首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
2.

Background

The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates.

Methodology/Principal Findings

We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates.

Conclusions

The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolution.  相似文献   

3.
4.
5.
Eller CD  Regelson M  Merriman B  Nelson S  Horvath S  Marahrens Y 《Gene》2007,390(1-2):153-165
Housekeeping genes are expressed across a wide variety of tissues. Since repetitive sequences have been reported to influence the expression of individual genes, we employed a novel approach to determine whether housekeeping genes can be distinguished from tissue-specific genes by their repetitive sequence context. We show that Alu elements are more highly concentrated around housekeeping genes while various longer (> 400-bp) repetitive sequences (“repeats”), including Long Interspersed Nuclear Element-1 (LINE-1) elements, are excluded from these regions. We further show that isochore membership does not distinguish housekeeping genes from tissue-specific genes and that repetitive sequence environment distinguishes housekeeping genes from tissue-specific genes in every isochore. The distinct repetitive sequence environment, in combination with other previously published sequence properties of housekeeping genes, was used to develop a method of predicting housekeeping genes on the basis of DNA sequence alone. Using expression across tissue types as a measure of success, we demonstrate that repetitive sequence environment is by far the most important sequence feature identified to date for distinguishing housekeeping genes.  相似文献   

6.
Genes that are differentially expressed between the sexes (sex-biased genes) are among the fastest evolving genes in animal genomes. The majority of sex-biased expression is attributable to genes that are primarily expressed in sex-limited reproductive tissues, and these reproductive genes are often rapidly evolving because of intra- and intersexual selection pressures. Additionally, studies of multiple taxa have revealed that genes with sex-biased expression are also expressed in a limited number of tissues. This is worth noting because narrowly expressed genes are known to evolve faster than broadly expressed genes. Therefore, it is not clear whether sex-biased genes are rapidly evolving because they have sexually dimorphic expression, because they are expressed in sex-limited reproductive tissues, or because they are narrowly expressed. To determine the extend to which other confounding variables can explain the rapid evolution of sex-biased genes, I analyzed the rates of evolution of sex-biased genes in Drosophila melanogaster and Mus musculus in light of tissue-specific measures of expression. I find that genes with sex-biased expression in somatic tissues shared by both sexes are often evolving faster than non-sex-biased genes, but this is best explained by the narrow expression profiles of sex-biased genes. Sex-biased genes in sex-limited tissues in D. melanogaster, however, evolve faster than other narrowly expressed genes. Therefore, the rapid evolution of sex-biased genes is limited only to those genes primarily expressed in sex-limited reproductive tissues.  相似文献   

7.
8.
Housekeeping genes are widely used as internal controls for gene expression normalization for western blotting, northern blotting, RT-PCR, etc. They are generally thought to be expressed in all cells of the organism at similar levels because it is assumed that these genes are required for the maintenance of basic cellular function as constitutive genes. However, real-time RT-PCR experiments revealed that their expression may vary depending on the developmental stage, type of tissue examined, experimental condition, and so on. To date, no histological data on their expression are available for embryonic development. In the present study, we compared the histological expression profile of two commonly used housekeeping genes, GAPDH and beta-actin, in the developing chicken embryo by using section and whole mount in situ hybridization supplemented by RT-PCR. Our results show that neither GAPDH mRNA nor beta-actin mRNA is expressed in all cell types or tissues at high levels. Strikingly, expression levels are very low in some organs. Moreover, the two genes show partially complementary expression patterns in the liver, the vascular system and the digestive tract. For example, GAPDH is more strongly expressed in the liver than beta-actin, but at lower levels in the arteries. Vice versa, beta-actin is more strongly expressed in the gizzard than GAPDH, but it is almost absent from cardiac muscle cells. Researchers should consider these histological results when using GAPGD and beta-actin for gene expression normalization in their experiments.  相似文献   

9.
Housekeeping genes are widely used as internal controls in a variety of study types, including real time RT-PCR, microarrays, Northern analysis and RNase protection assays. However, even commonly used housekeeping genes may vary in stability depending on the cell type or disease being studied. Thus, it is necessary to identify additional housekeeping-type genes that show sample-independent stability. Here, we used statistical analysis to examine a large human microarray database, seeking genes that were stably expressed in various tissues, disease states and cell lines. We further selected genes that were expressed at different levels, because reference and target genes should be present in similar copy numbers to achieve reliable quantitative results. Real time RT-PCR amplification of three newly identified reference genes, CGI-119, CTBP1 and GOLGAl, alongside three well-known housekeeping genes, B2M, GAPD, and TUBB, confirmed that the newly identified genes were more stably expressed in individual samples with similar ranges. These results collectively suggest that statistical analysis of microarray data can be used to identify new candidate housekeeping genes showing consistent expression across tissues and diseases. Our analysis identified three novel candidate housekeeping genes (CGI-119, GOLGA1, and CTBP1) that could prove useful for normalization across a variety of RNA-based techniques.  相似文献   

