首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formalin test has been proposed as an animal model of pain produced by tissue injury. Although biphasic nociceptive responses to formalin injection have been well documented, low concentrations (0.125 and 0.5%) of formalin injected into the mouse hindpaw produced only the phasic (acute) paw-licking response, lasting the first 5 min after the formalin injection. To explore the involvement of nitric oxide (NO) in the spinal cord and peripheral system during the acute phase of the formalin test, we examined the effect of intrathecal (i.t.) or intraplantar (i.pl.) injection of L-N(G)-nitro arginine methyl ester (L-NAME), a NO synthase inhibitor in mice. Pretreatment with L-NAME (160 nmol), injected i.t., resulted in a significant inhibition of the paw-licking response induced by 0.125 and 0.5% of formalin. L-Arginine (600 mg/kg, i.p.) but not D-arginine (600 mg/kg, i.p.) reversed the antinociceptive effect of L-NAME on the acute nociceptive response induced by low concentrations of formalin. The i.pl. injection of L-NAME (160 nmol) produced a significant decrease of the late (tonic) phase response evoked by 2.0% formalin without affecting the early (acute) phase response. Similar results have been reported in the case of i.t. injected L-NAME as assayed by the 2.0% formalin test. L-NAME (160 nmol), injected into the plantar paw, gave no significant effect on the acute nociceptive response induced by a low concentration of formalin (0.125%). These results suggest that NO in the spinal cord may be involved in not only the late phase response of the formalin (2.0%)-induced paw-licking, but also at least the acute phase response induced by low concentrations (0.125 and 0.5%) of formalin, while peripheral NO has little effect on the early (acute) phase nociceptive response evoked by formalin (0.125--2.0%) injection.  相似文献   

2.
Antinociceptive mechanisms of orally administered decursinol in the mouse   总被引:7,自引:0,他引:7  
Choi SS  Han KJ  Lee JK  Lee HK  Han EJ  Kim DH  Suh HW 《Life sciences》2003,73(4):471-485
Antinociceptive profiles of decursinol were examined in ICR mice. Decursinol administered orally (from 5 to 200 mg/kg) showed an antinociceptive effect in a dose-dependent manner as measured by the tail-flick and hot-plate tests. In addition, decursinol attenuated dose-dependently the writhing numbers in the acetic acid-induced writhing test. Moreover, the cumulative response time of nociceptive behaviors induced by an intraplantar formalin injection was reduced by decursinol treatment during the both 1st and 2nd phases in a dose-dependent manner. Furthermore, the cumulative nociceptive response time for intrathecal (i.t.) injection of TNF-alpha (100 pg), IL-1 beta (100 pg), IFN-gamma (100 pg), substance P (0.7 microg) or glutamate (20 microg) was dose-dependently diminished by decursinol. Intraperitoneal (i.p.) pretreatment with yohimbine, methysergide, cyproheptadine, ranitidine, or 3,7-dimethyl-1-propargylxanthine (DMPX) attenuated inhibition of the tail-flick response induced by decursinol. However, naloxone, thioperamide, or 1,3-dipropyl-8-(2-amino-4-chloro-phenyl)-xanthine (PACPX) did not affect inhibition of the tail-flick response induced by decursinol. Our results suggests that decursinol shows an antinociceptive property in various pain models. Furthermore, antinociception of decursinol may be mediated by noradrenergic, serotonergic, adenosine A(2), histamine H(1) and H(2) receptors.  相似文献   

