首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To develop a rabbit corneal endothelial (RCE) cell line, in vitro culture of RCE cells was initiated from Oryctolagus curiculus corneas and a novel RCE cell line was established in this study. To initiate the primary culture of RCE cells, corneas from rabbit eyes were sliced and attached into glutin-coated wells with endothelial cell surface down. After being cultured at a time-gradient interval from 48 to 6 h, the corneal slices were detached and reattached into new wells, respectively. Cells in the wells containing only a pure population of RCE cells were collected and cultured in 20% FBS-DMEM/F12 medium con- taining chondroitin sulfate, ocular extract, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), carboxymethyl-chitosan, N-acetylglucosamine hydrochloride, glucosamine hydrochloride, culture medium of rabbit corneal stromal cells and oxidation-degradation products of chondroitin sul- fate at 37℃, 5% CO2. The cultured RCE cells, in quadrangle and polygonal shapes, proliferated to con- fluence 3 weeks later. During the subsequent subculture, the shape of RCE cells changed gradually from polygonal to more fibroblastic. A novel RCE cell line, growing at a steady rate, with a population doubling time of 53.8 h, has been established and subcultured to passage 67. Chromosome analysis showed that the RCE cells exhibited chromosomal aneuploidy with the modal chromosome number of 44. The results of immuno-cytochemical staining with neuron specific enolase (NSE) confirmed that the RCE cells were in neuroectodermal origin. Combined with the results of vascular endothelial growth factor (VEGF) treatment and endothelial cell morphology recovery, it can be concluded that the cell line established here is an RCE cell line. This RCE cell line may serve as a useful tool in theoretical re- searches of mammalian corneal endothelial cells, and may also have potential application in artificial corneal endothelium development.  相似文献   

2.
Background information. Endothelial cells play a major role in angiogenesis, the process by which new blood vessels arise from a pre‐existing vascular bed. VEGF‐A (vascular endothelial growth factor‐A) is a key regulator of angiogenesis during both development and in adults. HGF (hepatocyte growth factor) is a pleiotropic cytokine that may promote VEGF‐A‐driven angiogenesis, although the signalling mechanisms underlying this co‐operation are not completely understood. Results. We analysed the effects of the combination of VEGF‐A and HGF on the activation of VEGFR‐2 (VEGF receptor‐2) and c‐met receptors, and on the stimulation of downstream signalling pathways in endothelial cells. We found that VEGFR‐2 and c‐met do not physically associate and do not transphosphorylate each other, suggesting that co‐operation involves signalling events more distal from receptor activation. We demonstrate that the VEGF isoform VEGF‐A165 and HGF stimulate a similar set of MAPKs (mitogen‐activated protein kinases), although the kinetics and strengths of the activation differ depending on the growth factor and pathway. An enhanced activation of the signalling was observed when endothelial cells were stimulated by the combination of VEGF‐A165 and HGF. Moreover, the combination of VEGF‐A and HGF results in a statistically significant synergistic activation of ERK1/2 (extracellular‐signal‐regulated kinase 1/2) and p38 kinases. We demonstrated that VEGF‐A165 and HGF activate FAK (focal adhesion kinase) with different kinetics and stimulate the recruitment of phosphorylated FAK to different subsets of focal adhesions. VEGF‐A165 and HGF regulate distinct morphogenic aspects of the cytoskeletal remodelling that are associated with the preferential activation of Rho or Rac respectively, and induce structurally distinct vascular‐like patterns in vitro in a Rho‐ or Rac‐dependent manner. Conclusions. Under angiogenic conditions, combining VEGF‐A with HGF can promote neovascularization by enhancing intracellular signalling and allowing more finely regulated control of the signalling molecules involved in the regulation of the cytoskeleton and cellular migration and morphogenesis.  相似文献   

