首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brachybacterium sp. strain LB25 produces a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents. The enzyme hydrolyzed starch to produce maltotriose primarily. The structural gene encoding the amylase from strain LB25 was cloned and sequenced. The amino acid sequence of the product showed significant similarity (45 to 49%) to amylases from the genus Streptomyces. The amylase gene was expressed in Escherichia coli, but the specific activity of the recombinant amylase was lower than that of the amylase purified from strain LB25.  相似文献   

2.
3.
The raw potato-starch-digesting alpha-amylase gene of Bacillus circulans F-2 was cloned for the first time in Escherichia coli C600, using plasmid pYEJ001. The recombinant plasmid, named pYKA3, has a 5.4 kb insert from a chromosome of the donor bacterium. Subcloning of this amylase gene gave plasmid pHA300 which carried 3.15 kb of the inserted DNA. The transformed bacterium, E. coli C600 (pYKA3), produced the amylase in the periplasmic space, whereas it is secreted outside the cell in the donor bacterium. The cloned raw-starch-digesting alpha-amylase has a molecular weight of 93,000 on SDS-PAGE, and its action pattern was absolutely the same as that of the potent raw-starch-digestible amylase produced by B. circulans F-2. The periplasmic amylase produced by the transformed E. coli (pHA300) could digest raw starch granules such as potato, corn and barley raw starch granules, indicating that the raw-starch-digesting amylase is active in E. coli. Furthermore, this amylase crossreacted with the rabbit antiserum raised against the raw potato-digesting alpha-amylase of B. circulans F-2. From these results it was concluded that the cloned amylase is the same amylase protein as B. circulans F-2 amylase, which has a potent raw-starch digestibility. Thus, this paper is to our knowledge the first describing the molecular cloning of raw-starch-digesting alpha-amylase from Bacillus species and its successful expression in E. coli.  相似文献   

4.
A gene coding for a thermostable extracellular alpha-amylase, carried by a 5.7 kb BamHI chromosomal DNA fragment isolated from Streptomyces thermoviolaceus strain CUB74, was cloned into Escherichia coli JM107 using, as a cloning vector, the high-copy-number plasmid pUC8. E. coli containing a recombinant plasmid pQR300 expressed the amylase gene and exported the enzyme into the periplasmic space and the culture medium. The amylase protein expressed by E. coli had the same molecular mass (50 kDa) as that expressed by the Streptomyces parent strain, which suggests that the enzyme is processed similarly by both strains. The amylase gene was also cloned into Streptomyces lividans TK24 using pIJ702 as vector. The enzyme was stable at 70 degrees C when CaCl2 was present.  相似文献   

5.
An obligately anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum, produces multiple extracellular amylases. In addition to one of the amylase genes, amyA, which we previously cloned and characterized, we have cloned two additional genes, amyB and amyC, coding for amylases of this thermophile, into Escherichia coli and determined their nucleotide sequences. The two amylase genes were expressed under the control of E. coli promoters. Almost all activity was detected in the intracellular fraction in the E. coli cells. The molecular mass and NH2-terminal amino acid sequence of the AmyB enzyme, which was purified from an E. coli transformant containing the amyB gene, confirmed that the reading frame of amyB consisted of 562 amino acids (Mr 67,000). The molecular mass of the AmyC enzyme, estimated by activity staining of a crude extract of E. coli containing amyC, confirmed that AmyC consisted of 498 amino acids (Mr 59,000). The optimal temperatures for AmyB and AmyC activities on soluble starch were 80 degrees C and 70 degrees C, respectively. Both AmyB and AmyC showed a pH optimum of 5.5. AmyB and AmyC showed a different pattern of starch hydrolysis when examined by thin-layer chromatography. Some homology in the amino acid sequences with the functional regions of Taka-amylase A was found in both AmyB and AmyC. The codon usage in the amyA, amyB and amyC genes was highly biased, which reflects the fact that the guanine-plus-cytosine (G + C) content of DNA of D. thermophilum is 29 mol%. The distribution of G and C at each position of the codons was non-random; the G + C content of the first position of codons is significantly high, whereas that of the third position is somewhat low. In addition, codons consisting only of A and T were preferentially used in this thermophile.  相似文献   

