首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribose 1,5-bisphosphate (Rib-1,5-P2), a newly discovered activator of rat brain phosphofructokinase, forms rapidly during the initiation of glycolytic flux and disappears within 20 s (Ogushi, S., Lawson, J.W. R., Dobson, G.P., Veech, R.L., and Uyeda, K. (1990) J. Biol. Chem. 265, 10943-10949). Activation of various mammalian phosphofructokinases and plant pyrophosphate-dependent phosphofructokinases by Rib-1,5-P2 was investigated. The order of decreasing potency for activation of rabbit muscle phosphofructokinase was: fructose (Fru) 2,6-P2, Rib-1,5-P2, Fru-1,6-P2, Glc-1,6-P2, phosphoribosylpyrophosphate, ribulose-1,5-P2, sedoheptulose-1,7-P2, and myoinositol-1,4-P2. The K0.5 values for activation by Rib-1,5-P2 of rat brain, rat liver, and rabbit muscle phosphofructokinases and potato and mung bean pyrophosphate-dependent phosphofructokinases were 64 nM, 230 nM, 82 nM, 710 nM, and 80 microM, respectively. The corresponding K0.5 values for Fru-2,6-P2 were 9, 8.6, 10, 7, and 65 nM, respectively. Rib-1,5-P2 was a competitive inhibitor of Fru-2,6-P2, binding to the muscle enzyme with Ki of 26 microM. Citrate increased the K0.5 for Rib-1,5-P2 without affecting the maximum activation, and AMP lowered the K0.5 for Rib-1,5-P2 without affecting the maximum activation. These effects of citrate and AMP were similar to those observed with Fru-2,6-P2 and different from those with Fru-1,6-P2. Rib-1,5-P2 is the second most potent activator of phosphofructokinase thus far discovered. The Rib-1,5-P2-activated conformation of the enzyme seems to be similar to that induced by Fru-2,6-P2, but different from that induced by Fru-1,6-P2.  相似文献   

2.
Oscillatory behavior of glycolysis in cell-free extracts of rat skeletal muscle involves bursts of phosphofructokinase activity due to autocatalytic activation by fructose-1,6-P2. Fructose-2,6-P2 is an even more potent activator of phosphofructokinase and is competitive with fructose-1,6-P2 in binding and kinetic studies. The possible role and effects of fructose-2,6-P2 on the oscillating system were therefore examined. When muscle extracts were provided with 1 mM ATP and 10 mM glucose, fructose-2,6-P2 slowly accumulated to 50 nM in 1 h. The nearly monotonic rise, in contrast to the 50-fold oscillations in fructose-1,6-P2, indicated no involvement of fructose-2,6-P2 in the oscillatory process. Addition of 0.5 microM fructose-2,6-P2 blocked the oscillations, and there was negligible appearance of glycolytic intermediates from fructose-1,6-P2 to phosphoenolpyruvate, although similar amounts of lactate accumulated. In the presence of 0.2 microM fructose-2,6-P2, there were small, transient accumulations of fructose-1,6-P2, suggesting aborted activations of phosphofructokinase. Oscillations were not blocked by 0.1 microM fructose-2,6-P2. The average [ATP]/[ADP] ratio in the presence of 0.2 or 0.5 microM fructose-2,6-P2 was half the value in its absence, demonstrating the advantage of the oscillatory behavior in maintaining a high energy state. In the presence of higher, near physiological levels of ATP and citrate, inhibitors which reduce the affinity of phosphofructokinase for fructose-2,6-P2, glycolytic oscillations were not blocked by 1 microM fructose-2,6-P2, its approximate concentration in vivo.  相似文献   

