首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different types of distinct molecular forms of collagen are components of the extracellular matrix in most tissues. The common types can usually be detected by immunohistochemical methods but others may escape detection for lack of specific antisera. However, all these collagens are substrates for the collagenase of Clostridium histolyticum. In this report we describe a method that allows the visualization of collagens, collectively, in a tissue preparation. The method is based on the affinity between clostridial collagenase and collagen on one hand, and collagenase and its antibody on the other. Under the conditions of low temperature used in the procedure, collagenase binds to collagen, but digestion does not occur. Subsequent reaction of the bound collagenase with the specific collagenase antibody is followed by reaction with a tagged anti-IgG reagent. This allows the visualization of the enzyme-substrate complex. The procedure is illustrated in sections of the heart and the aorta, as well as in the isolated cardiomyocytes and the collagen distribution is verified using collagens type I and IV specific antibodies. In all instances the collagenase staining pattern includes all structural features seen individually with the type specific anticollagen antibodies.  相似文献   

2.
Zone Precipitation Chromatography is a useful technique for the initial isolation of the different collagen types in their native configuration. Small quantities of collagen mixtures can be rapidly separated into different collagen types with a relatively high degree of purity, based upon stained protein patterns on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) slab gels. In the commonly used bulk salt preparative method for isolating the different collagens, 50 mg of starting material was needed. Three days were required to complete the procedure. The stained protein patterns on SDS-PAGE slab gels showed about 25% contamination with the bulk purified Type III fraction and 20% contamination with the bulk purified type AB collagen. With Zone Precipitation Chromatography 5 mg of starting material was used and in less than 4 hours the mixture was separated with Types III and AB fractions showing less than 10% contamination from other collagen types. The technique is patterned after the Zone Precipitation method reported by Porath seventeen years ago and utilizes a step-wise sodium chloride gradient to precipitate and redissolve the collagens, eluting from the interbead spaces of a molecular sieve column.  相似文献   

3.
Summary Different types of distinct molecular forms of collagen are components of the extracellular matrix in most tissues. The common types can usually be detected by immunohistochemical methods but others may escape detection for lack of specific antisera. However, all these collagens are substrates for the collagenase of Clostridium histolyticum. In this report we describe a method that allows the visualization of collagens, collectively, in a tissue preparation. The method is based on the affinity between clostridial collagenase and collagen on one hand, and collagenase and its antibody on the other. Under the conditions of low temperature used in the procedure, collagenase binds to collagen, but digestion does not occur. Subequent reaction of the bound collagenase with the specific collagenase antibody is followed by reaction with a tagged anti-IgG reagent. This allows the visualization of the enzyme-substrate complex.The procedure is illustrated in sections of the heart and the aorta, as well as in the isolated cardiomyocytes and the collagen distribution is verified using collagens type I and IV specific antibodies. In all instances the collagenase staining pattern includes all structural features seen individually with the type specific anticollagen antibodies.Abbreviations BSA Bovine serum albumin - PBS phosphate buffored saline  相似文献   

4.
Zone Precipitation Chromatography is useful tech-nique for the initial isolation of the different colla-gen types in their native configuration. Small quan-tities of collagen mixtures can be rapidly separated into different collagen types with relatively high degree of purity, based upon stained protein patterns on sodium dodecyl sulfate polyacrylamide gel electro-phoresis (SDS-PAGE) slab gels. Tn the commonly used bulk salt preparative method for isolating the different collagens, 50 mg of starting material was needed. Three days were required to complete the procedure. The stained protein patterns on SDS-PAGE slab gels showed about 25% contamination with the bulk purified Type III fraction and 20% contamination with the bulk purified type AB collagen. With Zone Precipitation Chromatography 5 mg of starting material was used and in less than 4 hours the mixture was separated with Types III and AB fractions showing less than 10% contamination from other collagen types. The technique is patterned after the Zone Precinitation method reported by Porath seventeen years ago and utilizes a step-wise sodium chloride gradient to precipitate and redissolve the collagens, eluting from the interbead spaces of a molecular sieve column.  相似文献   

