首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of prior moderate- and prior heavy-intensity exercise on the subsequent metabolic response to incremental exercise were examined. Healthy, young adult subjects (n = 8) performed three randomized plantar-flexion exercise tests: 1) an incremental exercise test (approximately 0.6 W/min) to volitional fatigue (Ramp); 2) Ramp preceded by 6 min of moderate-intensity, constant-load exercise below the intracellular pH threshold (pHT; Mod-Ramp); and 3) Ramp preceded by 6 min of heavy-intensity, constant-load exercise above pHT (Hvy-Ramp); the constant-load and incremental exercise periods were separated by 6 min of rest. (31)P-magnetic resonance spectroscopy was used to continuously monitor intracellular pH, phosphocreatine concentration ([PCr]), and inorganic phosphate concentration ([P(i)]). No differences in exercise performance or the metabolic response to exercise were observed between Ramp and Mod-Ramp. However, compared with Ramp, a 14% (SD 10) increase (P < 0.01) in peak power output (PPO) was observed in Hvy-Ramp. The improved exercise performance in Hvy-Ramp was accompanied by a delayed (P = 0.01) onset of intracellular acidosis [Hvy-Ramp 60.4% PPO (SD 11.7) vs. Ramp 45.8% PPO (SD 9.4)] and a delayed (P < 0.01) onset of rapid increases in [P(i)]/[PCr] [Hvy-Ramp 61.5% PPO (SD 12.0) vs. Ramp 45.1% PPO (SD 9.1)]. In conclusion, prior heavy-intensity exercise delayed the onset of intracellular acidosis and enhanced exercise performance during a subsequent incremental exercise test.  相似文献   

2.
3.
Six subjects pedaled a stationary cycle ergometer to exhaustion on three separate occasions while breathing gas mixtures of 17, 21, or 60% O2 in N2. Each subject rode for 3 min at work rates of 60, 90, 105 W, followed by 15-W increases every 3 min until exhaustion. Inspired and expired gas fractions, ventilation (V), heart rate, and blood lactate were measured. O2 uptake (VO2) and CO2 output (VCO2) were calculated for the last minute of each work rate; blood samples were drawn during the last 5 s. "Break points" for lactate, V, VCO2, V/VO2, and expired oxygen fraction (FEO2) were mathematically determined. VO2 was not significantly different at any work rate among the three different conditions. Nor did maximal VO2 differ significantly among the three treatments (P greater than 0.05). Lactate concentrations were significantly lower during hyperoxia and significantly higher during hypoxia compared with normoxia. Lactate values at exhaustion were not significantly different among the three treatments. Four subjects were able to work for a longer period of time during hyperoxic breathing. The variations in lactate accumulation as reported in this study cannot be explained on the basis of differences in VO2. The results of this research lend support to the hypothesis that differences in the performance of subjects breathing altered fractions of inspired oxygen may be caused by differences in lactate (or H+) accumulation.  相似文献   

4.
5.
Langsetmo, I., G. E. Weigle, M. R. Fedde, H. H. Erickson, T. J. Barstow, and D. C. Poole.O2 kinetics in thehorse during moderate and heavy exercise. J. Appl.Physiol. 83(4): 1235-1241, 1997.The horse is asuperb athlete, achieving a maximalO2 uptake (~160ml · min1 · kg1)approaching twice that of the fittest humans. Although equine O2 uptake(O2) kinetics arereportedly fast, they have not been precisely characterized, nor hastheir exercise intensity dependence been elucidated. To addressthese issues, adult male horses underwent incremental treadmill testingto determine their lactate threshold (Tlac) and peakO2(O2 peak),and kinetic features of their O2 response to"square-wave" work forcings were resolved using exercisetransitions from 3 m/s to abelow-Tlac speed of 7 m/s or anabove-Tlac speed of 12.3 ± 0.7 m/s (i.e., between Tlac and O2 peak) sustainedfor 6 min. O2 andCO2 output were measured using anopen-flow system: pulmonary artery temperature was monitored, and mixedvenous blood was sampled for plasma lactate.O2 kinetics at work levelsbelow Tlac were well fit by atwo-phase exponential model, with a phase2 time constant(1 = 10.0 ± 0.9 s) thatfollowed a time delay (TD1 = 18.9 ± 1.9 s). TD1 was similar tothat found in humans performing leg cycling exercise, but the timeconstant was substantially faster. For speeds aboveTlac,TD1 was unchanged (20.3 ± 1.2 s); however, the phase 2 time constantwas significantly slower (1 = 20.7 ± 3.4 s, P < 0.05) than for exercise belowTlac. Furthermore, in four of fivehorses, a secondary, delayed increase inO2 became evident135.7 ± 28.5 s after the exercise transition. This "slowcomponent" accounted for ~12% (5.8 ± 2.7 l/min) of the netincrease in exercise O2. Weconclude that, at exercise intensities below and aboveTlac, qualitative features ofO2 kinetics in the horseare similar to those in humans. However, at speeds belowTlac the fast component of theresponse is more rapid than that reported for humans, likely reflectingdifferent energetics of O2utilization within equine muscle fibers.