6.
A highly heat-stable amylase gene from an obligately anaerobic and extremely thermophilic bacterium, Dictyoglomus thermophilum, was cloned and expressed in Escherichia coli. The nucleotide sequence of the amylase gene predicts a 686-amino-acid protein of relative molecular mass 81,200, which is consistent with that determined by sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the purified enzyme. The NH2-terminal sequence determined using the enzyme purified from E. coli cells corresponds precisely to that predicted from the nucleotide sequence, except for the absence of the NH2-terminal methionine in the mature protein. When the amylase gene was expressed in E. coli cells, the enzyme was localized in the cytoplasmic fraction; this is probably explained by the absence of the signal sequence for secretion. By using the amylase purified from the E. coli transformant, some enzymatic properties, such as optimum pH, optimum temperature, pH-stability and heat-stability, were examined. The amylase was found to be a highly liquefying-type.  相似文献   

7.
An amylase gene from Drosophila pseudoobscura was isolated from a genomic library constructed in pBR322 and cloned in Escherichia coli by selecting for the ability of its product to hydrolyze starch, a carbon source not normally utilized by E. coli. Hybridization of pAMY17F to D. pseudoobscura polytene chromosomes shows a positive signal at the amylase pseudogene locus (bank 78, chromosome 3). The chimeric plasmid pAMY17F, has been altered in such a way as to increase amylase expression. Southern and Northern hybridizations to the cloned amylase DNA indicate that the source of the gene is from D. pseudoobscura. Biochemical properties such as pH optima, substrate specificities, electrophoretic analyses, inhibitor sensitivities, heat stabilities, temperature responsiveness and molecular weights indicate that the amylases produced by the fly and bacterial clone are similar and have similar properties. It appears that E. coli/pAMY17F is producing an amylase like that found in D. pseudoobscura.  相似文献   

8.
吴襟  张树政 《生物工程学报》2008,24(10):1740-1746
从巨大芽孢杆菌(Bacillus megaterium)的全基因组DNA文库中筛选出一个b-淀粉酶基因amyG, 分析测定了其核苷酸序列并进行了诱导表达; 其中amyG编码的蛋白有545个氨基酸、分子量为60.194 kD, 与已报道的巨大芽孢杆菌DSM319的b-淀粉酶序列有着94.5%的同源性。经氨基酸序列比较分析发现, AmyG从N末端到C末端依次由信号肽域、糖基水解酶催化功能域和淀粉结合域3个功能域组成。其中催化功能域里含有第14家族糖基水解酶常见的几个高度保守的酶催化活性区。经多步纯化, 重组酶的比活共提高了7.4倍, 获得凝胶电泳均一的蛋白样品; 经SDS-PAGE电泳测定, 酶AmyG的分子量为57 kD。该酶的最适反应温度为60oC, 最适反应pH为7.0; 在温度不超过60oC时, 酶活较稳定; AmyG能迅速降解淀粉生成麦芽糖, 属于外切b-糖苷酶。  相似文献   

9.
An alpha-amylase gene from Micrococcus sp. 207 was cloned into Escherichia coli JM101 using the vector pHSG399. The constructed recombinant plasmid pYK63 contained a 4.8 kb chromosomal DNA fragment derived from strain 207 DNA. The cloned amylase isolated from E. coli JM101 (pYK63) produced mainly maltotetraose from starch, and exhibited temperature and pH activity profiles closely similar to those of the enzyme from the original strain. Nucleotide sequence analysis of the cloned DNA fragment revealed one open reading frame containing the gene which consisted of 3312 bp (1104 amino acids). When compared with several other alpha-amylases, three consensus sequences were identified in the region of the active site. About 300 amino acid residues were present both upstream and downstream of the active site region.  相似文献   