3.
Summary The behavior of vascular endothelial cells (EC) is an important factor in the processes involved in angiogenesis, but the regulatory mechanisms of angiogenesis, especially underlying the tubulogenesis by EC are not yet clear. Although a number of in vitro experimental models of tubulogenesis have been developed by use of cultured EC, most of those models are too complex to be easily handled and further, the culture media are usually supplemented with serum, creating problems in interpretation of experimental results. To generate a simple in vitro angiogenesis study model under serum-free culture conditions, we adapted a murine microvascular endothelial cell line, F-2, to a chemically defined medium, Cos Medium 001, and successfully established a subline of F-2, designated F-2C, which revealed a unique growth pattern. In Cos Medium 001, F-2C proliferates in a cobblestone pattern at an early growth stage, but, at a late growth stage, spontaneously differentiates to form three-dimensional honeycomblike tubular structures without the supplementation of any specific factors. The cell aggregation activity of F-2C in the presence of Ca2+ was much greater than that of F-2. The amount of subendothelial matrix deposited by F-2C was significantly higher than that by F-2, and increased prominently after the F-2C cells reached the differentiating stage of tubulogenesis. These findings indicate that F-2C is a new EC line in which tubulogenesis is spontaneously induced by the marked deposition of basement membrane analog to the subendothelial matrix and by the enhancement of presumable cadherin activity. We suggest that this cell line, F-2C, represents a simple and useful in vitro angiogenesis model.  相似文献   

4.
Intravitreal injection (IVT) of antivascular endothelial growth factor (anti‐VEGF) agents is widely used for the treatment of retinal vascular diseases. Recently, the injection of anti‐VEGF agents in the ocular anterior chamber has been proposed for the treatment of neovascular glaucoma and potential side effects on the corneal structures have been investigated with contrasting results. Increasing evidence has demonstrated that VEGF inhibition is associated with cellular apoptotic changes and that this effect may be mediated by alterations in nerve growth factor (NGF) pathway. In this study, we demonstrated that anterior chamber injection (IC), but not IVT injection of two different anti‐VEGF agents, aflibercept and ranibizumab, affects rabbit corneal endothelium in terms of survival and apoptosis and is associated with changes in endothelial expression of NGF precursor (proNGF) and p75 neurotrophin receptor (p75NTR) receptor. We observed an increase in corneal endothelial cell incorporation of trypan blue and expression of cleaved‐caspase 3 (c‐Casp3), p75NTR, and RhoA after IC injection of both anti‐VEGF drugs when compared with the vehicle. Our results showed that apoptosis induction by aflibercept was more pronounced when compared with that of ranibizumab. Aflibercept also mediated a significant increase in endothelial expression of proNGF when compared with the vehicle. In line with these data, IC administration of both anti‐VEGF agents induced the activation of apoptotic signals in endothelial cells, including an increase in c‐Casp3, decrease in Bad Ser 112 phosphorylation, and unbalance of AKT phosphorylation. These results demonstrated that administration of anti‐VEGF in the anterior chamber of rabbit affects endothelial cell survival by inducing apoptosis through alteration of NGF pathway.  相似文献   

5.
血管内皮生长因子受体-2所介导信号通路的研究进展   总被引:2,自引:0,他引:2  
血管新生是许多生理和病理进程发生的重要机理.在生物体内,血管新生需经过多步精细调控历程,现有研究表明,血管内皮生长因子(VEGF)及其受体蛋白酪氨酸激酶,尤其是血管内皮生长因子受体-2(VEGFR-2)所介导的信号级联通路是其中关键性的调节途径.VEGF/VEGFR-2所介导的信号级联通路可以调控血管内皮细胞的增殖、迁移、存活和通透性的改变,促进血管的新生.VEGF与VEGFR-2的胞外区特异性结合后,引起受体的二聚化和自身的交互磷酸化,使胞内特定的酪氨酸残基磷酸化.下游信号蛋白可以通过其Src同源结构域-2(SH2)与VEGFR-2结合,随后激活下游的效应蛋白,调控内皮细胞的生物学活性.此外,VEGF/VEGFR-2信号通路还可以下调树突细胞(DC)的活性.对VEGF/VEGFR-2信号通路作用的深入了解,将有助于新药的研发.  相似文献   

6.
We have investigated whether VEGF (vascular endothelial growth factor) regulates the proliferative capacity and eNOS (endothelial nitric oxide synthase)/NO (nitric oxide) pathway of EPCs (endothelial progenitor cells) by activating CaN (calcineurin)/NFAT (nuclear factor of activated T-cells) signalling. EPCs were obtained from cultured mononuclear cells isolated from the peripheral blood of healthy adults. Treatment with VEGF (50 ng/ml) potently promoted CaN enzymatic activity, activation of NFAT2, cell proliferation, eNOS protein expression and NO production. Pretreatment with cyclosporin A (10 μg/ml), a pharmacological inhibitor of CaN or 11R-VIVIT, a special inhibitor of NFAT, completely abrogated the aforementioned effects of VEGF treatment and increased apoptosis. The results indicate that VEGF treatment promotes the proliferative capacity of human EPCs by activating CaN/NFAT signalling leading to increased eNOS protein expression and NO production.  相似文献   