  相似文献   

6.
BACKGROUND: It has been thought that intramuscular ADP and phosphocreatine (PCr) concentrations are important regulators of mitochondorial respiration. There is a threshold work rate or metabolic rate for cellular acidosis, and the decrease in muscle PCr is accelerated with drop in pH during incremental exercise. We tested the hypothesis that increase in muscle oxygen consumption (o2mus) is accelerated with rapid decrease in PCr (concomitant increase in ADP) in muscles with drop in pH occurs during incremental plantar flexion exercise. METHODS: Five male subjects performed a repetitive intermittent isometric plantar flexion exercise (6-s contraction/4-s relaxation). Exercise intensity was raised every 1 min by 10% maximal voluntary contraction (MVC), starting at 10% MVC until exhaustion. The measurement site was at the medial head of the gastrocnemius muscle. Changes in muscle PCr, inorganic phosphate (Pi), ADP, and pH were measured by 31P-magnetic resonance spectroscopy. o2mus was determined from the rate of decrease in oxygenated hemoglobin and/or myoglobin using near-infrared continuous wave spectroscopy under transient arterial occlusion. Electromyogram (EMG) was also recorded. Pulmonary oxygen uptake (o2pul ) was measured by the breath-by-breath gas analysis. RESULTS: EMG amplitude increased as exercise intensity progressed. In contrast, muscle PCr, ADP, o2mus, and o2pul did not change appreciably below 40% MVC, whereas above 40% MVC muscle PCr decreased, and ADP, o2mus, and o2pul increased as exercise intensity progressed, and above 70% MVC, changes in muscle PCr, ADP, o2mus, and o2pul accelerated with the decrease in muscle pH (~6.78). The kinetics of muscle PCr, ADP, o2mus, and o2pul were similar, and there was a close correlation between each pair of parameters (r = 0.969~0.983, p < 0.001). CONCLUSION: With decrease in pH muscle oxidative metabolism accelerated and changes in intramuscular PCr and ADP accelerated during incremental intermittent isometric plantar flexion exercise. These results suggest that rapid changes in muscle PCr and/or ADP with mild acidosis stimulate accelerative muscle oxidative metabolism.  相似文献   