5.
The distribution, supramolecular form, and arrangement of collagen types I and V in the chicken embryo corneal stroma were studied using electron microscopy, collagen type-specific monoclonal antibodies, and a preembedding immunogold method. Double-label immunoelectron microscopy with colloidal gold-tagged monoclonal antibodies was used to simultaneously localize collagen type I and type V within the chick corneal stroma. The results definitively demonstrate, for the first time, that both collagens are codistributed within the same fibril. Type I collagen was localized to striated fibrils throughout the corneal stroma homogeneously. Type V collagen could be localized only after pretreatment of the tissue to partially disrupt collagen fibril structure. After such pretreatments the type V collagen was found in regions where fibrils were partially dissociated and not in regions where fibril structure was intact. When pretreated tissues were double labeled with antibodies against types I and V collagen coupled to different size gold particles, the two collagens colocalized in areas where fibril structure was partially disrupted. Antibodies against type IV collagen were used as a control and were nonreactive with fibrils. These results indicate that collagen types I and V are assembled together within single fibrils in the corneal stroma such that the interaction of these collagen types within heterotypic fibrils masks the epitopes on the type V collagen molecule. One consequence of the formation of such heterotypic fibrils may be the regulation of corneal fibril diameter, a condition essential for corneal transparency.  相似文献   

6.
Using monoclonal antibody technology and affinity chromatography we have identified four distinct classes of cell surface receptors for native collagen on a cultured human fibrosarcoma cell line, HT-1080. Two classes of monoclonal antibodies prepared against HT-1080 cells inhibited adhesion to extracellular matrix components. Class I antibodies inhibited cell adhesion to collagen, fibronectin, and laminin. These antibodies immunoprecipitated two noncovalently linked proteins (subunits) with molecular masses of 147 and 125 kD, termed alpha and beta, respectively. Class II antibodies inhibited cell adhesion to native collagen only and not fibronectin or laminin. Class II antibodies immunoprecipitated a single cell surface protein containing two noncovalently linked subunits with molecular masses of 145 and 125 kD, termed alpha and beta, respectively. The two classes of antibodies did not cross-react with the same cell surface protein and recognized epitopes present on the alpha subunits. Pulse-chase labeling studies with [35S]methionine indicated that neither class I nor II antigen was a metabolic precursor of the other. Comparison of the alpha and beta subunits of the class I and II antigens by peptide mapping indicated that the beta subunits were identical while the alpha subunits were distinct. In affinity chromatography experiments HT-1080 cells were extracted with Triton X-100 or octylglucoside detergents and chromatographed on insoluble fibronectin or native type I or VI collagens. A single membrane protein with the biochemical characteristics of the class I antigen was isolated on fibronectin-Sepharose and could be immunoprecipitated with the class I monoclonal antibody. The class I antigen also specifically bound to type I and VI collagens, consistent with the observation that the class I antibodies inhibit cell adhesion to types VI and I collagen and fibronectin. The class II antigen, however, did not bind to collagen (or fibronectin) even though class II monoclonal antibodies completely inhibited adhesion of HT-1080 cells to types I and III-VI collagen. The class I beta and II beta subunits were structurally related to the beta subunit of the fibronectin receptor described by others. However, none of these receptors shared the same alpha subunits. Additional membrane glycoprotein(s) with molecular mass ranges of 80-90 and 35-45 kD, termed the class III and IV receptors, respectively, bound to types I and VI collagen but not to fibronectin. Monoclonal antibodies prepared against the class III receptor had no consistent effect on cell attachment or spreading, suggesting that it is not directly involved in adhesion to collagen-coated substrates.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
An immunoblotting method to detect low-molecular-weight peptides with monoclonal antibodies that normally fail to demonstrate immunoreactivity using conventional blotting techniques is described. Detection of neurophysin, insulin, calcitonin, vasopressin, and beta-endorphin electroblotted on nitrocellulose membranes was optimized after introducing four modifications into the conventional procedure. These include renaturing the gels after sodium dodecyl sulfate electrophoresis, electroblotting the renatured gels in basic transfer buffer, fixing and/or heating the blots, and using avidin/alkaline phosphatase conjugates for antigen/antibody detection. This technique likely enables the denatured peptides to regain their native conformation and, therefore, restores antigenicity and recognition by highly structural specific monoclonal antibodies. Although the most dramatic improvement with this technique is with monoclonal antibodies, a modest improvement in sensitivity can be obtained when immunoblots are probed with polyclonal antibodies. The high resolution of this system will be useful in probing blots of partial proteolytic digests of proteins with both monoclonal and polyclonal antibodies.  相似文献   