10.
A Butyrivibrio fibrisolvens amylase gene was cloned and expressed by using its own promoter on the recombinant plasmid pBAMY100 in Escherichia coli. The amylase gene consisted of an open reading frame of 2,931 bp encoding a protein of 976 amino acids with a calculated Mr of 106,964. In E. coli(pBAMY100), more than 86% of the active amylase was located in the periplasm, and TnphoA fusion experiments showed that the enzyme had a functional signal peptide. The B. fibrisolvens amylase is a calcium metalloenzyme, and three conserved putative calcium-binding residues were identified. The amylase showed high sequence homology with other alpha-amylases in the three highly conserved regions which constitute the active centers. These and other conserved regions were located in the N-terminal half, and no similarity with any other amylase was detected in the remainder of the protein. Deletion of approximately 40% of the C-terminal portion of the amylase did not result in loss of amylolytic activity. The B. fibrisolvens amylase was identified as an endo-alpha-amylase by hydrolysis of the Phadebas amylase substrate, hydrolysis of gamma-cyclodextrin to maltotriose, maltose, and glucose and the characteristic shape of the blue value and reducing sugar curves. Maltotriose was the major initial hydrolysis product from starch, although extended incubation resulted in its hydrolysis to maltose and glucose.  相似文献   

11.
Brachybacterium sp. strain LB25 produces a maltooligosaccharide-forming amylase that improves product selectivity in water-miscible organic solvents. The enzyme hydrolyzed starch to produce maltotriose primarily. The structural gene encoding the amylase from strain LB25 was cloned and sequenced. The amino acid sequence of the product showed significant similarity (45 to 49%) to amylases from the genus Streptomyces. The amylase gene was expressed in Escherichia coli, but the specific activity of the recombinant amylase was lower than that of the amylase purified from strain LB25.  相似文献   

12.
Thermotoga maritima MSB8 has a chromosomal alpha-amylase gene, designated amyA, that is predicted to code for a 553-amino-acid preprotein with significant amino acid sequence similarity to the 4-alpha-glucanotransferase of the same strain and to alpha-amylase primary structures of other organisms. Upstream of the amylase gene, a divergently oriented open reading frame which can be translated into a polypeptide with similarity to the maltose-binding protein MalE of Escherichia coli was found. The T. maritima alpha-amylase appears to be the first known example of a lipoprotein alpha-amylase. This is in agreement with observations pointing to the membrane localization of this enzyme in T. maritima. Following the signal peptide, a 25-residue putative linker sequence rich in serine and threonine was found. The amylase gene was expressed in E. coli, and the recombinant enzyme was purified and characterized. The molecular mass of the recombinant enzyme was estimated at 61 kDa by denaturing gel electrophoresis (63 kDa by gel permeation chromatography). In a 10-min assay at the optimum pH of 7.0, the optimum temperature of amylase activity was 85 to 90 degrees C. Like the alpha-amylases of many other organisms, the activity of the T. maritima alpha-amylase was dependent on Ca2+. The final products of hydrolysis of soluble starch and amylose were mainly glucose and maltose. The extraordinarily high specific activity of the T. maritima alpha-amylase (about 5.6 x 10(3) U/mg of protein at 80 degrees C, pH 7, with amylose as the substrate) together with its extreme thermal stability makes this enzyme an interesting candidate for biotechnological applications in the starch processing industry.  相似文献   