7.
To investigate the effect of hyperthyroidism on the pattern and time course of O2 uptake (VO2) following the transition from rest to exercise, six patients and six healthy subjects performed cycle exercise at an average work rate (WR) of 18 and 20 W respectively. Cardiorespiratory variables were measured breath-by-breath. The patients also performed a progressively increasing WR test (1-min increments) to the limit of tolerance. Two patients repeated the studies when euthyroid. Resting and exercise steady-state (SS) VO2 (ml.kg-1.min-1) were higher in the patients than control (5.8, SD 0.9 vs 4.0, SD 0.3 and 12.1, SD 1.5 vs 10.2, SD 1.0 respectively). The increase in VO2 during the first 20 s exercise (phase I) was lower in the patients (mean 89 ml.min-1, SD 30) compared to the control (265 ml.min-1, SD 90), while the difference in half time of the subsequent (phase II) increase to the SS VO2 (patient 26 s, SD 8; controls 17 s, SD 8) were not significant (P = 0.06). The O2 cost per WR increment (delta VO2/delta WR) in ml.min-1.w-1, measured during the incremental period (mean 10.9; range 8.3-12.2), was always within two standard deviations of the normal value (10.3, SD 1). In the two patients who repeated the tests, both the increment of VO2 from rest to SS during constant WR exercise and the delta VO2/delta WRs during the progressive exercise were higher in the hyperthyroid state than during the euthyroid state.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Mean arterial pressure (Pa), heart rate, cardiac output (Q), and Q distribution (with radiolabeled microspheres) were measured in miniature swine as they ran at high levels on a motor-driven treadmill. Each animal ran on two occasions: once during exercise at maximal O2 uptake (VO2max) and once at an intensity estimated to require approximately 115% VO2max. The purpose was to assess these cardiovascular variables to determine whether the calculated resistance to blood flow during supramaximal exercise was different from that during maximal exercise. A total of 114 tissues/organs were dissected for blood flow analysis. Pa and Q were unaltered between the two exercise conditions. Blood flow to all but one of the 62 skeletal muscles sampled was unchanged between conditions as were the blood flows to the visceral organs and brain. The results demonstrate that vascular resistance was constant in all these tissues between maximal and supramaximal exercise intensities. Elevated blood flows were measured in 7 of the 11 coronary sites sampled. Calculated resistance to blood flow indicated that a decrease in resistance occurred in most of the samples having elevated blood flow. Because heart rate was elevated during the supramaximal exercise, the increase in blood flow was probably in response to the greater myocardial work and concomitant elevation in O2 demand. In summary, it was shown that Pa, Q, and Q distribution in most tissues remained unchanged during exercise at intensities above VO2max. Thus a precise matching occurs between the increasingly powerful vasoconstrictor drive initiated by the sympathetic nervous system and the elevated local vasodilatory drive responding to the greater O2 demand during the supramaximal exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of prior heavy-intensity warm-up exercise on subsequent moderate-intensity phase 2 pulmonary O2 uptake kinetics (tauVO2) was examined in young adults exhibiting relatively fast (FK; tauVO2 < 30 s; n = 6) and slow (SK; tauVO2 > 30 s; n = 6) VO2 kinetics in moderate-intensity exercise without prior warm up. Subjects performed four repetitions of a moderate (Mod1)-heavy-moderate (Mod2) protocol on a cycle ergometer with work rates corresponding to 80% estimated lactate threshold (moderate intensity) and 50% difference between lactate threshold and peak VO2 (heavy intensity); each transition lasted 6 min, and each was preceded by 6 min of cycling at 20 W. VO2 and heart rate (HR) were measured breath-by-breath and beat-by-beat, respectively; concentration changes of muscle deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin were measured by near-infrared spectroscopy (Hamamatsu NIRO 300). tauVO2 was lower (P < 0.05) in Mod2 than in Mod1 in both FK (20 +/- 5 s vs. 26 +/- 5 s, respectively) and SK (30 +/- 8 s vs. 45 +/- 11 s, respectively); linear regression analysis showed a greater "speeding" of VO2 kinetics in subjects exhibiting a greater Mod1 tauVO2. HR, oxyhemoglobin, and total hemoglobin were elevated (P < 0.05) in Mod2 compared with Mod1. The delay before the increase in HHb was reduced (P <0.05) in Mod2, whereas the HHb mean response time was reduced (P <0.05) in FK (Mod2, 22 +/- 3 s; Mod1, 32 +/- 11 s) but not different in SK (Mod2, 36 +/- 13 s; Mod1, 34 +/- 15 s). We conclude that improved muscle perfusion in Mod2 may have contributed to the faster adaptation of VO2, especially in SK; however, a possible role for metabolic inertia in some subjects cannot be overlooked.  相似文献   