8.
Human skin fibroblasts were cultivated within the three-dimensional space of polymerized alginate and collagen, respectively. The in vitro synthesis of collagens and proteoglycans was measured during the first 3 days of culture, and the deposition as well as the ultrastructural organization of newly synthesized extracellular matrix components were examined by electron microscopy. The amount of collagens and proteoglycans synthesized by fibroblasts, embedded in calcium alginate gels as well as in collagen lattices, was lowered as compared to monolayer cultures. Furthermore, it was found that collagen synthesis was reduced to a greater extent in alginate gels than in collagen lattices. On the contrary, total proteoglycan biosynthesis was similarly reduced either in alginate gels or in collagen lattices. At the end of a 3-day-culture period, filamentous material as well as cross-striated banded structures were found extracellularly in the alginate gel. According to their periodicity, their banding pattern, their association with polyanionic matrix components and their sensitivity towards glycosaminoglycan-degrading enzymes we could distinguish (1) sheets of amorphous non-banded material consisting of irregularly arranged filaments and containing dermatan sulfate-rich proteoglycans (type I structures), (2) sheets of long-spacing fibrils consisting of parallel orientated filaments and containing chondroitin sulfate-rich proteoglycans (= zebra bodies; type II structures), and (3) fibrillar structures with a complex banding pattern different from that of native collagen fibrils (type III structures). In fibroblasts cultured in collagen lattices, we only sporadically found depositions which are identified as type I structures. Using indirect immunoelectron microscopy and monospecific polyclonal antibodies, we localized type VI collagen in type I structures and type II structures. Type III structures can be identified as type I collagen derived as becomes obvious by comparison with segment long spacing crystallites of type I collagen.  相似文献   

9.
Fetal bovine bone cells synthesize bone-specific matrix proteins   总被引:3,自引:2,他引:1  
We isolated cells from both calvaria and the outer cortices of long bones from 3- to 5-mo bovine fetuses. The cells were identified as functional osteoblasts by indirect immunofluorescence using antibodies against three bone-specific, noncollagenous matrix proteins (osteonectin, the bone proteoglycan, and the bone sialoprotein) and against type 1 collagen. In separate experiments, confluent cultures of the cells were radiolabeled and shown to synthesize and secrete osteonectin, the bone proteoglycan and the bone sialoprotein by immunoprecipitation and fluorography of SDS polyacrylamide gels. Analysis of the radiolabeled collagens synthesized by the cultures showed that they produced predominantly (approximately 94%) type I collagen, with small amounts of types III and V collagens. In agreement with previous investigators who have employed the rodent bone cell system, we confirmed in bovine bone cells that (a) there was a typical cyclic AMP response to parathyroid hormone, (b) freshly isolated cells possessed high levels of alkaline phosphatase, which diminished during culture but returned to normal levels in mineralizing cultures, and (c) cells grown in the presence of ascorbic acid and beta-glycerophosphate rapidly produced and mineralized an extracellular matrix containing largely type I collagen. These results show that antibodies directed against bone-specific, noncollagenous proteins can be used to clearly identify bone cells in vitro.  相似文献   

10.
Collagen types I, II and III can be purified in their native state from heterogeneous collagen solutions by fractional precipitation at neutral pH using ammonium sulfate, sodium chloride and ethanol as precipitants. This method of collagen separation is useful as a preparative procedure and should also serve as an analytical tool for identification of unknown radioactively labeled collagens.  相似文献   

