首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phycomyces blakesleeanus sporangiospores responded differently to activation by physical and chemical stimuli. Spores that were physically (heat shock) activated or chemically (ammonium acetate) activated germinated and grew at pH 4.5 with the hexoses glucose, fructose, galactose, andN-acetylglucosamine, and with glycerol and amino acids. Under these conditions, physically activated spores showed a lower, although significant growth with the hexoses fructose, galactose,N-acetylglucosamine and with glycerol. On the other hand, physically activated spores incubated at alkaline pH (pH 7.3) required glucose to germinate; a requirement not observed with chemically activated spores, which showed significant growth in the other hexoses tested. Both physically and chemically activated spores incubated at pH 7.3 were unable to germinate and grow with amino acids and glycerol. These results suggest that there are different targets for activation of the spores by physical and chemical treatments. The levels of the fermentative enzymes alcohol dehydrogenase and lactate dehydrogenase and of the oxidative enzyme NAD+-isocitrate dehydrogenase were higher in cells grown at pH 4.5 in medium containing glucose; however, alcohol dehydrogenase and lactate dehydrogenase appear not to be affected by a change in the pH of the growth medium.  相似文献   

2.
Four different strains ofLactobacillus delbrueckii subsp.bulgaricus (Ss1 and Yop12) andStreptococcus salivarius subsp.thermophilus (Ss2 and Yop9) were isolated from two different yogurt sources in Argentina. In medium containing different carbon sources: lactose, fructose, sucrose or glucose plus fructose, the growth of a mixed culture (Yop12+Ss2) shows stimulation ofS. thermophilus and inhibition ofL. bulgaricus with respect to pure cultures. Both microorganisms in mixed culture grew less well on glucose plus galactose. However, in medium with glucose or galactose, both microorganisms were stimulated.  相似文献   

3.
Glycerol formation is vital for reoxidation of nicotinamide adenine dinucleotide (reduced form; NADH) under anaerobic conditions and for the hyperosmotic stress response in the yeast Saccharomyces cerevisiae. However, relatively few studies have been made on hyperosmotic stress under anaerobic conditions. To study the combined effect of salt stress and anaerobic conditions, industrial and laboratory strains of S. cerevisiae were grown anaerobically on glucose in batch-cultures containing 40 g/l NaCl. The time needed for complete glucose conversion increased considerably, and the specific growth rates decreased by 80–90% when the cells were subjected to the hyperosmotic conditions. This was accompanied by an increased yield of glycerol and other by-products and reduced biomass yield in all strains. The slowest fermenting strain doubled its glycerol yield (from 0.072 to 0.148 g/g glucose) and a nearly fivefold increase in acetate formation was seen. In more tolerant strains, a lower increase was seen in the glycerol and in the acetate, succinate and pyruvate yields. Additionally, the NADH-producing pathway from acetaldehyde to acetate was analysed by overexpressing the stress-induced gene ALD3. However, this had no or very marginal effect on the acetate and glycerol yields. In the control experiments, the production of NADH from known sources well matched the glycerol formation. This was not the case for the salt stress experiments in which the production of NADH from known sources was insufficient to explain the formed glycerol.  相似文献   

4.
Three clones of the diatom Amphora were euryhaline, able to grow autotrophically at 160 lx (0.001 ly/min) and heterotrophically on glucose and fructose. Furthermore 2 clones grew on glutamate and feast extract. Light-limited growth of individual clones was stimulated by glycerol, galactose, lactate, acetate, aspartate and asparagine, although mannose torn inhibitory at low and high light levels. The half-saturation constant for growth of A. coffeaefomis var. perpusilla Grunow (Cleve) with glucose was 25 μM. Heterotrophic growth rate of this organism became saturated with respect to glucose at 0.5 mM.  相似文献   