10.
We measured maximal O2 uptake (VO2max) during stationary cycling in 40 pregnant women [aged 29.2 +/- 3.9 (SD) yr, gestational age 25.9 +/- 3.3 wk]. Data from 30 of these women were used to develop an equation to predict the percent VO2max from submaximal heart rates. This equation and the submaximal VO2 were used to predict VO2max in the remaining 10 women. The accuracy of VO2max values estimated by this procedure was compared with values predicted by two popular methods: the Astrand nomogram and the VO2 vs. heart rate (VO2-HR) curve. VO2max values estimated by the derived equation method in the 10 validation subjects were only 3.7 +/- 12.2% higher than actual values (P greater than 0.05). The Astrand method overestimated VO2max by 9.0 +/- 19.4% (P greater than 0.05), whereas the VO2-HR curve method underestimated VO2max by only 1.6 +/- 10.3% in the same 10 subjects (P greater than 0.05). Both the Astrand and the VO2-HR curve methods correlated well with the actual values when all 40 subjects were considered (r = 0.77 and 0.85, respectively), but the VO2-HR curve method had a lower SE of prediction than the Astrand method (8.7 vs. 10.4%). In a comparison group of 10 nonpregnant sedentary women (29.9 +/- 4.5 yr), an equation relating %VO2max to HR nearly identical to that obtained in the pregnant women was found, suggesting that pregnancy does not alter this relationship. We conclude that extrapolating the VO2-HR curve to an estimated maximal HR is the most accurate method of predicting VO2max in pregnant women.  相似文献   

11.
Kayser, Bengt, Roland Favier, Guido Ferretti, DominiqueDesplanches, Hilde Spielvogel, Harry Koubi, Brigitte Sempore, and HansHoppeler. Lactate and epinephrine during exercise in altitudenatives. J. Appl. Physiol. 81(6):2488-2494, 1996.We tested the hypothesis that the reported lowblood lactate accumulation ([La]) during exercise inaltitude-native humans is refractory to hypoxia-normoxia transitions byinvestigating whether acute changes in inspiredO2 fraction(FIO2) affect the[La] vs. power output ()relationship or, alternatively, as reported for lowlanders, whetherchanges in [La] vs. on changes inFIO2 are related tochanges in blood epinephrine concentration ([Epi]). Altitude natives [n = 8, age 24 ± 1 (SE) yr, body mass 62 ± 3 kg, height 167 ± 2 cm]in La Paz, Bolivia (3,600 m) performed incremental exercise with twolegs and one leg in chronic hypoxia and acute normoxia (AN). Submaximalone- and two-leg O2 uptake (O2) vs. relationships were not altered byFIO2. AN increased two-legpeak O2 by 10% and peak by 7%. AN paradoxically decreasedone-leg peak O2 by 7%,whereas peak remained the same. The[La] vs. relationships were similar tothose reported in unacclimatized lowlanders. There was a shift to theright on AN, and maximum [La] was reduced by 7 and 8% forone- and two-leg exercises, respectively. [Epi] and[La] were tightly related (mean r = 0.81) independently ofFIO2. Thus normoxiaattenuated the increment in both [La] and [Epi]as a function of , whereas the correlation between[La] and [Epi] was unaffected. These data suggest loose linkage of glycolysis to oxidative phosphorylation under influence from [Epi]. In conclusion, high-altitudenatives appear to be not fundamentally different from lowlanders with regard to the effect of acute changes inFIO2 on [La] during exercise.

  相似文献   

12.
Summary Lactate removal and glycogen replenishment were studied in the lizardSceloporus occidentalis following exhaustion at 35°C. Whole body lactate concentrations and oxygen consumption were measured inSceloporus at rest, after 2 min vigorous exercise and at intervals during a 150 min recovery period. Lactate concentrations peaked at 2.2 mg/g (24 mM) after exercise and returned to resting levels after 90 min. Oxygen consumption returned to resting rates after 66 min. In a second set of experiments, glycogen and lactate concentrations of liver, hindlimb and trunk musculature were measured over the same time periods of exercise and recovery. The decrease in muscle glycogen following exercise was identical (mg/g) to the increase in muscle lactate, and the stoichiometric and temporal relationships between lactate removal and glycogen replenishment during the recovery period were also similar. Glycogen replenishment was rapid (within 150 min) and complete in fastedSceloporus. Dietary supplement of carbohydrate during 48 h of recovery led to supercompensation of glycogen stores in the muscle (+66%) and liver (+800%). The changes were similar to the seasonal differences measured inSceloporus from the field.  相似文献   