11.
The human immune response to bovine dermal collagen was characterized through histologic, serologic, and immunoblotting methods. Collagen-sensitive patients were identified by hypersensitivity to intradermal exposure to ZYDERM Collagen Implant--a pepsin-solubilized, reconstituted, bovine dermal collagen. Biopsies of test sites in the forearm were obtained from several collagen-sensitive patients. Histologic examination revealed an implant-associated palisading foreign body granuloma. The lesion also contained a mixed cell infiltrate of histiocytes, lymphocytes, and eosinophils. Sera were collected from patients who developed erythema or induration at intradermal test or treatment sites, and were evaluated for antibodies to bovine dermal collagen by an enzyme-linked immunosorbent assay (ELISA). Sera with anti-collagen antibodies were further characterized in this study. The circulating antibodies were reactive with both native and heat-denatured bovine dermal collagen. By using purified alpha 1(I) and alpha 2(I) polypeptides, these sera were found to have antibodies reactive with both alpha-chains. Each alpha-chain was fragmented by using cyanogen bromide (CB). The CB peptides were electrophoretically separated, and these sera were evaluated for antibodies to the major fragments by using an immunoblotting technique. Of the sera evaluated by this method, 89% (23/26) had antibodies to alpha 1-CB6; 77% (20/26) had antibodies to alpha 2-CB4; and 65% (17/26) had antibodies reactive with both CB fragments. In addition, most sera (77%) contained antibodies reactive with two or more (up to five) of the major CB peptides. The least antigenic fragment was alpha 2-CB3,5 (8%). In addition, these sera had antibody activity against both native and heat-denaturated bovine types III and II collagens. Little or no interspecies (rat or guinea pig) cross-reactivity (types I and II) was detected. Furthermore, these sera did not have antibodies against human types I, II, and III collagens.  相似文献   

12.
The location of the epitopes for monoclonal antibodies against chicken type IV and type V collagens were directly determined in the electron microscope after rotary shadowing of antibody/collagen mixtures. Three monoclonal antibodies against type IV collagen were examined, each one of which was previously demonstrated to be specific for only one of the three pepsin-resistant fragments of the molecule. The three native fragments were designated (F1)2F2, F3, and 7S, and the antibodies that specifically recognize each fragment were called, respectively, IA8 , IIB12 , and ID2 . By electron microscopy, monoclonal antibody IA8 recognized an epitope located in the center of fragment (F1)2F2 and in tetramers of type IV collagen at a distance of 288 nm from the 7S domain, the region of overlap of four type IV molecules. Monoclonal antibody IIB12 , in contrast, recognized an epitope located only 73 nm from the 7S domain. This result therefore provides direct visual evidence that the F3 fragment is located closest to the 7S domain and the order of the fragments must be 7S-F3-(F1)2F2. The epitope for antibody ID2 was located in the overlap region of the 7S domain, and often several antibody molecules were observed to binding to a single 7S domain. The high frequency with which antibody molecules were observed to bind to fragments of type IV collagen suggests that there is a single population of type IV molecules of chain organization [alpha 1(IV)]2 alpha 2(IV), and that four identical molecules must form a tetramer that is joined in an antiparallel manner at the 7S domain. The monoclonal antibodies against type V collagen, called AB12 and DH2 , were both found to recognize epitopes close to one another, the epitopes being located 45-48 nm from one end of the type V collagen molecule. The significance of this result still remains uncertain, but suggests that this site is probably highly immunoreactive. It may also be related to the specific cleavage site of type V collagen by selected metalloproteinases and by alpha-thrombin. This cleavage site is also known to be located close to one end of the type V molecule.  相似文献   

13.
Hybridomas which secrete monoclonal antibodies against human type III procollagen have been developed. By an enzyme-linked immunosorbent assay, three of the monoclonal antibodies have been determined to be against non-helical extensions of the molecules while two of the antibodies are against helical portion of the molecules which is sensitive to bacterial collagenase action. These findings have been further confirmed by carrying out immuno-reaction of the pro α-chains transferred on nitrocellulose paper from sodium dodecyl sulfate polyacrylamide gels. These monoclonal antibodies have been found to be suitable reagents for immunohistochemical studies as well as for immunoassays of type III procollagen and collagen.  相似文献   

