABP was rather homogeneously localised within the cytoplasm of normal growing fibroblasts. Upon addition of HA, the RHAMM-IHABP distribution became discontinuous around the nucleus. Addition of HA to fibroblasts induced a significant inhibition of cell growth, which was dependent on HA concentration and irrespective of HA molecular weight, at least in the ranges tested. Results show that extra-cellular HA is rapidly taken up by human dermal fibroblasts together with its CD44 receptor, and transported mostly to the lysosomes. Both low and high molecular weight HA induced down-regulation of cell proliferation, which would seem to be mediated by HA catabolism.  相似文献   

9.
10.
Hyaluronan (HA) is an important regulator of cell locomotion. We show that ras -transformed cells, termed 245 cells, respond to HA with an increase in random locomotion. We show that two HA receptors, RHAMM (receptor for hyaluronan-mediated motility) and CD44, are present on these ras -transformed fibroblasts. RHAMM is expressed as a 58-kDa protein and is distributed primarily as patches over lamellae. CD44 occurs largely as an 85- to 90-kDa protein that is distributed more or less evenly over the cell surface with small amounts concentrated at the tips of lamellae. CD44 and RHAMM both bind biotinylated HA in a transblot assay, indicating that they are both potential fibroblast HA receptors. CD44 binds approximately five times more HA than RHAMM as determined by densitometric analysis of transblots, indicating that this protein is the major HA receptor on fibroblasts. We assessed the role of these receptors in mediating the stimulatory effects of HA on cell motility by using antibody neutralization. Several antibodies to CD44 were used that inhibit HA/CD44 interactions. None of these had an effect on locomotory responses to HA, indicating that CD44 is not directly involved in mediating locomotion in response to HA on ras-transformed cells. In contrast, antibodies specific to RHAMM completely inhibited locomotion, indicating that RHAMM is the primary mediator of HA-promoted locomotion of ras -transformed cells.  相似文献   

11.
12.
Monocytes/macrophages play an important role in rheumatoid arthritis (RA) pathogenesis. They can activate fibroblasts through many molecules, including IL-1 and tumor necrosis factor-alpha, but there have been very few reports on the role of CD147 in RA. In our study, the results of flow cytometry reveal that the mean fluorescence intensity (MFI) of CD147 expression on CD14+ monocytes of peripheral blood from RA patients was higher than that in normal control and ankylosing spondylitis (AS) patients. The MFI of CD147 expression on the CD14+ monocytes in RA synovial fluid was higher than that in RA peripheral blood. Immunohistochemical staining shows that CD147 expression in RA synovium correlated with matrix metalloproteinase (MMP)-1 expression. A double immunofluorescent assay shows that CD147 was expressed on CD68+ cells in RA synovium. The potential role of CD147 in cyclophilin A (CyPA)-mediated cell migration was studied using a chemotaxis assay in vitro and it was found that the addition of anti-CD147 antibody or a CD147 antagonistic peptide significantly decreased the chemotactic index of the mononuclear cells. The role of CD147 in MMP production and cell invasion in vitro were studied through the co-culture of human CD14+ monocytes or monocytic line THP-1 cells and human fibroblasts, as well as by gel zymography and an invasion assay. Significantly elevated release and activation of MMP-9 and/or MMP-2 were seen in the co-culture of human monocytes/THP-1 cells and fibroblasts compared with cultures of the cells alone. An increased number of cells invading through the filters in the invasion assays was also observed in the co-cultured cells. The addition of CD147 antagonistic peptide had some inhibitory effect, not only on MMP production but also on cell invasion in the co-culture. Our study demonstrates that the increased expression of CD147 on monocytes/macrophages in RA may be responsible for elevated MMP secretion, cell invasion and CyPA-mediated cell migration into the joints, all of which may contribute to the cartilage and bone destruction of RA. These findings, together with a better understanding of CD147, CyPA and RA, will help in the development of innovative therapeutic interventions for RA.  相似文献   

13.
Hyaluronan (HA) promotes transforming growth factor (TGF)-β1-driven myofibroblast phenotype. However, HA can also have disease-limiting activity. Bone morphogenetic protein-7 (BMP7) is an antifibrotic cytokine that antagonizes TGF-β1, and isolated studies have demonstrated that HA can both mediate and modulate BMP7 responses. In this study, we investigated whether BMP7 can modulate HA in a manner that leads to prevention/reversal of TGF-β1-driven myofibroblast differentiation in human lung fibroblasts. Results demonstrated that BMP7 prevented and reversed TGF-β1-driven myofibroblast differentiation through a novel mechanism. BMP7 promoted the dissolution and internalization of cell-surface HA into cytoplasmic endosomes. Endosomal HA co-localized with the HA-degrading enzymes, hyaluronidase-1 and hyaluronidase-2 (Hyal2). Moreover, BMP7 showed differential regulation of CD44 standard and variant isoform expression, when compared with TGF-β1. In particular, BMP7 increased membrane expression of CD44v7/8. Inhibiting CD44v7/8 as well as blocking Hyal2 and the Na+/H+ exchanger-1 at the cell-surface prevented BMP7-driven HA internalization and BMP7-mediated prevention/reversal of myofibroblast phenotype. In summary, a novel mechanism of TGF-β1 antagonism by BMP7 is shown and identifies alteration in HA as critical in mediating BMP7 responses. In addition, we identify Hyal2 and CD44v7/8 as new potential targets for manipulation in prevention and reversal of fibrotic pathology.  相似文献   