13.
14.
The multifrequent pseudorandom binary sequence (PRBS) technique is a useful tool for studying oxygen uptake (VO2) kinetics within the aerobic range. However, the validity of this multifrequent test may be limited by nonlinearities generated by the circulatory and pulmonary system. To check for such nonlinear effects, we compared the frequency responses computed from two PRBS protocols with the results of pure sinusoidal frequencies varying in amplitude and mean values (periods between 50 s and 450 s). According to our results the VO2 frequency response does not seem to depend on the type of testing--PRBS or sine--or the changes within each test, i.e. mean power and power amplitude of the sine tests and the switching frequency of the PRBS. In the range of higher frequencies small differences between the test conditions may have been obscured by the greater scatter of dynamic responses. It was concluded that the VO2 frequency response was quasi-linear for periods down to the least 100 s. However, even in this range nonlinearities can be provoked by rest-exercise transitions, by a varying contribution of lactate or by an insufficient noise reduction.  相似文献   

15.
Lactate during exercise at extreme altitude   总被引:2,自引:0,他引:2  
J B West 《Federation proceedings》1986,45(13):2953-2957
Maximal exercise at extreme altitude results in profound arterial hypoxemia and, presumably, extreme tissue hypoxia. The best evidence available indicates that the resting arterial PO2 on the summit of Mount Everest is about 28 torr and that it falls even further during exercise. Nevertheless, some 10 climbers have now reached the summit without supplementary oxygen. Paradoxically, blood lactate for a given work rate at high altitude in acclimatized subjects is essentially the same as at sea level. Because work capacity decreases markedly with increasing altitude, maximal blood lactate also falls. Extrapolation of available data up to 6300 m indicates that a climber who reaches the Everest summit will have no increase in blood lactate. The cause of the low blood lactate during exercise at extreme altitude is not fully understood. One possibility is depletion of plasma bicarbonate in acclimatized subjects, which reduces buffering and results in large increases in H+ concentration for a given release of lactate. The consequent local fall in pH may inhibit enzymes, e.g., phosphofructokinase (EC 2.7.1.56), in the glycolytic pathway.  相似文献   

16.
We investigated arterial PCO2 (PaCO2) and pH (pHa) responses in ponies during 6-min periods of high-intensity treadmill exercise. Seven normal, seven carotid body-denervated (2 wk-4 yr) (CBD), and five chronic (1-2 yr) lung (hilar nerve)-denervated (HND) ponies were studied during three levels of constant load exercise (7 mph-11%, 7 mph-16%, and 7 mph-22% grade). Mean pHa for each group of ponies became alkaline in the first 60 s (between 7.45 and 7.52) (P less than 0.05) at all work loads. At 6 min pHa was at or above rest at 7 mph-11%, moderately acidic at 7 mph-16% (7.32-7.35), and markedly acidic at 7 mph-22% (7.20-7.27) for all groups of ponies. Yet with no arterial acidosis at 7 mph 11%, normal ponies decreased PaCO2 below rest (delta PaCO2) by 5.9 Torr at 90 s and 7.8 Torr by 6 min of exercise (P less than 0.05). With a progressively more acid pHa at the two higher work loads in normal ponies, delta PaCO2 was 7.3 and 7.8 Torr by 90 s and 9.9 and 11.4 Torr by 6 min, respectively (P less than 0.05). CBD ponies became more hypocapnic than the normal group at 90 s (P less than 0.01) and tended to have greater delta PaCO2 at 6 min. The delta PaCO2 responses in normal and HND ponies were not significantly different (P greater than 0.1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The purpose of this study was to investigate the relationship between muscle oxygenation level at exhaustion and maximal oxygen uptake (VO2max) in an incremental cycling exercise. Nine male subjects took part in an incremental exhaustive cycling exercise, and then cuff occlusion was performed. Changes in oxy-(deltaHbO2) and deoxy-(deltaHb) hemoglobin concentrations in the vastus lateralis muscle were measured with a near infrared spectroscopy (NIRS). Muscle oxygenation during incremental exercise was expressed as a percentage (%Moxy) of the maximal range observed during an arterial occlusion as the lower reference point. A systematic decrease was observed in %Moxy with increasing intensity. A significant relationship was observed between %Moxy at exhaustion and VO2max (p < 0.01). We concluded that the one of the limiting factor of VO2max is the muscle oxygen diffusion capacity, and %Moxy during exercise could be one of the indexes of muscle oxygen diffusion capacity.  相似文献   