14.
The opportunistic human pathogen Staphylococcus epidermidis is the major cause of nosocomial biomaterial infections. S. epidermidis has the ability to attach to indwelling materials coated with extracellular matrix proteins such as fibrinogen, fibronectin, vitronectin, and collagen. To identify the proteins necessary for S. epidermidis attachment to collagen, we screened an expression library using digoxigenin-labeled collagen as well as two monoclonal antibodies generated against the Staphylococcus aureus collagen-adhesin, Cna, as probes. These monoclonal antibodies recognize collagen binding epitopes on the surface of S. aureus and S. epidermidis cells. Using this approach, we identified GehD, the extracellular lipase originally found in S. epidermidis 9, as a collagen-binding protein. Despite the monoclonal antibody cross-reactivity, the GehD amino acid sequence and predicted structure are radically different from those of Cna. The mature GehD circular dichroism spectra differs from that of Cna but strongly resembles that of a mammalian cell-surface collagen binding receptor, known as the alpha(1) integrin I domain, suggesting that they have similar secondary structures. The GehD protein is translated as a preproenzyme, secreted, and post-translationally processed into mature lipase. GehD does not have the conserved LPXTG C-terminal motif present in cell wall-anchored proteins, but it can be detected in lysostaphin cell wall extracts. A recombinant version of mature GehD binds to collagens type I, II, and IV adsorbed onto microtiter plates in a dose-dependent saturable manner. Recombinant, mature GehD protein and anti-GehD antibodies can inhibit the attachment of S. epidermidis to immobilized collagen. These results provide evidence that GehD may be a bi-functional molecule, acting not only as a lipase but also as a cell surface-associated collagen adhesin.  相似文献   

15.
Cultured capillary endothelial cells, derived from bovine brain, and maintained on a plastic substratum synthesized predominantly interstitial collagens of which approximately 75 per cent were secreted into the medium. When grown on a native hydrated collagen type I gel, although no marked alteration in the 'collagen synthetic pattern' was observed, the overall level of collagen synthesis was increased by approximately 100 per cent. More dramatic, however, was the alteration in the distribution of these molecules between medium and cell layer. Interstitial collagens produced by cells grown on collagen gels were almost exclusively associated with the cell layer or collagenous gel. These studies, thus, demonstrate that an extracellular matrix may exert a considerable influence on the cellular synthetic activities and possibly cellular polarity of capillary endothelial cells.  相似文献   

16.
The antigenic response to the helical domain of collagens is normally very low, with the nature of the epitopes recognized by antibodies being dependent on the species of origin. Thus, in certain species, for example rabbit, sequential determinants on single alpha-chains are found, whereas in other species such as mouse, conformational epitopes are predominant. A variety of techniques for identification of epitopes, including rotary shadowing, examination of specific fragments and chemical modification reactions are discussed. The application of these techniques is illustrated using a range of monoclonal antibodies to interstitial collagens. These antibodies show that epitopes are distributed over the length of the collagen molecule.  相似文献   

17.
The fragments of minor collagens of cartilages, called HMW and LMW, were isolated after pepsin treatment of sternal cartilages of young chickens and were shown to be entirely triple-helical molecules as judged by their circular dichroic spectra. Studies on renaturation kinetics of HMW suggested that the interchain disulfide bonds in HMW reside at one of the ends of the so-called long arm. Polyclonal antibodies against HMW were raised and affinity purified. These antibodies did not cross-react with type II collagen nor with other minor collagens such as LMW and 1 alpha, 2 alpha, 3 alpha collagen in native or denatured structure. The antibodies were used to identify HMW-related molecules which were synthesized by embryonic chick cartilages in vitro. Some of these molecules were secreted into the organ culture medium and could be recovered from it by ammonium sulfate precipitation. Polyacrylamide gel electrophoresis of this precipitate gave one band of high molecular weight which could be reduced to two bands migrating slightly faster than the alpha 1(II) chain when identified by immunoblotting. These bands could also be identified among about six radiolabelled polypeptides present in the ammonium sulfate precipitate of medium proteins when analysed by polyacrylamide gel electrophoresis followed by fluorography. The same polypeptides could be recovered from the medium by immunoprecipitation with anti-HMW antibodies. Their presence in cartilage tissue was shown by immunoblotting of material extracted from cartilage tissue and separated on polyacrylamide gels. We suggest that the protein containing these polypeptide chains represents the parent molecule of the peptic fragment HMW as it is synthesized in vivo and have designated it p-HMW-collagen.  相似文献   