5.
Thiobacillus A2 grew on a number of organic acids, pentoses, hexoses and -linked disaccharides, but not on -linked disaccharides or galactosides. Growth was slow on glucose, although fast-growing strains were selectively isolated. Additive growth rates occurred on glucose and galactose; growth on glucose with fructose, pyruvate or gluconate was biphasic rather than diauxic; fructose was used preferentially over glucose; slow growth on glucose was accelerated by some disaccharides; growth on acetate, fumarate or succinate with glucose gave diauxic growth with preferential use of the acid and repression of glucose incorporation. Acetate and succinate tended to be used preferentially even with cultures grown on them in mixture with fructose or sucrose.  相似文献   

6.
A. P. Mackey 《Hydrobiologia》1979,67(3):241-247
Experiments are described to characterise the heterotrophic potential of Westiellopsis prolifica Janet, which fixes nitrogen under light and dark conditions. The growth of the organism in terms of dry weight increase, was more in fructose, lactose, sucrose, sorbose, galactose, glucose, sodium acetate, mannitol, sorbitol, glycerol, ethyl alcohol and butyl alcohol, when the alga was pretreated with light and subsequently incubated with the substrates in light. Mannose, xylose, acetic acid, propionic acid, fructose 1,6 di Po4, pyruvic acid, dihydroxyacetone and succinic acid decreased the growth of the organism in the same condition. In dark incubation after pretreatment with light, as well as in the dark, Westiellopsis showed a better growth response to almost all the exogenous substrates. However, after pretreatment either with light or dark, the test organism utilised exogenous substrates quicker in light than in dark incubations. These experiments would suggest that the substrate specificity and efficiency of substrate utilisation by the alga during its heterotrophic growth are governed by the growth conditions.  相似文献   

7.
Yeast (Y) and hyphal (H) cells of Mucor rouxii and Candida albicans were cultivated in liquid media containing different carbon nutrient sources (glucose, fructose, ribose), and their free acyclic polyol and trehalose contents determined using capillary gas liquid chromatography (TMS- and OAc-derivatization). Irrespective of growth form and C-source, the fraction of the water-soluble neutral components of the cellular mass of the cultures — highly homogeneous with regard to the respective cell form produced — contained glycerol, ribitol and arabitol, in addition to trehalose. The polyols contributed 0.5–2% to the biomass of M. rouxii and 1.5–6% to that of C. albicans; the values for trehalose ranged from 0.2–11% in the former and 1–3.5% in the latter species. Mucor contained higher amounts of ribitol and arabitol in H cells and larger quantities of trehalose and glycerol in Y cells. In Candida, too, hyphae always exhibited higher ribitol contents, whereas arabitol attained higher levels in yeasts under almost any conditions — regardless of the type of medium (synthetic vs. complex), stage of culture (early vs. late log-phase) and strain used. Glycerol concentration was not correlated with the growth form; trehalose contents tended to be higher in Y cells. Taking into account the facts that C. albicans and certain Mucor species are agents of opportunistic infections and are invasive mainly in the filamentous form, and that the prospective hosts do not accumulate either of these carbohydrates, the possibility is considered of using trehalose- and polyol-metabolizing enzymes as targets for designing antifungal drugs.  相似文献   

8.
Suillus and Boletinus were studied using Ohta medium. In media with glucose or trehalose, all tested strains grew well. With mannose and cellobiose, strains generally grew well, except for one strain of Suillus. Utilization of dextrin and soluble starch differed with each strain, and that of sucrose and glycerol was low for all strains. Utilization of four amino acids, arginine, glutamic acid, aspartic acid, and alanine, was similar to that of ammonium tartrate for Suillus strains, but mycelial growth with amino acids was clearly lower than with ammonium tartrate for the Boletinus strain. The effect of glucose and ammonium tartrate concentrations for nine strains of the genera Suillus and Boletinus was studied with ranges for glucose of 1–100 and 200g/l, respectively, and for ammonium tartrate of 0.2–5 and 20g/l, respectively. Six strains showed maximal growth at a glucose concentration greater than 25g/l, and one strain showed maximal growth at 70g/l. The results indicate that these fungi are adapted to relatively high concentrations of carbon sources. In general, glucose concentration at mycelial growth maximum decreased as ammonium tartrate concentration increased, and at higher concentrations of glucose, mycelial growth decreased more rapidly in higher concentrations of ammonium tartrate.  相似文献   