3.
The binding of beta-D-fructose 2,6-bisphosphate to rabbit muscle phosphofructokinase and rabbit liver fructose-1,6-bisphosphatase was studied using the column centrifugation procedure (Penefsky, H. S., (1977) J. Biol. Chem. 252, 2891-2899). Phosphofructokinase binds 1 mol of fructose 2,6-bisphosphate/mol of protomer (Mr = 80,000). The Scatchard plots of the binding of fructose 2,6-bisphosphate to phosphofructokinase are nonlinear in the presence of three different buffer systems and appear to exhibit negative cooperativity. Fructose 1,6-bisphosphate and glucose 1,6-bisphosphate inhibit the binding of fructose-2,6-P2 with Ki values of 15 and 280 microM, respectively. Sedoheptulose 1,7-bisphosphate, ATP, and high concentrations of phosphate also inhibit the binding. Other metabolites including fructose-6-P, AMP, and citrate show little effect. Fructose-1,6-bisphosphatase binds 1 mol of fructose 2,6-bisphosphate/mol of subunit (Mr = 35,000) with an affinity constant of 1.5 X 10(6) M-1. Fructose 1,6-bisphosphate, fructose-6-P, and phosphate are competitive inhibitors with Ki values of 4, 2.7, and 230 microM, respectively. Sedoheptulose 1,7-bisphosphate (1 mM) inhibits approximately 50% of the binding of fructose 1,6-bisphosphate to fructose bisphosphatase, but AMP has no effect. Mn2+, Co2+, and a high concentration of Mg2+ inhibit the binding. Thus, we may conclude that fructose 2,6-bisphosphate binds to phosphofructokinase at the same allosteric site for fructose 1,6-bisphosphate while it binds to the catalytic site of fructose-1,6-bisphosphatase.  相似文献   

4.
It has been found that the inhibition of Dictyostelium discoideum fructose-1,6-bisphosphatase by fructose 2,6-P2 greatly diminished when the pH was raised to the range 8.5-9.5, which resulted in a marked decrease of the affinity for the inhibitor with no change in the Km for the substrate. This provides evidence for the involvement of an allosteric site for fructose 2,6-P2. Moreover, the fact that excess substrate inhibition also decreased at the pH values for minimal fructose 2,6-P2 inhibition, and was essentially abolished in the presence of fructose 2,6-P2, strongly suggests that this inhibition takes place by binding of fructose 1,6-P2 as a weak analogue of the physiological effector fructose 2,6-P2.  相似文献   

5.
Inhibition of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate   总被引:20,自引:0,他引:20  
Rat liver fructose-1,6-bisphosphatase, which was assayed by measuring the release of 32P from fructose 1,6-[1-32P]bisphosphate at pH 7.5, exhibited hyperbolic kinetics with regard to its substrate. beta-D-Fructose 2,6-bisphosphate, an activator of hepatic phosphofructokinase, was found to be a potent inhibitor of the enzyme. The inhibition was competitive in nature and the Ki was estimated to be 0.5 microM. The Hill coefficient for the reaction was 1.0 in the presence and absence of fructose 2,6-bisphosphate. Fructose 2,6-bisphosphate also enhanced inhibition of the enzyme by the allosteric inhibitor AMP. The possible role of fructose 2,6-bisphosphate in the regulation of substrate cycling at the fructose-1,6-bisphosphatase step is discussed.  相似文献   

6.
Binding of hexose bisphosphates to muscle phosphofructokinase   总被引:3,自引:0,他引:3  
L G Foe  S P Latshaw  R G Kemp 《Biochemistry》1983,22(19):4601-4606
On the basis of kinetic activation assays, the apparent affinity of muscle phosphofructokinase for fructose 2,6-bisphosphate was about 9-fold greater than that for fructose 1,6-bisphosphate, which in turn was about 10 times higher than that for glucose 1,6-bisphosphate. Equilibrium binding experiments showed that both fructose bisphosphates bind to phosphofructokinase with negative cooperativity; the affinity for fructose 2,6-bisphosphate was about 1 order of magnitude greater than the affinity for fructose 1,6-bisphosphate. Binding of fructose 2,6-bisphosphate to phosphofructokinase was antagonized by fructose 1,6-bisphosphate and glucose 1,6-bisphosphate and vice versa. Both fructose bisphosphates promoted aggregation of the enzyme to higher polymers as indicated by sucrose density gradient centrifugation. Other indicators of phosphofructokinase conformation such as thiol reactivity and maximum activation of in vitro phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase gave identical results in the presence of fructose 2,6-bisphosphate, fructose 1,6-bisphosphate, or glucose 1,6-bisphosphate, indicating a common conformation is produced by all three ligands. It is concluded that the sugar bisphosphates bind to a single site on the enzyme.  相似文献   