3.
《Life sciences》1993,52(17):PL169-PL174
The effects of cold water swim stress (CWSS) on the nociceptive responses to i.t. administered substance P (SP) and somatostatin (SST) were examined. Male ICR mice, weighing about 30 g, were forced to swim in water at 20°C for 3 min. In unstressed mice, i.t. injection of SP (0.1 nmol) and SST (1 nmol), respectively, produced nociceptive-related behaviors. Although CWSS had no effect on the intensity of the SP-induced nociceptive responses, CWSS significantly reduced the intensity of the SST-induced nociceptive responses. The effect of CWSS on the SST-induced nociceptive responses was blocked by naloxone (5 mg/kg, s.c.) and naltrindole (1 mg/kg, s.c.), a selective δ-opioid receptor antagonist, but not by β-funaltrexamine (20 mg/kg, s.c.), a selective μ-opioid receptor antagonist. These results indicate that CWSS may selectively reduce the SST-induced nociceptive responses primarily through δ-opioid receptors.  相似文献   

4.
It has been reported that ethanol can alter nociceptive sensitivity from superficial tissues, such as skin and subcutaneous region. However, the influence of ethanol on deep pain conditions is not understood. The aim of this study was to demonstrate the acute, chronic and ethanol withdrawal effects on nociceptive behavioral responses induced by the injection of formalin into the temporomandibular joint (TMJ) region of rats. In experiment 1, rats were injected with ethanol (2,5 g/Kg, i.p.) or an equal volume of saline 15 min before the administration of formalin (1.5%) into the TMJ. Rats pretreated with ethanol showed a decrease in nociceptive behavioral responses. In experiment 2, rats were given an ethanol solution (6.5%) or tap water to drink for 4 and 10 days. On day 4, the animals (ethanol group) showed amounts of analgesia when submitted to the TMJ formalin test. Tolerance to the antinociceptive effects was observed on day 10. Behavioral hyperalgesia was verified 12 hr after withdrawal in another group that drank ethanol for 10 days. These results show that ethanol can affect the nociceptive responses related to deep pain evoked by the TMJ formalin test.  相似文献   

5.
To examine mechanisms underlying substance P (SP) release from primary sensory neurons in response to activation of the non-selective cation channel transient receptor potential ankyrin 1 (TRPA1), SP release from cultured rat dorsal root ganglion neurons was measured, using radioimmunoassay, by stimulating TRPA1 with allyl isothiocyanate (AITC), a TRPA1 agonist. AITC-evoked SP release occurred in a concentration- and time-dependent manner. Interestingly, p38 mitogen-activated protein kinase (p38) inhibitor SB203580 significantly attenuated AITC-evoked SP release. The in vivo effect of AITC-evoked SP release from primary sensory neurons in mice was evaluated. Hind paw intraplantar injection of AITC induced nociceptive behaviors and inflammation (edema, thermal hyperalgesia). AITC-induced thermal hyperalgesia and edema were inhibited by intraplantar pre-treatment with either SB203580 or neurokinin-1 receptor antagonist CP96345. Moreover, intrathecal pre-treatment with either CP96345 or SB203580 inhibited AITC-induced nociceptive behaviors and thermal hyperalgesia. Immunohistochemical studies demonstrated that intraplantar AITC injection induced the phosphorylation of p38 in mouse dorsal root ganglion neurons containing SP. These findings suggest that activation of TRPA1 evokes SP release from the primary sensory neurons through phosphorylation of p38, subsequent nociceptive behaviors and inflammatory responses. Furthermore, the data also indicate that blocking the effects of TRPA1 activation at the periphery leads to significant antinociception.  相似文献   

6.
It has been suggested that the supernatant of LPSstimulated macrophages (macrophage nociceptive factor, MNF) promotes nociception in mice. Intraperitoneal administration of MNF induced dose-related writhing, which reached a plateau between 18 and 26 min after injection and decreased within 60 min. The release of MNF was inhibited by the pretreatment of the macrophages with cycloheximide, a protein synthesis inhibitor, or with the glucocorticoid dexamethasone. Cyclooxygenase inhibitors, such as indomethacin or paracetamol, had no effect. The MNF-induced nociception was inhibited in a dose-related manner by pretreatment of the animals with indomethacin, paracetamol or dexamethasone. Pretreatment of the animals with the sympatholytics guanethidine and atenolol partially reduced the MNF nociception, which was abolished by the combination of guanethidine or atenolol with indomethacin. The preincubation of MNF with antisera against TNF-alpha, IL-1 or IL-8 partially inhibited its nociceptive effect. Intraperitoneal injection of a mixture of the recombinants cytokines TNF-alpha, IL-1 and IL-8 mimicked MNF nociception. The individual injection of these cytokines was unable to induce the nociceptive effect. In conclusion, our data suggest that the nociceptive activity of the supernatant of LPSstimulated macrophages is explained by the presence of TNF-alpha, IL-1 and IL-8, the nociceptive activity of which (in mice) seems to be due to the release of cyclooxygenase and sympathetic metabolites.  相似文献   