9.
Species of the heterotrophic green microalgal genus Prototheca and related taxa were phylogenetically analyzed based on the nuclear small subunit (SSU) and the 5′ end of the large subunit (LSU) rRNA gene (rDNA) sequences. We propose restricting the genus Prototheca to the four species: P. moriformis Krüger, P. stagnora (Cooke) Pore, P. ulmea Pore, and P. zopfii Krüger. The main diagnostic feature of these taxa is the absence of growth on trehalose.Of these, it was suggested that P. moriformis should be merged into P. zopfii; P. moriformis and three varieties of P. zopfii constituted a paraphyletic assemblage with estimated short evolutionary distances. The trehalose‐assimilating strains (Prototheca wickerhamii Tubaki et Soneda strains and Auxenochlorella protothecoides (Krüger) Kalina et Pun?ochá?ová SAG 211‐7a), together with an invertebrate pathogen Helicosporidium sp., diverged before the radiation of the four species of Prototheca in the SSU rDNA and composite (SSU rDNA plus LSU rDNA) analyses. Comparison between the results from physiological data in this work (fermentative pattern) and those described earlier (growth requirements) lead us to propose a hypothesis that the phenotypic variation, which did not represent diagnostic characters for species delimitation, may reflect the history of genetic diversification within the genus Prototheca as inferred from rDNA sequence characters.  相似文献   

10.
The metabolism of trimethylamine (TMA) and dimethylamine (DMA) in Arthrobacter P1 involved the enzymes TMA monooxygenase and trimethylamine-N-oxide (TMA-NO) demethylase, and DMA monooxygenase, respectively. The methylamine and formaldehyde produced were further metabolized via a primary amine oxidase and the ribulose monophosphate (RuMP) cycle. The amine oxidase showed activity with various aliphatic primary amines and benzylamine. The organism was able to use methylamine, ethylamine and propylamine as carbon-and nitrogen sources for growth. Butylamine and benzylamine only functioned as nitrogen sources. Growth on glucose with ethylamine, propylamine, butylamine and benzylamine resulted in accumulation of the respective aldehydes. In case of ethylamine and propylamine this was due to repression by glucose of the synthesis of the aldehyde dehydrogenase(s) required for their further metabolism. Growth on glucose/methylamine did not result in repression of the RuMP cycle enzyme hexulose-6-phosphate synthase (HPS). High levels of this enzyme were present in the cells and as a result formaldehyde did not accumulate. Ammonia assimilation in Arthrobacter P1 involved NADP-dependent glutamate dehydrogenase (GDH), NAD-dependent alanine dehydrogenase (ADH) and glutamine synthetase (GS) as key enzymes. In batch cultures both GDH and GS displayed highest levels during growth on acetate with methylamine as the nitrogen source. A further increase in the levels of GS, but not GDH, was observed under ammonia-limited growth conditions in continuous cultures with acetate or glucose as carbon sources.Abbreviations HPS hexulose-6-phosphate synthase - RuMP ribulose monophosphate - DMA dimethylamine - TMA trimethylamine - TMA-NO trimethylamine-N-oxide - ICL isocitrate lyase - GS glutamine synthetase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase - GOGAT glutamate synthase  相似文献   

11.
Summary In an attempt to screen for air flora producing new potent antimicrobial substances, Bacillus megaterium NB-3, Bacillus cereus NB-4, Bacillus cereus NB-5, Bacillus subtilis NB-6 and Bacillus circulans NB-7, were isolated and were found to be antagonistic to bacteria and/or fungi. Production of antimicrobial substances by the bacterial strains was greatly influenced by variation of carbon sources. Glycerol strongly enhanced the antimicrobial activity of strains NB-3 and NB-6, whereas glucose increased the antimicrobial activity of strains NB-4 and NB-5. The maximum antibiotic yield of NB-7 was achieved with fructose as a carbon source. Starch (Bacillus megaterium NB-3), maltose (Bacillus cereus NB-5), glycerol (Bacillus circulans NB-7), arabinose, ribose (Bacillus cereus NB-4) and arabinose, fructose, glucose, ribose and sucrose (Bacillus subtilis NB-6) repressed the production of antimicrobial substances by the respective bacterial strains.  相似文献   