18.
Summary A 3-dimensional tumor growth inhibition assay [18] has been adapted to test the cytotoxic activity of a panel of monoclonal antibodies directed to various antigenic determinants on the surface of mouse mammary tumor cells. Target cells can be prepared from either cultured cells or from pieces of fresh tumor. Antibody and complement are added when cells are growing actively and cell growth can be measured, non destructively, over a 7–10-day period. Effective diffusion of antibody through collagen gel and binding to target cells embedded in the gel is demonstrated by indirect immunofluorescent staining. The specificity of monoclonal antibody AMT 101 cytotoxicity for mouse mammary tumor cells is the same in trypan blue exclusion assays of single-cell suspensions as in collagen gel assays, with complete killing seen in the collagen gel assay only. The collagen gel assay allows the testing of repeated treatments in vitro, as well as combined treatment with multiple antibodies. It also allows cell-cell interaction and preserves all cell components in the tumor. The collagen gel assay has potential as a method of predicting the outcome of monoclonal antibody treatment of solid tumors.  相似文献   

19.
Identification of integrin collagen receptors on human melanoma cells   总被引:29,自引:0,他引:29  
Integrin receptors may mediate the adhesion of cells to a number of extracellular matrix components. We found that the attachment of human melanoma cells to collagen types I and IV was blocked by antibodies to the integrin beta 1 subunit but not by peptides containing the Arg-Gly-Asp sequence. Ligand affinity chromatography was used to search for integrin-related receptors which mediate adhesion to native collagens. Detergent extracts of surface 125I-iodinated melanoma cells were chromatographed on type I or IV collagen-Sepharose columns. Bound material was eluted and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. EDTA, but not Arg-Gly-Asp peptides, eluted a mixture of two integrin-related heterodimeric complexes. Each complex contained the integrin beta 1 chain with Mr of 110,000 and a distinct alpha chain with Mr of either 200,000 or 150,000. Immunoprecipitation with specific monoclonal antibodies identified the complexes as very late activation antigen (VLA)-1 (alpha 1 beta 1) and VLA-2 (alpha 2 beta 1), respectively. The binding of these receptors to collagen appeared to be specific because they failed to be retained on fibronectin- or laminin-Sepharose columns. Immunofluorescent staining of cells on collagen substrates with antibodies to VLA-1 and VLA-2 localized these complexes in vinculin-positive adhesion plaques. In contrast, the receptor complexes were not detected in adhesion plaques of cells attached to fibronectin- or laminin-coated substrates. These results indicate that melanoma cells express at least two different integrin-related collagen-binding receptor complexes that appear to mediate cell adhesion to collagen.  相似文献   

20.
Although microfluidics provides exquisite control of the cellular microenvironment, culturing cells within microfluidic devices can be challenging. 3D culture of cells in collagen type I gels helps to stabilize cell morphology and function, which is necessary for creating microfluidic tissue models in microdevices. Translating traditional 3D culture techniques for tissue culture plates to microfluidic devices is often difficult because of the limited channel dimensions. In this method, we describe a technique for modifying native type I collagen to generate polycationic and polyanionic collagen solutions that can be used with layer-by-layer deposition to create ultrathin collagen assemblies on top of cells cultured in microfluidic devices. These thin collagen layers stabilize cell morphology and function, as shown using primary hepatocytes as an example cell, allowing for the long term culture of microtissues in microfluidic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号