7.
Fructose 1,6-bisphosphate decreases the activation of yeast 6-phosphofructokinase (ATP:fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11) by fructose 2,6-bisphosphate, especially at cellular substrate concentrations. AMP activation of the enzyme is not influenced by fructose 1,6-bisphosphate. Inorganic phosphate increases the activation by fructose 2,6-bisphosphate and augments the deactivation of the fructose 2,6-bisphosphate activated enzyme by fructose 1,6-bisphosphate. Because various states of yeast glucose metabolism differ in the levels of the two fructose bisphosphates, the observed interactions might be of regulatory significance.  相似文献   

8.
The effect of natural "activation factor" and synthetic fructose-2,6-P2 on the allosteric kinetic properties of liver and muscle phosphofructokinases was investigated. Both synthetic and natural fructose-2,6-P2 show identical effects on the allosteric kinetic properties of both enzymes. Fructose-2,6-P2 counteracts inhibition by ATP and citrate and decreases the Km for fructose-6-P. This fructose ester also acts synergistically with AMP in releasing ATP inhibition. The Km values of liver and muscle phosphofructokinase for fructose-2,6-P2 in the presence of 1.25 mM ATP are 12 milliunits/ml (or 24 nM) and 5 milliunits/ml (or 10 nM), respectively. At near physiological concentrations of ATP (3 mM) and fructose-6-P (0.2 mM), however, the Km values for fructose-2,6-P2 are increased to 12 microM and 0.8 microM for liver and muscle enzymes, respectively. Thus, fructose-2,6-P2 is the most potent activator of the enzyme compared to other known activators such as fructose-1,6-P2. The rates of the reaction catalyzed by the enzymes under the above conditions are nonlinear: the rates decelerate in the absence or in the presence of lower concentrations of fructose-2,6-P2, but the rates become linear in the presence of higher concentrations of fructose-2,6-P2. Fructose-2,6-P2 also protects phosphofructokinase against inactivation by heat. Fructose-2,6-P2, therefore, may be the most important allosteric effector in regulation of phosphofructokinase in liver as well as in other tissues.  相似文献   

9.
The binding of the inhibitory ligands fructose 2,6-bisphosphate and AMP to rat liver fructose 1,6-bisphosphatase has been investigated. 4 mol of fructose-2,6-P2 and 4 mol of AMP bind per mol of tetrameric enzyme at pH 7.4. Fructose 2,6-bisphosphate exhibits negative cooperatively as indicated by K'1 greater than K'2 greater than K'3 greater than or equal to K'4 and a Hill plot, the curvature of which indicates K'2/K'1 less than 1, K'3/K'2 less than 1, and K'4/K'3 = 1. AMP binding, on the other hand, exhibits positive cooperativity as indicated by K'1 less than K'2 less than K'3 less than K'4 and an nH of 2.05. Fructose 2,6- and fructose 1,6-bisphosphates enhance the binding of AMP as indicated by an increase in the intrinsic association constants. At pH 9.2, where fructose 2,6-bisphosphate and AMP inhibition of the enzyme are diminished, fructose 2,6-bisphosphate binds with a lower affinity but in a positively cooperative manner, whereas AMP exhibits half-sites reactivity with only 2 mol of AMP bound per mol of tetramer. Ultraviolet difference spectroscopy confirmed the results of these binding studies. The site at which fructose 2,6-bisphosphate binds to fructose 1,6-bisphosphatase has been identified as the catalytic site on the basis of the following. 1) Fructose 2,6-bisphosphate binds with a stoichiometry of 1 mol/mol of monomer; 2) covalent modification of the active site with acetylimidazole inhibits fructose 2,6-bisphosphate binding; and 3) alpha-methyl D-fructofuranoside-1,6-P2 and beta-methyl D-fructofuranoside-1,6-P2, substrate analogs, block fructose 2,6-bisphosphate binding. We propose that fructose 2,6-bisphosphate enhances AMP affinity by binding to the active site of the enzyme and bringing about a conformational change which may be similar to that induced by AMP interaction at the allosteric site.  相似文献   