12.
We have studied the energetics of glucose uptake in Salmonella typhimurium. Strain PP418 transprots glucose via the phosphoenolpyruvate: glucose phosphotransferase system, while strain PP1705 lacks this system and can only use the galactose permease for glucose uptake. These two strains were cultured anaerobically in glucose-limited chemostats. Both strains produced ethanol and acetate in equimolar amounts but a significant difference was observed in the molar growth yield on glucose (Y Glc). It is suggested that this difference is due to a difference in the energetics of the glucose uptake systems in the two strains.Assuming an equal Y ATP for both strains, we could calculate that uptake of 1 mole of glucose via the galactose permease consumes the equivalent of 0.5 mole of ATP. With the additional assumption that one proton is transported in symport with one glucose molecule, these results imply a stoichiometry of two protons per ATP hydrolysed.Abbreviations PTS Phosphoenolpyruvate: carbohydrate phosphotransferase system - D dilution rate (h-1 - DW dry weight - GalP galactose permease - EtOH ethanol - HAc acetate - Lact lactate - Suc succinate - HFo formate - Glc Glucose - Y Glc, Y ATP yield of cells per glucose or ATP - q specific production rate  相似文献   

13.
The adaptation to utilise lactose as primary carbon and energy source is a characteristic for Streptococcus thermophilus. These organisms, however only utilise the glucose moiety of lactose while the galactose moiety is excreted into the growth medium. In this study we evaluated the diversity of sugar utilisation and the conservation of the gal-lac gene cluster in a collection of 18 S. thermophilus strains isolated from a variety of sources. For this purpose analysis was performed on DNA from these isolates and the results were compared with those obtained with a strain from which the complete genome sequence has been determined. The sequence, organisation and flanking regions of the S. thermophilus gal-lac gene cluster were found to be highly conserved among all strains. The vast majority of the S. thermophilus strains were able to utilize only glucose, lactose, and sucrose as carbon sources, some strains could also utilize fructose and two of these were able to grow on galactose. Molecular characterisation of these naturally occurring Gal+ strains revealed up-mutations in the galKTE promoter that were absent in all other strains. These data support the hypothesis that the loss of the ability to ferment galactose can be attributed to the low activity of the galKTE promoter, probably as a consequence of the adaptation to milk in which the lactose levels are in excess.  相似文献   

14.
1. Using area of a fixed concentration as a nitrogen source,cells of Chlorella protothecoides were grown in the presenceof various carbon compounds. Magnitudes of growth of the cellswere widely different depending on the carbon sources used;glucose and fructose being most favourable substrates and galactose,glycerol and acetate coming next. But the amounts of chlorophyllformed in the cells during the experimental period were almost,the same irrespective of the different carbon sources, withsome exceptions. The similarity of the chlorophyll level observedin these experiments seemed to indicate that the formation ofchlorophyll was limited largely by the nitrogen source but notby the carbon source. 2. Strong bleaching effect was recognized with glucose and fructoseat their high concentration, which produced totally chlorophyll-lesscells. On the other hand, a stimulating effect on chlorophyllformation was observed with galactose at the different concentrationsexamined. 3. Effects of glycine and ammonium carbonate as the nitrogensource on the algal growth and pigmentation were studied insome details. The results were similar to those previously obtainedwith urea, confirming our previous conclusion that the algalpigmentation is profoundly affected by the concentration balancebetween glucose and nitrogen source. 1Present address: Tokyo Research Laboratories, Tanabe SeiyakuCo., Toda-machi, Saitama.  相似文献   