13.
The T4 dam+ gene has been cloned (S. L. Schlagman and S. Hattman, Gene 22:139-156, 1983) and transferred into an Escherichia coli dam-host. In this host, the T4 Dam DNA methyltransferase methylates mainly, if not exclusively, the sequence 5'-GATC-3'; this sequence specificity is the same as that of the E. coli Dam enzyme. Expression of the cloned T4 dam+ gene suppresses almost all the phenotypic traits associated with E. coli dam mutants, with the exception of hypermutability. In wild-type hosts, 20- to 500-fold overproduction of the E. coli Dam methylase by plasmids containing the cloned E. coli dam+ gene results in a hypermutability phenotype (G.E. Herman and P. Modrich, J. Bacteriol. 145:644-646, 1981; M.G. Marinus, A. Poteete, and J.A. Arraj, Gene 28:123-125, 1984). In contrast, the same high level of T4 Dam methylase activity, produced by plasmids containing the cloned T4 dam+ gene, does not result in hypermutability. To account for these results we propose that the E. coli Dam methylase may be directly involved in the process of methylation-instructed mismatch repair and that the T4 Dam methylase is unable to substitute for the E. coli enzyme.  相似文献   

14.
In order to produce a product with a high content of maltotetraose, dual-enzyme systems composed of immobilized maltotetraose-forming amylase (G(4)-forming amylase) and pullulanase were studied. The thermostability of individually immobilized enzymes was examined in continuous operation; studies revealed that the enzyme immobilized on "Chitopearl" was much more stable than that immobilized on Diaion HP-50. The effects of operating conditions on the stability of G(4) forming amylase immobilized on "Chitopearl" were examined to confirm that the apparent half-life data could be arranged using the immobilized enzyme stability factor, f(s). As for the dual immobilized enzyme system, six methods of usage were considered, with five yielding a 7-10% (w/w) higher content of maltotetraose product than the single-enzyme system. The effects of operating conditions on the maltotetraose production reaction were examined to confirm that the maltotetraose content of the products could be analyzed using the specific space velocity,SSV. In dual immobilized enzyme systems, pullulanase immobilized on the same carrier as the G(4)-forming amylase was found to be more stable than pullulanase immobilized on separate carriers. The effectiveness of using immobilized pullulanase along with the G(4)-forming amylase was confirmed from constant-conversion operations in which the maltotetraose content in the product was kept at 50% (w/w) in laboratory-scale experimentation.  相似文献   

15.
The nucleotide sequence of the Pseudomonas saccharophila gene encoding maltotetraohydrolase (G4-forming amylase) has been determined. The coding region for the G4-forming amylase precursor contained 1653 nucleotides. The deduced precursor protein included an N-terminal 21-residue putative signal peptide; the deduced mature form of G4-forming amylase contains 530 amino acid residues with a calculated molecular mass of 57 740 Da. Sequence similarities between the G4-forming amylase and other amylolytic enzymes of species ranging from prokaryotes to eukaryotes are quite limited. However, three regions, which are involved in both the catalytic and substrate-binding sites of various amylolytic enzymes, are highly conserved in the G4-forming amylase of P. saccharophila.  相似文献   

16.
The gene (amyP) coding for maltotetraose-forming amylase (exo-maltotetraohydrolase) of Pseudomonas stutzeri MO-19 was cloned. Its nucleotide sequence contained an open reading frame coding for a precursor (547 amino acid residues) of secreted amylase. The precursor had a signal peptide of 21 amino acid residues at its amino terminus. An extract of Escherichia coli carrying the cloned amyP had amylolytic activity with the same mode of action as the extracellular exo-maltotetraohydrolase obtained from P. stutzeri MO-19. A region in the primary structure of this amylase showed homology with those of other amylases of both procaryotic and eucaryotic origins. The minimum 5' noncoding region necessary for the expression of amyP in E. coli was determined, and the sequence of this region was compared with those of Pseudomonas promoters.  相似文献   