10.
A thiol group present in rabbit liver fructose-1,6-bisphosphatase is capable of reacting rapidly with N-ethylmaleimide (NEM) with a stoichiometry of one per monomer. Either fructose 1,6-bisphosphate or fructose 2,6-bisphosphate at 500 microM protected against the loss of fructose 2,6-bisphosphate inhibition potential when fructose-1,6-bisphosphatase was treated with NEM in the presence of AMP for up to 20 min. Fructose 2,6-bisphosphate proved more effective than fructose 1,6-bisphosphate when fructose-1,6-bisphosphatase was treated with NEM for 90-120 min. The NEM-modified enzyme exhibited a significant loss of catalytic activity. Fructose 2,6-bisphosphate was more effective than the substrate in protecting against the thiol group modification when the ligands are present with the enzyme and NEM. 100 microM fructose 2,6-bisphosphate, a level that should almost saturate the inhibitory binding site of the enzyme under our experimental conditions, affords only partial protection against the loss of activity of the enzyme caused by the NEM modification. In addition, the inhibition pattern for fructose 2,6-bisphosphate of the NEM-derivatized enzyme was found to be linear competitive, identical to the type of inhibition observed with the native enzyme. The KD for the modified enzyme was significantly greater than that of untreated fructose-1,6-bisphosphatase. Examination of space-filling models of the two bisphosphates suggest that they are very similar in conformation. On the basis of these observations, we suggest that fructose 1,6-bisphosphate and fructose 2,6-bisphosphate occupy overlapping sites within the active site domain of fructose-1,6-bisphosphatase. Fructose 2,6-bisphosphate affords better shielding against thiol-NEM modification than fructose 1,6-bisphosphate; however, the difference between the two ligands is quantitative rather than qualitative.  相似文献   

11.
1. The concentration of glycogen, glucose 1,6-P2, fructose 2,6-P2 and the content of glycogen phosphorylase, phosphofructokinase, 6-phosphofructo 2-kinase and glucose 1,6-P2 phosphatase activity, have been determined in rat muscles which differ in their fiber composition: extensor digitorum longus, gastrocnemius, diaphragm and soleus. 2. Glucose 1,6-P2 concentration seems to be related to the glycolytic capacity of the muscle, while fructose 2,6-P2 concentration does not. 3. No significant relationship exists between the fiber type and the content in glucose 1,6-P2 phosphatase and 6-phosphofructo 2-kinase activities.  相似文献   

12.
In a reconstituted enzyme system multiple stationary states and oscillatory motions of the substrate cycle catalyzed by phosphofructokinase and fructose 1,6-bisphosphatase are significantly influenced by fructose 2,6-bisphosphate. Depending on the initial conditions, fructose 2,6-bisphosphate was found either to generate or to extinguish oscillatory motions between glycolytic and gluconeogenic states. In general, stable glycolytic modes are favored because of the efficient activation of phosphofructokinase by this effector. The complex effect of fructose 2,6-bisphosphate on the rate of substrate cycling correlates with its synergistic cooperation with AMP in the activation of phosphofructokinase and inhibition of fructose 1,6-bisphosphatase.  相似文献   

13.
Lysine 274 is conserved in all known fructose-1,6-bisphosphatase sequences. It has been implicated in substrate binding and/or catalysis on the basis of reactivity with pyridoxal phosphate as well as by x-ray crystallographic analysis. Lys274 of rat liver fructose-1,6-bisphosphatase was mutated to alanine by the polymerase chain reaction, and the T7-RNA polymerase-transcribed construct containing the mutant sequence was expressed in Escherichia coli. The mutant and wild-type forms of the enzyme were purified to homogeneity, and their specific activity, substrate dependence, and inhibition by fructose 2,6-bisphosphate and AMP were compared. While the mutant exhibited no change in maximal velocity, its Km for fructose 1,6-bisphosphate was 20-fold higher than that of the wild-type, and its Ki for fructose 2,6-bisphosphate was increased 1000-fold. Consistent with the unaltered maximal velocity, there were no apparent difference between the secondary structure of the wild-type and mutant enzyme forms, as measured by circular dichroism and ultraviolet difference spectroscopy. The Ki for the allosteric inhibitor AMP was only slightly increased, indicating that Lys274 is not directly involved in AMP inhibition. Fructose 2,6-bisphosphate potentiated AMP inhibition of both forms, but 500-fold higher concentrations of fructose 2,6-bisphosphate were needed to reduce the Ki for AMP for the mutant compared to the wild-type. However, potentiation of AMP inhibition of the Lys274----Ala mutant was evident at fructose 2,6-bisphosphate concentrations (approximately 100 microM) well below those that inhibited the enzyme, which suggests that fructose 2,6-bisphosphate interacts either with the AMP site directly or with other residues involved in the active site-AMP synergy. The results also demonstrate that although Lys274 is an important binding site determinant for sugar bisphosphates, it plays a more significant role in binding fructose 2,6-bisphosphate than fructose 1,6-bisphosphate, probably because it binds the 2-phospho group of the former while other residues bind the 1-phospho group of the substrate. It is concluded that the enzyme utilizes Lys274 to discriminate between its substrate and fructose 2,6-bisphosphate.  相似文献   