15.
Jobic C  Boisson AM  Gout E  Rascle C  Fèvre M  Cotton P  Bligny R 《Planta》2007,226(1):251-265
Interactions between the necrotrophic fungus Sclerotinia sclerotiorum and one of its hosts, Helianthus annuus L., were analyzed during fungal colonization of plant tissues. Metabolomic analysis, based on 13C- and 31P-NMR spectroscopy, was used to draw up the profiles of soluble metabolites of the two partners before interaction, and to trace the fate of metabolites specific of each partner during colonization. In sunflower cotyledons, the main soluble carbohydrates were glucose, fructose, sucrose and glutamate. In S. sclerotiorum extracts, glucose, trehalose and mannitol were the predominant soluble carbon stores. During infection, a decline in sugars and amino acids was observed in the plant and fungus total content. Sucrose and fructose, initially present almost exclusively in plant, were reduced by 85%. We used a biochemical approach to correlate the disappearance of sucrose with the expression and the activity of fungal invertase. The expression of two hexose transporters, Sshxt1 and Sshxt2, was enhanced during infection. A database search for hexose transporters homologues in the S. sclerotiorum genome revealed a multigenic sugar transport system. Furthermore, the composition of the pool of reserve sugars and polyols during infection was investigated. Whereas mannitol was produced in vitro and accumulated in planta, glycerol was exclusively produced in infected tissues and increased during colonization. The hypothesis that the induction of glycerol synthesis in S. sclerotiorum exerts a positive effect on osmotic protection of fungal cells and favors fungal growth in plant tissues is discussed. Taken together, our data revealed the importance of carbon–nutrient exchanges during the necrotrophic pathogenesis of S. sclerotiorum.  相似文献   

16.
Anaerobic bacteria degrading 2-methoxyethanol were enriched from freshwater sediments, and three strains were isolated in pure culture. Two of them were Grampositive non-spore-forming rods and grew strictly anaerobically by acetogenic fermentation. Optimal growth occurred at 30°C, initial pH 7.5–8.0. 2-Methoxyethanol and 2-ethoxyethanol were fermented to acetate and corresponding alcohols. Hydrogen plus carbon dioxide, formate, acetoin, l-malate, lactate, pyruvate, fructose, and methoxyl groups of 3,4,5-trimethoxybenzoate and 3,4,5-trimethoxycinnamate were fermented to acetate. 1,2-Propanediol was fermented to acetate, propionate, and propanol. Strain MuME1 was described as a new species, Actetobacterium malicum. It had a DNA base composition of 44.1 mol% guanine plus cytosine. The third strain, which was identified as Pelobacter venetianus, fermented 2-methoxyethanol to methanol, ethanol, and acetate.  相似文献   

17.
TheRhizobium tropici strain CFN 299 was maintained on PY medium and was grown in minimal medium (MM) with sucrose, glucose, fructose and glutamate (or their combination) as carbon sources. Bacteria were able to simultaneously use different carbon sources and, with a combination sucrose and glutamate, the growth rate was faster than with either carbon source alone. Sucrose transport was induced by sucrose and partially repressed by glucose and glutamate if they were included in MM as additional carbon sources. The transport of sucrose was active because both an uncoupler (dinitrophenol, DNP) and inhibitors of terminal oxidation (KCN, NaN3) severely reduced sucrose uptake. Sucrose transport was also sensitive to a functional sulfhydryl reagent but was much less sensitive to EDTA and arsenate. We obtained nonlinear Lineweaver-Burk plots for the uptake of sucrose (by sucrose-grown bacteria), and this implied the existence of at least two uptake mechanisms. Invertase (EC 3.2.1.26) is the main enzyme for sucrose hydrolysis in this organism. This enzyme was induced by sucrose and had high activity in mid-log phase cells when sucrose was the sole carbon source (0.2%). Invertase activity was not detected in growth medium. In general, the results obtained support the idea, thatR. tropici is adapted to sucrose utilization and to multicarbon nutrition during its interaction with plants.  相似文献   