7.
8.
目的 :观察肝细胞生长因子 (HGF)和血管内皮细胞生长因子 (VEGF)对体外培养牛冠状动脉内皮细胞(BCAEC)增殖、迁移的影响。方法 :分离和培养BCAEC ,设对照组、VEGF组、HGF组。采用四甲基偶氮唑蓝法(MTT)观察细胞增殖 ;倒置显微镜观察培养的血管内皮细胞的迁移。结果 :对照组、VEGF组、HGF组的OD值分别为 0 .2 2± 0 .0 1、0 .40± 0 .1 4、0 .44± 0 .1 5 ;VEGF组、HGF组BCAEC的增殖率分别为 81 .8%± 1 6 .9%、1 0 0 %±2 1 .1 % ;对照组BCAEC迁移不明显 ,而VEGF组和HGF组BCAEC迁移明显。结论 :VEGF、HGF能促进BCAEC增殖、迁移 ,HGF作用强度不亚于VEGF。  相似文献   

9.
血管内皮细胞生长因子 (VEGF)通过结合其酪氨酸激酶受体KDR、fms样酪氨酸激酶 1(Flt 1)调节新生血管形成 ;筛选能封闭VEGF结合Flt 1的小肽 ,可以通过阻断肿瘤血管形成 ,抑制实体瘤生长 .将从噬菌体 12肽库中筛选获得的 2个能与Flt 1结合的阳性噬菌体克隆 (F5 6和F90 )十二肽DNA(36bp)克隆到表达载体pQE4 2中 ,在大肠杆菌M15中稳定表达二氢叶酸还原酶融合蛋白(DHFR F5 6 F90 ) ,经变性、复性后得到纯度达 90 %的可溶性蛋白 .ELISA检测表明 ,DHFR F5 6 F90能结合可溶性受体sFlt 1和血管内皮细胞 ;12 5I VEGF竞争抑制实验显示 ,DHFR F5 6能竞争抑制VEGF同可溶性受体sFlt 1结合 .结果提示 ,F5 6可能是VEGF受体Flt 1的有效拮抗剂 ,具有抗肿瘤新生血管形成的潜在应用前景  相似文献   

10.
11.
12.
13.
To investigate the mechanisms involved in PCa (prostate cancer) metastasis and CXCR4 (CXC chemokine receptor-4)-mediated VEGF (vascular endothelial growth factor) and MMP-9 (matrix metalloproteinase-9) expression, we used lentivirus-mediated RNAi (RNA interference) to reduce the expression of CXCR4 in a PCa cell line. We found that the silencing of CXCR4 led to a significant down-regulation of VEGF and MMP-9 at both the mRNA and protein levels compared with the control in vitro. Using an animal model, we confirmed that CXCR4 silencing via subcutaneous injection could reduce tumour growth as well as inhibit metastasis, particularly bone metastasis, of PCa. Using in vivo immunohistochemistry, we also found that the expression of VEGF and MMP-9 were reduced by the knockdown of CXCR4 in the primary tumours of mice. Collectively, our results indicate that CXCR4 plays an important role in PCa metastasis through the up-regulation of VEGF and MMP-9. These findings may aid future intervention strategies.  相似文献   

14.
Summary Human glioma-derived cell cultures and lines have proven to be of significant value in the study of the basic properties that contribute to the highly malignant, invasive and angiogenic phenotype of glioblastoma multiforme tumors. It is frequently difficult to establish lines that retain glial tumor properties in long term culture. The SNB-19 cell line has maintained and exhibited properties of transformation, differentiation, autocrine growth response, and tumorigenesis while remaining in culture for over 13 yr and undergoing over 200 passages. This human line has been utilized in a wide range of studies related to the basic properties of human glioblastoma multiforme. In this report, we summarize the immunologic, biochemical, and cytogenetic properties of this versatile cell line and its utility for additional mechanistic investigation into the pathophysiology of the progression of human malignant gliomas.  相似文献   

15.
16.
Pheochromocytomas are well-vascularized tumors, suggesting that a potent angiogenic factor may be involved in the mechanism of their formation. As vascular endothelial growth factor (VEGF) is a potent mitogen for vascular endothelial cells, here we have investigated the mRNA and protein expression of VEGF and the mRNA expression of its two receptors (Flt-1 and Flk-1/KDR) in pheochromocytomas tissue. An increase in VEGF mRNA (mainly isoforms VEGF(121) and VEGF(165)) and in VEGF protein expression were observed by semi-quantitative RT-PCR and Western blot, respectively, compared to normal adrenomedullary tissue. Flk-1/KDR, and Flt-1 levels of mRNA were also increased markedly in tumors and correlated with levels of VEGF mRNA. Therefore, we speculate that upregulation of VEGF expression and its receptors might be important in the pathogenesis of pheochromocytomas.  相似文献   