14.
A competitive binding assay for fructose 2,6-bisphosphate   总被引:2,自引:0,他引:2  
A new direct assay method for fructose 2,6-bisphosphate has been developed based on competitive binding of labeled and unlabeled fructose 2,6-P2 to phosphofructokinase. Phosphofructokinase (0.5-1.3 pmol protomer) is incubated with saturating concentrations (5.0-5.5 pmol) of fructose 2,6-[2-32P]P2 and samples containing varying concentrations of fructose 2,6-P2. The resulting stable binary complex is retained on nitrocellulose filters with a binding efficiency of up to 70%. Standard curves obtained with this assay show strict linearity with varying fructose 2,6-P2 in the range of 0.5 to 45 pmol, which exceeds the sensitivity of most of the previously described assay methods. Fructose 2,6-P2, ATP, and high concentrations of phosphate interfere with this assay. However, the extent of this inhibition is negligible since their tissue contents are one-half to one-tenth that examined. This new assay is simple, direct, rapid, and does not require pretreatment of tissue extracts.  相似文献   

15.
1H and 31P nuclear magnetic resonance was used to investigate the interaction of AMP and fructose 2,6-bisphosphate (Fru-2,6-P2) with bovine liver fructose-1,6-bisphosphatase. Mn2+ bound to fructose-1,6-bisphosphatase was used as a paramagnetic probe to map the active and AMP allosteric sites of fructose-1,6-bisphosphatase. Distances between enzyme-bound Mn2+ and the phosphorus atoms at C-6 of fructose-6-P and alpha-methyl-D-fructofuranoside 1,6-bisphosphate were identical, and the enzyme-Mn to phosphorus distance determined for the C-6 phosphorus atom of Fru-2,6-P2 was very similar to these values. Likewise, the enzyme-Mn to phosphorus distances for Pi, the C-1 phosphorus atom of alpha-methyl-D-fructofuranoside 1,6-bisphosphate, and the C-2 phosphorus atom of Fru-2,6-P2 agreed within 0.5 A. The distance between enzyme-bound Mn2+ and the phosphorus atom of AMP was significantly shorter than the distances obtained for any of the aforementioned ligands, but the presence of Fru-2,6-P2 caused the enzyme-Mn to phosphorus distance for AMP to lengthen markedly. NMR line broadening of AMP protons was studied at various temperatures. The dissociation rate constant was found to be greater than 20 s-1. It was concluded that Fru-2,6-P2 strongly affects the interaction of AMP with fructose-1,6-bisphosphatase and that the sugar most likely acts at the active site of the enzyme.  相似文献   

16.
Rat and rabbit muscle fructose 1,6-bisphosphatase (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) are inhibited by fructose 2,6-bisphosphate. In contrast with the liver isozyme, the inhibition of muscle fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate is not synergistic with that of AMP. Activation of fructose-1,6-bisphosphatase by fructose 2,6-bisphosphate has been observed at high concentrations of substrate. An attempt is made to correlate changes in concentrations of hexose monophosphate, fructose 1,6-bisphosphate and fructose 2,6-bisphosphate with changes in fluxes through 6-phosphofructokinase and fructose-1,6-bisphosphatase in isolated epitrochlearis muscle challenged with insulin and adrenaline.  相似文献   