17.
A gene (Tpen_1458) encoding a putative alpha amylase from hyperthermophilic archaeon Thermofilum pendens (TfMA) was cloned and expressed in Escherichia coli. The recombinant amylolytic enzyme was purified by Ni-NTA affinity chromatography and its catalytic properties were examined. Purified TfMA was extremely thermostable with a half-life of 60 min at an optimal temperature of 95°C. TfMA activity increased to 136% in the presence of 5 mM CaCl2. Maximal activity was measured toward γ-cyclodextrin with a specific activity of 56 U/mg using copper bicinchoninate method. TfMA catalyzed the ring-opening reaction by cleaving one α-1,4-glycosidic linkage of cyclodextrin to produce corresponding single maltooligosaccharide at the initial time. The final products from cyclodextrins, linear maltooligosaccharides, and starch were glucose and maltose, and TfMA could also degrade pullulan and amylase inhibitor acarbose to panose and acarviosine-glucose, respectively. These results revealed that TfMA is a novel maltogenic amylase.  相似文献   

18.
Amylases that are active under acidic conditions (pH <6), at higher temperatures (>70 degrees C) and have less reliance on Ca(2+) are required for starch hydrolysis. The alpha-amylase gene of Bacillus licheniformis MTCC 6598 was cloned and expressed in Escherichia coli BL21. The calcium-binding site spanning amino acid residues from 104 to 200 in the loop regions of domain B and D430 in domain C of amylase were changed by site-directed mutagenesis and the resultant mutant amylases were analyzed. Calcium-binding residues, N104, D161, D183, D200 and D430, were replaced with D104 and N161, N183, N200 and N430, respectively. Mutant amylase with N104D had a slightly decreased activity at 30 degrees C but a significantly improved specific activity at pH 5 and 70 degrees C, which is desirable character for a food enzyme. The amylase mutants with D183N or D200N lost all activity while the mutant amylase with D161N retained its activity at 30 degrees C but had significantly less activity at 70 degrees C. On the other hand, the activity of the mutant amylase with D430N was not changed at 30 degrees C but had an improved activity at 70 degrees C.  相似文献   

19.
Clostridium sp. G0005 produces a cell-bound glucoamylase (CGA). The gene encoding CGA has been sequenced. The deduced amino acid sequence begins with a putative 21-residue signal sequence for secretion of bacterial lipoproteins, which suggests that a putative CGA precursor is modified and secreted like other bacterial lipoproteins in Clostridium sp. G0005, and that the modified residue is important in the cell-bound form of mature CGA. Comparison of the amino acid sequence of the CGA precursor with known eukaryotic enzymes showed several regions of high similarity in spite of low similarity throughout the overall primary structure. CGA is the first bacterial glucoamylase to be cloned. The CGA gene was expressed in Escherichia coli cells with an inducible expression plasmid, in which the 5' non-coding region and the N-terminal coding region of the gene were replaced with the lac promoter. Kinetic studies of the cloned enzyme purified from E. coli were performed with a set of linear malto-oligosaccharides as substrates, and the subsite affinity was calculated from the kinetic parameters. CGA had typical kinetic properties for a glucoamylase, but this bacterial enzyme had higher isomaltose-hydrolyzing activity than other eukaryotic glucoamylases.  相似文献   

20.
An alpha-amylase gene from Bacillus sp. strain TS-23 was cloned and expressed by using its own promoter on the recombinant plasmid pTS917 in Escherichia coli. A cell fractionation experiment revealed that approximately 60% of the amylase activity was in the periplasmic space. Analysis and activity staining of the concentrated supernatant fraction by SDS-polyacrylamide gel electrophoresis showed an apparent protein band with a mol. wt of approximately 65,000. The amylase gene (amyA) consisted of an open reading frame of 1,845 bp encoding a protein of 613 amino acids with a calculated mol. wt of 69,543. The predicted amino acid sequence showed high homology with Bacillus species, E. coli and Salmonella typhimurium alpha-amylases. Deletion of 96 amino acids from the C-terminal portion of the amylase did not result in the loss of amylolytic activity. The truncated amylase, deletion of the first 50 amino acids from the N-terminus, was overexpressed in E. coli system and refolded to yield an activable enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号