14.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses phorbol ester (PMA)-stimulated expression of urokinase-type plasminogen activator (uPA). In the present study, we tried to answer this mechanism using human chondrosarcoma HCS-2/8 cells. Our results showed the following novel findings: (a) the standard form of CD44 (CD44s; 85 kDa) is expressed in both unstimulated and PMA-stimulated cells, while CD44v isoforms containing epitope v9 (110 kDa) are strongly up-regulated in response to treatment with PMA; (b) CD44v isoforms containing epitope v9 present on the same cell exclusively form aggregates in stimulated cells; (c) induction of uPA mRNA expression could be achieved by using a second cross-linker antibody to cross-link Fab monomers of anti-CD44; (d) co-treatment of stimulated cells with anti-CD44 mAb alone or anti-CD44v9 mAb alone suppresses PMA-induced clustering of CD44, which results in inhibition of uPA overexpression; (e) bikunin efficiently disrupts PMA-induced clustering of CD44, but does not prevent PMA-induced up-regulation of CD44v isoforms containing epitope v9; and (f) after exposure to bik, approximately 150-kDa band is mainly detected with immunoprecipitation and this band is shown to be a heterodimer composed of the 110-kDa v9-containing CD44v isoforms and a 45-kDa bik receptor (bik-R). In conclusion, we provide, for the first time, evidence that the bik-R can physically interact with the CD44v isoforms containing epitope v9 and function as a repressor to down-regulate PMA-stimulated uPA expression, at least in part, by preventing clustering of CD44v isoforms containing epitope v9.  相似文献   

15.
Hyaluronan (HA) oligosaccharides stimulate pro-inflammatory responses in different cell types by modulating both cluster determinant 44 (CD44) and TLR4. The activation of these receptors is also mediated by collagen-induced arthritis (CIA) that, via two different pathways, culminates in the liberation of NF-κB. This then stimulates the production of pro-inflammatory cytokines, including IL-18 and IL-33, that are greatly involved in rheumatoid arthritis. The aim of this study was to investigate the effects of 6-mer HA oligosaccharides on mouse synovial fibroblasts obtained from normal DBA/J1 mice or mice subjected to CIA. Compared with normal synovial fibroblasts (NSF), rheumatoid arthritis synovial fibroblasts (RASF) showed no up-regulation of CD44 and TLR4 mRNA expression and the related proteins, as well as no activation of NF-κB. Very low levels of both mRNA and related proteins were also detected for IL-18 and IL-33. Treatment of NSF and RASF with 6-mer HA oligosaccharides significantly increased all the parameters in both fibroblast groups, although to a greater extent in RASF. The addition of hyaluronan binding protein to both NSF and RASF inhibited HA activity and was able to reduce the effects of 6-mer HA oligosaccharides and the consequent inflammatory response.  相似文献   

16.
Hyaluronan (HA), an unbranched polysaccharide consisting of repeated glucuronic acid/N-acetylglucosamine disaccharide units, is ubiquitously present in the extracellular matrix of many tissues (for a more comprehensive review see: Fraser et al., 1997). Increased amounts of hyaluronan are produced by solid tumors and tumor-associated fibroblasts, and tumor-induced HA is correlated with poor prognosis. HA is well known to stimulate the migration of a large variety of cell types. Stimulation of cell migration by HA has been explained by different mechanisms. HA was shown to specifically bind to cell surface receptors, and inhibition of HA-receptor function was demonstrated to decrease cell migration and tumor growth. On the other hand, HA as a large hydrophilic molecule is also known to modulate the extracellular packing of collagen and fibrin, leading to increased fiber size and porosity of extracellular substrates. Hence a modified matrix architecture might similarly account for increased locomotion of cells. In this review, we attempted to summarize the available data on HA-induced cell migration, with particular emphasis on the role of HA receptors in three-dimensional cell migration. Although the HA receptor CD44 has been shown to mediate migration of cells over two-dimensional hyaluronan-coated surfaces in vitro, there is only little evidence that HA-binding to CD44 or other HA receptors has major impact on the locomotion of cells through three-dimensional matrices in vivo. We showed recently that the promigratory effect of HA in fibrin gels is largely due to HA-mediated modulation of fibrin polymerization. By increasing the porosity of fibrin gels, HA strongly accelerates cell migration. The porosity of matrices therefore appears as an important and probably underestimated determinant of cell migration and tumor spread.  相似文献   