17.
The interaction of AMP and fructose 2,6-bisphosphate with rabbit liver fructose-1,6-bisphosphatase has been investigated by proton nuclear magnetic resonance spectroscopy (1H NMR). The temperature dependence of the line widths of the proton resonances of AMP as a function of fructose-1,6-bisphosphatase concentration indicates that the nucleotide C2 proton is in fast exchange on the NMR time scale while the C8 proton is exchange limit. The exchange rate constant, koff, has been calculated for the adenine C8 proton and is 1900 s-1. Binding of fructose 6-phosphate and inorganic phosphate, or the regulatory inhibitor, fructose 2,6-bisphosphate, results in a decrease in the dissociation rate constant for AMP from fructose-1,6-bisphosphatase, as indicated by the sharpened AMP signals. A temperature dependence experiment indicates that the AMP protons are in slow exchange when AMP dissociates from the ternary complex. The rate constant for dissociation of AMP from the enzyme.AMP.fructose 2,6-bisphosphate complex is 70 s-1, 27-fold lower than that of AMP from the binary complex. These results are sufficient to explain the enhanced binding of AMP in the presence of fructose 2,6-bisphosphate and, therefore, the synergistic inhibition of fructose-1,6-bisphosphatase observed with these two regulatory ligands. Binding of fructose 2,6-bisphosphate to the enzyme results in broadening of the ligand proton signals. The effect of AMP on the binding of fructose 2,6-bisphosphate to the enzyme has also been investigated. An additional line width broadening of all the fructose 2,6-bisphosphate protons has been observed in the presence of AMP. The assignment of these signals to the sugar was accomplished by two-dimensional proton-proton correlated spectra (two-dimensional COSY) NMR. From these data, it is concluded that AMP can also affect fructose 2,6-bisphosphate binding to fructose-1,6-bisphosphatase.  相似文献   

18.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

19.
Oscillatory behavior of glycolysis in cell-free extracts of rat skeletal muscle involves bursts of phosphofructokinase activity, due to autocatalytic activation by fructose-1,6-P2. Glucose-1,6-P2 similarly might activate phosphofructokinase in an autocatalytic manner, because it is produced in a side reaction of phosphofructokinase and in a side reaction of phosphoglucomutase using fructose-1,6-P2. When muscle extracts were provided with 1 mM ATP and 10 mM glucose, glucose-1,6-P2 accumulated in a stepwise, but monotonic, manner to 0.7 microM in 1 h. The stepwise increases occurred during the phases when fructose-1,6-P2 was available, consistent with glucose-1,6-P2 synthesis in the phosphoglucomutase side reaction. Addition of 5-20 microM glucose-1,6-P2 increased the frequency of the oscillations in a dose-dependent manner and progressively shortened the time interval before the first burst of phosphofructokinase activity. Addition of 30 microM glucose-1,6-P2 blocked the oscillations. The peak values of the [ATP]/[ADP] ratio were then eliminated, and the average [ATP]/[ADP] ratio was reduced by half. In the presence of higher, near physiological concentrations of ATP and citrate (which reduce the activation of phosphofructokinase by glucose-1,6-P2), high physiological concentrations of glucose-1,6-P2 (50-100 microM) increased the frequency of the oscillations and did not block them. We conclude that autocatalytic activation of phosphofructokinase by fructose-1,6-P2, but not by glucose-1,6-P2, is the mechanism generating the oscillations in muscle extracts. Glucose-1,6-P2 may nevertheless play a role in facilitating the initiation of the oscillations and in modulating their frequency.  相似文献   

20.
K N Ekdahl  P Ekman 《FEBS letters》1984,167(2):203-209
Rat liver fructose-1,6-bisphosphatase was partially phosphorylated in vitro and separated into unphosphorylated and fully phosphorylated enzyme. The effects of fructose 2,6-bisphosphate and AMP on these two enzyme forms were examined. Unphosphorylated fructose-1,6-bisphosphatase was more easily inhibited by both effectors. Fructose 2,6-bisphosphate affected both K0.5 and Vmax, while the main effect of AMP was to lower Vmax. Fructose 2,6-bisphosphate and AMP together acted synergistically to decrease the activity of fructose-1,6-bisphosphatase, and since unphosphorylated and phosphorylated enzyme forms are affected differently, this might be a way to amplify the effect of phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号