7.
Ethanol withdrawal increases nociception after the injection of formalin into the rat's temporomandibular joint (TMJ). Little is known about the neurological basis for hyperalgesia induced by ethanol withdrawal, but it has been reported that ethanol can potentiate the response of transient receptor potential vanilloid receptor-1 (TRPV1) in superficial tissues. The present study was designed to test the hypothesis that peripheral TRPV1 could be involved on nociceptive behavioral responses induced by the injection of formalin into the TMJ region of rats exposed to chronic ethanol administration and ethanol withdrawal. Behavioral hyperalgesia was verified 12 h after ethanol withdrawal in rats that drank an ethanol solution (6.5%) for 10 days. In another group submitted to the same ethanol regimen, the selective vanilloid receptor antagonist capsazepine (300, 600 or 1200 microg/25 microl) or an equal volume of vehicle were injected into the TMJ regions 30 min before the TMJ formalin test. The local injections of capsazepine reduced the increased nociceptive responses induced by ethanol withdrawal. The effect of capsazepine on rats that did not drink ethanol was not significant. These results indicate that the peripheral TRPV1 can contribute to the hyperalgesia induced by ethanol withdrawal on deep pain conditions.  相似文献   

8.
Pituitary adenylate cyclase-activating polypeptide (PACAP) immunoreactive neural elements have been detected in the mouse spinal cord. The discrepancy of PACAP actions in the role of sensory transmission has been proposed to have potentiation and inhibition on nociceptive responses after intrathecal application of PACAP. The aim of the present study was to assess nociceptive transmission of PACAP in the mouse spinal cord by comparison with that of substance P (SP). The intrathecal injection of PACAP induced licking or scratching behavior similar to that of SP. These PACAP-induced aversive behaviors showed different manner from SP-induced responses in point of time course. SP-induced aversive responses quickly increased and suddenly disappeared almost within 1 min. Meanwhile, following a long latency after the injection, PACAP-induced aversive responses gradually appeared, and then persisted more than 60 min. In the early phase, PACAP produced an increase of tail flick latency. Pretreatment with 6-hydroxydopamine (6-OHDA) which destroys noradrenaline neuron of descending pain inhibitory systems in the spinal cord markedly abridged the latency and augmented the duration of PACAP-induced aversive responses. In this way, PACAP exhibits diverse effects on nociception, such as an analgesic role in early phase of the injection and subsequently lasting algesia. These results suggest that PACAP as a neurotransmitter or neuromodulator might have crucial role in nociceptive transmission system.  相似文献   

9.
Substance P (SP) and its receptor, the neurokinin 1 receptor (NK1R), play important roles in transmitting and regulating somatosensory nociceptive information. However, their roles in visceral nociceptive transmission and regulation remain to be elucidated. In the previous study, moderate SP immunoreactive (SP-ir) terminals and NK1R-ir neurons were observed in the dorsal commissural nucleus (DCN) of the lumbosacral spinal cord. Thus we hypothesized that the SP-NK1R system is involved in visceral pain transmission and control within the DCN. The acute visceral pain behaviors, the colon histological changes and the temporal and spatial changes of NK1R-ir structures and Fos expression in the neurons of the DCN were observed in rats following lower colon instillation with 5% formalin. The formalin instillation induced significant acute colitis as revealed by the histological changes in the colon. NK1R internalization in the DCN was obvious at 8 min. It reached a peak (75.3%) at 30 min, began to decrease at 90 min (58.1%) and finally reached the minimum (19.7%) at 3 h after instillation. Meanwhile, formalin instillation induced a biphasic visceral pain response as well as a strong expression of Fos protein in the nuclei of neurons in the DCN. Finally, intrathecal treatment with the NK1R antagonist L732138 attenuated the NK1R internalization, Fos expression and visceral nociceptive responses. The present results suggest that the visceral nociceptive information arising from inflamed pelvic organs, such as the lower colon, might be mediated by the NK1R-ir neurons in the DCN of the lumbosacral spinal cord.  相似文献   