17.
BACKGROUND: Vascular endothelial growth factor (VEGF) gene transfer with recombinant adeno-associated viral (rAAV) vector for ischemia heart disease therapy is being increasingly studied. However, uncontrolled long-term expression of VEGF may cause some side effects. Therefore, an attempt to develop an effective gene control system for safeguarding against such side effects should be made. Pathphysiologically, an ideal control system for VEGF gene expression is letting it respond to hypoxia. We used nine copies of hypoxic response element (HRE) to regulate expression of hVEGF(165) in the myocardium, and tried to elucidate the feasibility and safety of the application of the HIF-1-HRE system. METHODS: Cardiomyocytes of neonatal Sprague Dawley rats were cultured and incubated with rAAV-9HRE-hVEGF(165), and pig ischemic heart models were established and rAAV-9HRE-hVEGF(165) was injected into ischemia myocardium. RT-PCR, Western blot, ELISA, and immunohistochemistry were used to determine hVEGF(165) expressions of cultured cardiomyocytes and myocardium under hypoxic and reoxygenation conditions. RESULTS: The results of RT-PCR and ELISA determinations revealed that, in cultured cardiomyocytes, expressions of hVEGF(165)mRNA and protein were up-regulated under hypoxic conditions. After 4 h of reoxygenation, hVEGF(165)mNRA expression was decreased, and disappeared following 8 to 12 h of reoxygenation (P < 0.01). RT-PCR and Western blot also showed that, under myocardial ischemia, hVEGF(165) expression was increased significantly (P < 0.01). Following myocardial reperfusion, both hVEGF(165)mRNA and protein expressions were inhibited (P < 0.01). The new vessels in the reperfusion condition were decreased. CONCLUSIONS: This study suggested that 9HRE can effectively control hVEGF(165) gene expression in vivo and in vitro. It has feasibility for using the HIF-1-HRE system for regulation of angiogenic factor expression in ischemia heart.  相似文献   

18.
Understanding the determinants of antibody specificity is one of the challenging tasks in antibody development. Monospecific antibodies are still dominant in approved antibody therapeutics but there is a significant body of work to show that multispecific antibodies can increase the overall therapeutic effect. Dual-specific or “Two-in-One” antibodies can bind to two different antigens separately with the same antigen-binding site as opposed to bispecifics, which simultaneously bind to two different antigens through separate antigen-binding units. These nonstandard dual-specific antibodies were recently shown to be promising for new antibody-based therapeutics. Here, we physicochemically and structurally analyzed six different antibodies of which two are monospecific and four are dual-specific antibodies derived from monospecific templates to gain insight about dual-specificity determinants. These dual-specific antibodies can target both human epidermal growth factor receptor 2 and vascular endothelial growth factor at different binding affinities. We showed that a particular region of clustered Vernier zone residues might play key roles in gaining dual specificity. While there are minimal intramolecular interactions between a certain Vernier zone region, namely LV4 and LCDR1 of monospecific template, there is a significant structural change and consequently close contact formation between LV4-LCDR1 loops of derived dual-specific antibodies. Although Vernier zone residues were previously shown to be important for humanization applications, they are mostly underestimated in the literature. Here, we also aim to resurrect Vernier zone residues for antibody engineering efforts.  相似文献   

19.
Monocytes play an important role in collateral vessel formation (arteriogenesis) by attaching to activated endothelium and by invading the walls of innate collateral vessels where they produce growth factors. Previous studies have demonstrated that this process can be promoted by several chemokines and growth factors. In this study we examined the interaction between monocytes and endothelium under stimulation of the angiogenic agent vascular endothelial growth factor (VEGF). We report here the novel finding that VEGF stimulates the expression of the alphaL-, alphaM- and beta2-integrin monomers. In functional assays and by using neutralizing antibodies it was shown that VEGF stimulates adhesion of monocytes to human umbilical vein endothelial cells (HUVEC), and increased transmigration through endothelial monolayers is dependent on interaction of monocyte beta2-integrins with its endothelial counter ligand ICAM-1. Based on these in vitro data we hypothesize that the positive effect of VEGF on arteriogenesis may involve monocyte activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号