18.
【背景】马克斯克鲁维酵母(Kluyveromyces marxianus)具有完整的木糖代谢途径,可以高效利用木质纤维素中的木糖,因此对其糖转运蛋白基因的研究或可有效解决酵母木糖转运的相关问题。【目的】根据马克斯克鲁维酵母DMKU3-1042中KLMA_70145和KLMA_80101基因位点的功能预测,获得马克斯克鲁维酵母GX-UN120相应的糖转运蛋白基因序列并探究其功能。【方法】将转运蛋白基因分别克隆表达至酿酒酵母EBY.VW4000中考察重组菌株生长特性,以此间接评价对应转运蛋白的转运能力。【结果】Km_SUT2基因编码的糖转运蛋白可有效提高宿主细胞转运木糖、阿拉伯糖、山梨糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖、果糖、蔗糖和半乳糖。类似地,Km_SUT3基因编码的糖转运蛋白可提高细胞转运木糖、阿拉伯糖、山梨糖、半乳糖、核糖、乳糖和葡萄糖的能力,但却不能转运甘露糖和果糖。然而在葡萄糖存在的条件下,重组菌株对各种碳源的利用均受抑制,但Km_SUT3转运木糖和核糖过程中受葡萄糖的抑制作用较小。【结论】马克斯克鲁维酵母GX-UN120中转运蛋白Km_SUT2和Km_SUT3可...  相似文献   

19.
The effect on growth of reducing the water activity (a w) of a medium with various solutes has been investigated for 27 strains of fission yeasts (Schizosaccharomyces). The minimum-tolerated a w (MTA) was dependent on both the nature of the solute and the species. When the strains of each species were grouped together, the lowest mean MTA values were found with glucose, fructose or glycerol as stressing solutes, being in the range 0.89–0.90 for S. pombe, S. malidevorans, S. octosporus and S. slooffiae, but in the range 0.92–0.94 for S. japonicus. With the non-metabolizable sugars sorbose and xylose and the salts NH4Cl, KCl, and NaCl, the mean MTA values were in the range 0.96–0.985, except for (1) the single strain of S. slooffiae, which was more tolerant of NH4Cl and KCl with values of 0.95 and 0.94, respectively, and (2) the strains of S. pombe, S. malidevorans and S. japonicus, which were less tolerant of NaCl with mean values of about 0.99. One strain of each species was examined for intracellular solutes when actively growing in the presence of near-limiting concentrations of stressing solute. With glucose, fructose or glycerol, all five strains contained substantial amounts of glycerol but no other polyol; with the other solutes no glycerol or other polyol was found, except for small amounts of glycerol in strains of S. octosporus and S. slooffiae stressed with NH4Cl, KCl, or NaCl.Abbreviations MTA Minimum-tolerated water activity - a w water activity - YEPG yeast extract, phosphate, glucose medium  相似文献   

20.
Summary Glycerol has been known as an important by-product of wine fermentations improving the sensory quality of wine. This study was carried out with an endogenic wine yeast strain Saccharomyces cerevisiae Kalecik 1. The kinetics of growth and glycerol biosynthesis were analysed at various initial concentrations of glucose, fructose, and sucrose in a batch system. Depending on the determined values of Monod constants, glucose (Ks = 28.09 g/l) was found as the most suitable substrate for the yeast growth. Initial glucose, fructose and sucrose concentrations necessary for maximum specific yeast growth rate were determined as 175 g, 100 l, and 200 g/l, respectively. The yeast produced glycerol at very high concentrations in fructose medium. Fructose was determined as the most suitable substrate for glycerol production while the strain showed low tendency to use it for growth. S. cerevisiae Kalecik 1 could not produce glycerol below 200 g/l initial sucrose concentration. When natural white grape juice was used as fermentation medium, maximum glycerol concentration and dry weight of the yeast were determined as 9.3 g/l and 11.8 g/l, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号