10.
Antagonist studies show that spinal p38 mitogen-activated protein kinase plays a crucial role in spinal sensitization. However, there are two p38 isoforms found in spinal cord and the relative contribution of these two to hyperalgesia is not known. Here we demonstrate that the isoforms are distinctly expressed in spinal dorsal horn: p38alpha in neurons and p38beta in microglia. In lieu of isoform selective inhibitors, we examined the functional role of these two individual isoforms in nociception by using intrathecal isoform-specific antisense oligonucleotides to selectively block the expression of the respective isoform. In these rats, down-regulation of spinal p38beta, but not p38alpha, prevented nocifensive flinching evoked by intraplantar injection of formalin and hyperalgesia induced by activation of spinal neurokinin-1 receptors through intrathecal injection of substance P. Both intraplantar formalin and intrathecal substance P produced an increase in spinal p38 phosphorylation and this phosphorylation (activation) was prevented when spinal p38beta, but not p38alpha, was down-regulated. Thus, spinal p38beta, probably in microglia, plays a significant role in spinal nociceptive processing and represents a potential target for pain therapy.  相似文献   

11.
The effect of sex hormones on orofacial pain modulation is poorly understood. Therefore, this study aimed to investigate the effect of hormonal changes as a result of pregnancy, as well as that of the kappa (kappa) opioid receptor antagonist on female rats' sensitivity to the temporomandibular joint (TMJ) formalin test. Initially, female rats at estrus and pregnant females on day 19 of pregnancy received a 50 microl formalin (1.5%) injection in the right TMJ. The pregnant females showed a reduction in nociceptive responses to the TMJ formalin test when compared with those at estrus. Then, the selective kappa-opioid receptor antagonist nor-Binaltorphimine (nor-BNI), was co-administered with the formalin. Next, additional groups received the kappa (200 microg) receptor antagonist or 0.9% NaCl 24 hours prior to the periarticular injection of formalin. Co-administration of nor-BNI with formalin into the TMJ region had no significant effect. The pre-injection of selective kappa-opioid receptor antagonist, nor-BNI, significantly enhanced the nociceptive behavioral responses in pregnant females. When applied in the contralateral TMJ, nor-BNI did not affect the magnitude of the nociceptive response induced by formalin. It can be concluded that: 1) The increase of the sex hormone levels, as result of pregnancy, induces a reduction of nociceptive behavioral responses to the TMJ formalin test; 2) the peripheral kappa opioid receptor activation, by endogenous opioid agonists release, is involved in the antinociception to TMJ formalin test, induced by pregnancy.  相似文献   

12.
The antinociceptive effect of vitamin K2 (menatetrenone) in mice was examined using tail-flick and formalin test. Menatetrenone at doses of 10, 50 and 100 mg/kg, i.p. produced a dose-dependent and significant inhibition of the tail-flick response in mice. Menatetrenone (50 and 100 mg/kg, i.p.) had no significant effect on the duration of the first phase of the formalin-induced flinching. However, menatetrenone (100 mg/kg, i.p.) significantly inhibited the second phase of the formalin-induced flinching. I.p. administration of menatetrenone (100 mg/kg) significantly reduced the duration of nociceptive responses induced by i.t. injection of bradykinin, but not of substance P, prostaglandin E2 or N-methyl-D-aspartate (NMDA). These present data suggest that i.p. pretreatment with menatetrenone produced dose-dependent antinociceptive effect in mice. This effect may be, at least in part, mediated by the inhibition of bradykinin dependent nociceptive transmission in the spinal cord.  相似文献   