17.
The Toll-like receptor (TLR) signaling pathway is activated in synovial fibroblast cells in patients with rheumatoid arthritis (RA). The receptor activator of nuclear factor-κB (RANK) and its ligand, RANKL, are key molecules involved in the differentiation of osteoclasts and joint destruction in RA. Hyaluronan (HA) is a major extracellular component and an important immune regulator. In this study, we show that lipopolysaccharide (LPS) stimulation significantly increases RANKL expression via a TLR-4 signaling pathway. We also demonstrate that HA suppresses LPS-induced RANKL expression, which is dependent on CD44, but not intercellular adhesion molecule-1 (ICAM-1). Our study provides evidence for HA-mediated suppression of TLR-4-dependent RANKL expression. This could present an alternative target for the treatment of destructed joint bones and cartilages in RA.  相似文献   

18.
Synovial tissue of rheumatoid arthritis (RA) patients is characterised by an influx and retention of CD97-positive inflammatory cells. The ligands of CD97, CD55, chondroitin sulfate B, and α5β1 (very late antigen [VLA]-5) are expressed abundantly in the synovial tissue predominantly on fibroblast-like synoviocytes, endothelium, and extracellular matrix. Based upon this expression pattern, we hypothesise CD97 expression to result in accumulation of inflammatory cells in the synovial tissue of RA patients. To determine the therapeutic effect of blocking CD97 in an animal model of RA, collagen-induced arthritis was induced in a total of 124 DBA/J1 mice. Treatment was started on day 21 (early disease) or on day 35 (longstanding disease) with the blocking hamster anti-mouse CD97 monoclonal antibody (mAb) 1B2, control hamster immunoglobulin, or NaCl, applied intraperitoneally three times a week. The paws were evaluated for clinical signs of arthritis and, in addition, examined by radiological and histological analysis. Mice receiving 0.5 mg CD97 mAb starting from day 21 had significantly less arthritis activity and hind paw swelling. Furthermore, joint damage and inflammation were reduced and granulocyte infiltration was decreased. When treatment was started on day 35, CD97 mAb treatment had similar effects, albeit less pronounced. The results support the notion that CD97 contributes to synovial inflammation and joint destruction in arthritis.  相似文献   

19.
We previously found that the CD44 glycoprotein on some lymphocytes can mediate adhesion to hyaluronate (HA) bearing cells. However, many questions remain about the molecular heterogeneity of CD44 and mechanisms which control its recognition of this ligand. In vitro mutagenesis and DNA sequencing have now been used to investigate the importance of the membrane proximal region of murine CD44 for recognition of soluble or cell surface HA. CD44 with an 83 amino acid deletion in this region mediated binding to soluble ligand and the apparent avidity increased markedly in the presence of a particular antibody to CD44, IRAWB14. The shortened CD44 was however inefficient in mediating adhesion of transfected cells to HA immobilized on cell surfaces. Four new murine isoforms of CD44 were isolated from a carcinoma line by use of the polymerase chain reaction. Only two of them correspond to ones recently discovered in rat and human cells. The longest variant nearly doubled the length of the extracellular portion of the molecule and introduced an additional 20 potential sites for glycosylation. When expressed on T lymphoma cells, all four of the new murine CD44 isoforms were capable of mediating adhesion to HA bearing cells. This result contrasts with a report that a related human CD44 isoform lacks this ability when expressed on B lineage lymphoma cells. The new murine isoforms also conferred the ability to recognize soluble HA and were very responsive to the IRAWB14 antibody. A brief survey of normal murine cell lines and tissues revealed that the hemopoietic isoform was the most abundant species. These findings indicate that the NH2-terminal portion of CD44 is sufficient for HA recognition and that this function is not necessarily abrogated by variations which occur in the membrane proximal domain. They add to the known molecular diversity of CD44 and provide another experimental model in which isoform specific functions can be investigated.  相似文献   

20.
CD44 is a transmembrane glycoprotein involved in various cell adhesion events, including lymphocyte migration, early hemopoiesis, and tumor metastasis. To examine the requirements of CD44 for signal delivery through the extracellular domain, we constructed a chimeric CD44 protein fused to the intracellular domain of Fas on its C-terminus. In cells expressing the CD44-Fas fusion protein, apoptosis could be induced by treatment with certain anti-CD44 mAbs alone, especially those recognizing the epitope group d, which has been previously shown to play a role in ligand binding, indicating that ligation of a specific region of the CD44 extracellular domain results in signal delivery. Of note was that appropriate ligation of the epitope h also resulted in the generation of apoptotic signal, although this region was not thought to be involved in ligand binding. In contrast, the so-called blocking anti-CD44 mAbs (epitope group f) that can abrogate the binding of hyaluronate (HA) failed to induce apoptosis even after further cross-linking with the secondary Ab, indicating that a mere mAb-induced oligomerization of the chimeric proteins is insufficient for signal generation. However, these blocking mAbs were instead capable of inhibiting apoptosis induced by nonblocking mAb (epitope group h). Furthermore, a chimeric protein bearing a mutation in the HA binding domain and hence lacking the ability to recognize HA was incapable of mediating the mAb-induced apoptosis, suggesting that the functional integrity of the HA binding domain is crucial to the signal generation in CD44.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号