18.
A group of 12 healthy non-smoking men [mean age 22.3 (SD 1.1) years], performed an incremental exercise test. The test started at 30 W, followed by increases in power output (P) of 30 W every 3 min, until exhaustion. Blood samples were taken from an antecubital vein for determination of plasma concentration lactate [La]pl and acid-base balance variables. Below the lactate threshold (LT) defined in this study as the highest P above which a sustained increase in [La]pl was observed (at least 0.5 mmol · l−1 within 3 min), the pulmonary oxygen uptake (O2) measured breath-by-breath, showed a linear relationship with P. However, at P above LT [in this study 135 (SD 30) W] there was an additional accumulating increase in O2 above that expected from the increase in P alone. The magnitude of this effect was illustrated by the difference in the final P observed at maximal oxygen uptake (O2max) during the incremental exercise test (P max,obs at O2max) and the expected power output at O2max(P max,exp at O2max) predicted from the linear O2-P relationship derived from the data collected below LT. The P max,obs at O2max amounting to 270 (SD 19) W was 65.1 (SD 35) W (19%) lower (P<0.01) than the P max,exp at O2max . The mean value of O2max reached at P max,obs amounted to 3555 (SD 226) ml · min−1 which was 572 (SD 269) ml · min−1 higher (P<0.01) than the O2 expected at this P, calculated from the linear relationship between O2 and P derived from the data collected below LT. This fall in locomotory efficiency expressed by the additional increase in O2, amounting to 572 (SD 269) ml O2 · min−1, was accompanied by a significant increase in [La]pl amounting to 7.04 (SD 2.2) mmol · l−1, a significant increase in blood hydrogen ion concentration ([H+]b) to 7.4 (SD 3) nmol · l−1 and a significant fall in blood bicarbonate concentration to 5.78 (SD 1.7) mmol · l−1, in relation to the values measured at the P of the LT. We also correlated the individual values of the additional O2 with the increases (Δ) in variables [La]pl and Δ[H+]b. The Δ values for [La]pl and Δ[H+]b were expressed as the differences between values reached at the P max,obs at O2max and the values at LT. No significant correlations between the additional O2 and Δ[La]pl on [H+]b were found. In conclusion, when performing an incremental exercise test, exceeding P corresponding to LT was accompanied by a significant additional increase in O2 above that expected from the linear relationship between O2 and P occurring at lower P. However, the magnitude of the additional increase in O2 did not correlate with the magnitude of the increases in [La]pl and [H+]b reached in the final stages of the incremental test. Accepted: 30 October 1997  相似文献   

19.
The effect of carbonic anhydrase inhibition with acetazolamide (Acz) on CO2 output (VCO2) and ventilation (VE) kinetics was examined during moderate- and heavy-intensity exercise. Seven men [24 +/- 1 (SE) yr] performed cycling exercise during control (Con) and Acz (10 mg/kg body wt iv) sessions. Each subject performed step transitions (6 min) in work rate from 0 to 100 W [below ventilatory threshold (VET)]. VE and gas exchange were measured breath by breath. The time constant (tau) was determined for exercise VET by using a three-component model (fit from the start of exercise). VCO2 kinetics were slower in Acz (VET, MRT = 75 +/- 10 s) than Con (VET, MRT = 54 +/- 7 s). During VET kinetics were faster in Acz (MRT = 85 +/- 17 s) than Con (MRT = 106 +/- 16 s). Carbonic anhydrase inhibition slowed VCO2 kinetics during both moderate- and heavy-intensity exercise, demonstrating impaired CO2 elimination in the nonsteady state of exercise. The slowed VE kinetics in Acz during exercise 相似文献   

20.
Oxygen consumption is usually considered to be predictable and unalterable at a fixed work intensity. The relaxation response is hypothesized to be an integrated hypothalamic response which results in generalized decreased sympathetic nervous system activity. One physiologic manifestation of the relaxation response is decreased oxygen consumption. The possibility that the elicitation of the relaxation response could decrease oxygen consumption at a fixed work intensity was investigated. Oxygen consumption was decreased 4 percent (p less than 0.05) in eight subjects working at a fixed intensity when the relaxation response was simultaneously elicited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号