13.
Ji GC  Zhang YQ  Ma F  Wu GC 《Cytokine》2002,19(1):31-36
The present study was to investigate the effect of intrathecal (i.t.) injection of interleukin-1 beta (IL-1 beta) on nociception in normal and inflammatory rats. Peripheral inflammation was induced by intraplantar injection (i.pl.) of carrageenan into unilateral hind paw. The nociceptive threshold to noxious thermal stimulation was measured by the paw withdrawal latency (PWL). Intrathecal injection of IL-1 beta (10 ng, 100 ng) significantly increased PWL in normal rats, the peak occurred at 5 min and the effect lasted for 30 min. Similarly, IL-1 beta (10 ng, 100 ng, i.t.) significantly increased the PWL and lasted for more than 60 min in inflammatory rats. Both in normal and inflammatory rats, the IL-1 beta-induced antinociceptive effect was completely abolished by IL-1ra (50 ng, i.t.), and apparently attenuated by naloxone (10 microg, i.t.) or mianserin (20 microg, i.t.). These results suggest that IL-1 beta produces antinociceptive effect by binding IL-1 receptor at the spinal level, and is related to the activation of opioid and 5-HT systems.  相似文献   

14.
A role for IL-18 in neutrophil activation   总被引:19,自引:0,他引:19  
IL-18 expression and functional activity has been identified in several autoimmune and infectious diseases. To clarify the potential role of IL-18 during early innate immune responses, we have explored the capacity of IL-18 to activate neutrophils. Human peripheral blood-derived neutrophils constitutively expressed IL-18R (alpha and beta) commensurate with the capacity to rapidly respond to IL-18. IL-18 induced cytokine and chemokine release from neutrophils that was protein synthesis dependent, up-regulated CD11b expression, induced granule release, and enhanced the respiratory burst following exposure to fMLP, but had no effect upon the rate of neutrophil apoptosis. The capacity to release cytokine and chemokine was significantly enhanced in neutrophils derived from rheumatoid arthritis synovial fluid, indicating differential responsiveness to IL-18 dependent upon prior neutrophil activation in vivo. Finally, IL-18 administration promoted neutrophil accumulation in vivo, whereas IL-18 neutralization suppressed the severity of footpad inflammation following carrageenan injection. The latter was accompanied by reduction in tissue myeloperoxidase expression and suppressed local TNF-alpha production. Together, these data define a novel role for IL-18 in activating neutrophils and thereby promoting early innate immune responses.  相似文献   

15.
Brain cytokines, induced by various inflammatory challenges, have been linked to sickness behaviors, including fatigue. However, the relationship between brain cytokines and fatigue after exercise is not well understood. Delayed recovery of running performance after muscle-damaging downhill running is associated with increased brain IL-1beta concentration compared with uphill running. However, there has been no systematic evaluation of the direct effect of brain IL-1beta on running performance after exercise-induced muscle damage. This study examined the specific role of brain IL-1beta on running performance (either treadmill or wheel running) after uphill and downhill running by manipulating brain IL-1beta activity via intracerebroventricular injection of either IL-1 receptor antagonist (ra; downhill runners) or IL-1beta (uphill runners). Male C57BL/6 mice were assigned to the following groups: uphill-saline, uphill-IL-1beta, downhill-saline, or downhill-IL-1ra. Mice initially ran on a motor-driven treadmill at 22 m/min and -14% or +14% grade for 150 min. After the run, at 8 h (wheel cage) or 22 h (treadmill), uphill mice received intracerebroventricular injections of IL-1beta (900 pg in 2 microl saline) or saline (2 microl), whereas downhill runners received IL-1ra (1.8 microg in 2 microl saline) or saline (2 microl). Later (2 h), running performance was measured (wheel running activity and treadmill run to fatigue). Injection of IL-1beta significantly decreased wheel running activity in uphill runners (P<0.01), whereas IL-1ra improved wheel running in downhill runners (P<0.05). Similarly, IL-1beta decreased and Il-1ra increased run time to fatigue in the uphill and downhill runners, respectively (P<0.01). These results support the hypothesis that increased brain IL-1beta plays an important role in fatigue after muscle-damaging exercise.  相似文献   

16.
Although acupuncture is widely used to manage pain, it remains highly controversial, largely due to the lack of a clear mechanism for its benefits. Here, we investigated the role of IL-33, a novel interleukin (IL)-1 family member, and its receptor ST2 in the analgesic effects of electroacupuncture (EA) on formalin-induced inflammatory pain. The results showed that 1) EA stimulation of ipsilateral Zusanli (ST 36) and Yanglingquan (GB 34) acupoints for 30 min remarkably suppressed the two phases of formalin-induced spontaneous pain; 2) subcutaneous or intrathecal administration of recombinant IL-33 (rIL-33) significantly inhibited the analgesic effect of EA, whereas the ST2 antibody potentiated EA analgesia in formalin mice; 3) EA treatment decreased the up-regulation of IL-33 and ST2 protein following formalin injection; and 4) the suppression of the formalin-induced expression of spinal phosphorylated ERK and JNK induced by EA treatment was significantly attenuated following subcutaneous rIL-33 delivery, and was further decreased by the ST2 antibody. These data suggest that EA alleviates formalin-induced inflammatory pain, at least partially, by inhibiting of spinal IL-33/ST2 signaling and the downstream ERK and JNK pathways.  相似文献   

17.
We have used tachykinin neurokinin-1 receptor (NK1 receptor) knockout mice to learn of the link between NK1 receptors and neutrophil accumulation in normal naive skin, as compared with inflamed skin. Intradermal substance P (300 pmol) induced edema formation in wild-type mice, but not in NK1 knockout mice, as expected. However, in contrast to IL-1beta (0.3 pmol), substance P did not induce neutrophil accumulation in wild-type mice. IL-1beta-induced neutrophil accumulation was similar in wild-type and knockout mice, but a significant (p < 0.05) contributory effect of added NK1 agonists, which by themselves have no effect on neutrophil accumulation in normal skin, was observed. The results support the concept that NK1 agonists such as substance P cannot act on their own to mediate neutrophil accumulation in naive skin and provide direct evidence that in inflamed skin, under certain circumstances, the NK1 receptor can play a pivotal role in modulating neutrophil accumulation during the ongoing inflammatory process. We investigated responses to two inflammatory stimuli (carrageenin and zymosan). Neutrophil accumulation was significantly attenuated (p < 0.001) in carrageenin- but not zymosan-induced inflammation in NK1 knockout mice. The carrageenin (500 microg)-induced response was inhibited (p < 0.05) by a NK1 receptor antagonist, SR140333 (480 nmol/kg i.v. at -5 min), in the wild-type group. The bradykinin B1 and B2 receptor antagonists (desArg9[Leu8]bradykinin and HOE 140) each reduced neutrophil accumulation to carrageenin in wild-type animals (p < 0.05), but did not cause further reduction of the suppressed response of knockout mice. The results provide evidence that kinin receptors participate in NK1 receptor-dependent neutrophil accumulation in inflamed mouse skin.  相似文献   

18.
The effects of recombinant tumor necrosis factor (rTNF alpha) on the immune responses were investigated. A single iv injection of rTNF alpha (6 x 10(3) U) caused regression of sarcoma-180 transplanted into BALB/c nu/+ mice, but failed to regress this tumor in nu/nu mice. A higher dose of rTNF alpha (2 x 10(4) U) was necessary to induce antitumor effect in nu/nu mice. A host-related factor seemed to be involved in mediating tumor regression. Therefore, the effects of rTNF alpha on various T-dependent immune responses, including delayed footpad reaction (DFR), cell mediated cytolysis (CMC), and plaque-forming cells (PFC) were examined in BALB/c mice, immunized ip with chicken erythrocytes (CRBC). A single injection of rTNF alpha, at the time of the antigen administration, induced the augmentation of CMC to CRBC in a dose-dependent manner. DFR and PFC were not affected in optimal immunization procedures. The TNF alpha injection, at or after the time of antigen administration, was more effective in inducing augmentation of CMC. The increase in CMC by TNF alpha was mediated by nonadherent, Thy 1.2, Lyt 2.2 positive cells and neutralization of TNF alpha by the anti-TNF alpha monoclonal antibody abolished the effect on CMC. These results indicated that the human recombinant TNF alpha induced changes in the T-cell-mediated responses.  相似文献   

19.
It has been demonstrated that the exposure of rodents to the standard elevated plus-maze (sEPM: 2 open and 2 enclosed arms) elicits defensive behavioral reactions and antinociception and also activates the hypothalamo-pituitary-adrenal (HPA) axis. We have recently reported that EPM-induced antinociception is particularly observed when rats and mice are exposed to a totally open EPM (oEPM: 4 open arms). Given that the oEPM seems to be a more aversive situation than the sEPM, we hypothesized that oEPM exposure would induce higher plasma levels of corticosterone than sEPM exposure in mice. In this study, we investigated the influence of exposure to eEPM (enclosed EPM: 4 enclosed arms), sEPM or oEPM on plasma corticosterone levels in mice, with or without prior nociceptive stimulation (2.5% formalin injection into the right hind paw). We also tested whether the nociceptive response in the formalin test and oEPM-induced antinociception are altered by adrenalectomy. Results showed that oEPM-exposed mice spent less time licking the injected paw than sEPM- and eEPM-exposed animals. All three types of EPM exposure increased plasma corticosterone when compared to the basal group, but sEPM- and oEPM-exposed mice showed higher corticosterone levels than eEPM-exposed mice. Prior nociceptive stimulation (formalin injection) did not enhance the plasma corticosterone response induced by the three types of EPM exposure. Indeed, formalin injection appeared to provoke a ceiling effect on plasma corticosterone concentration. Furthermore, neither the nociceptive response in the formalin test nor oEPM-induced antinociception was changed by adrenalectomy. Present results suggest that oEPM antinociception does not depend on corticosterone release in mice.  相似文献   

20.
K Sugio  J W Daly 《Life sciences》1983,33(1):65-73
The effect of the diterpene forskolin on vascular permeability alone and in combination with bradykinin, prostaglandin E1, adenosine or histamine has been investigated in rats. Vascular permeability in rat skin was measured using [125I]-labelled bovine serum albumin ([125I]BSA) as a tracer. In addition, the effect of forskolin on footpad edema induced by the injection of a mixture of 2% carrageenin was determined. Forskolin caused a marked potentiation of the increase in vascular permeability in rat skin elicited by the intradermal injection of histamine or bradykinin. However, forskolin caused a significant suppression of the prostaglandin E1-induced vascular permeability response and at a low concentration suppressed the response to adenosine. Forskolin greatly potentiated the footpad edema induced with carrageenin in rats. Intravenous administration of the enzyme bromelain, which reduces plasma kininogen levels, inhibited the footpad edema induced with carrageenin or with a mixture of carrageenin and forskolin. Parenteral administration of a prostaglandin synthetase inhibitor, indomethacin, suppressed the footpad edema induced with carrageenin, but did not inhibit the footpad edema induced with a mixture of carrageenin and forskolin. An antihistamine, cyproheptadine, had no effect on carrageenin-induced footpad edema either in the presence or absence of forskolin. These results suggest that both bradykinin and prostaglandins are essential for the development of carrageenin-induced footpad edema and that bradykinin plays an important role in the potentiative effect of forskolin on footpad edema induced with carrageenin in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号