10.
Chitinase hydrolyzes chitin, which is an N-acetyl-D-glucosamine polymer that is present in a wide range of organisms, including insects, parasites and fungi. Although mammals do not contain any endogenous chitin, humans and mice express two active chitinases, chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase). Because the level of expression of these chitinases is increased in many inflammatory conditions, including Gaucher disease and mouse models of asthma, both chitinases may play important roles in the pathophysiologies of these and other diseases. We recently established a quantitative PCR system using a single standard DNA and showed that AMCase mRNA is synthesized at extraordinarily high levels in mouse stomach tissues. In this study, we applied this methodology to the quantification of chitinase mRNAs in human tissues and found that both chitinase mRNAs were widely expressed in normal human tissues. Chit1 mRNA was highly expressed in the human lung, whereas AMCase mRNA was not overexpressed in normal human stomach tissues. The levels of these mRNAs in human tissues were significantly lower than the levels of housekeeping genes. Because the AMCase expression levels were quite different between the human and mouse stomach tissues, we developed a quantitative PCR system to compare the mRNA levels between human and mouse tissues using a human-mouse hybrid standard DNA. Our analysis showed that Chit1 mRNA is expressed at similar levels in normal human and mouse lung. In contrast, the AMCase expression level in human stomach was significantly lower than that expression level observed in mouse stomach. These mRNA differences between human and mouse stomach tissues were reflecting differences in the chitinolytic activities and levels of protein expression. Thus, the expression level of the AMCase in the stomach is species-specific.  相似文献   

11.
Dheda K  Huggett JF  Bustin SA  Johnson MA  Rook G  Zumla A 《BioTechniques》2004,37(1):112-4, 116, 118-9
  相似文献   

12.
In plants, highly expressed genes are the least compact   总被引:1,自引:0,他引:1  
  相似文献   

13.
14.
15.
Intra-genomic variation between housekeeping and tissue-specific genes has always been a study of interest in higher eukaryotes. To-date, however, no such investigation has been done in plants. Availability of whole genome expression data for both rice and Arabidopsis has made it possible to examine the evolutionary forces in shaping codon usage pattern in both housekeeping and tissue-specific genes in plants. In the present work, we have taken 4065 rice–Arabidopsis homologous gene pairs to study evolutionary forces responsible for codon usage divergence between housekeeping and tissue-specific genes. In both rice and Arabidopsis, it is mutational bias that regulates error minimization in highly expressed genes of both housekeeping and tissue-specific genes. Our results show that, in comparison to tissue-specific genes, housekeeping genes are under strong selective constraint in plants. However, in tissue-specific genes, lowly expressed genes are under stronger selective constraint compared with highly expressed genes. We demonstrated that constraint acting on mRNA secondary structure is responsible for modulating codon usage variations in rice tissue-specific genes. Thus, different evolutionary forces must underline the evolution of synonymous codon usage of highly expressed genes of housekeeping and tissue-specific genes in rice and Arabidopsis.Key words: error minimization, housekeeping, mRNA folding energy, synonymous rates, tissue specific, tRNA copy number  相似文献   

16.
Quantitative gene expression protocols require adequate controls to monitor intersample variation. Quantitative approaches to describe relative changes in gene expression use endogenous controls--"housekeeping" genes. Given the low amounts of mRNA in fat cells, RT-PCR is the method of choice, and housekeeping genes are widely used as endogenous controls. However, literature reports suggest changes in gene expression of typical housekeeping genes (e. g. GAPDH, beta-actin, 18S rRNA) upon hormonal stimulation or during adipogenic differentiation. Thus, we tested the influence of 6 hormones and adipogenic differentiation on gene expression levels of 11 commonly used housekeeping genes in primary cultured mature human adipocytes and preadipocytes. Using the TaqMan RT-PCR technique and "Human Endogenous Control Assays" (PE Biosystems), we found several housekeeping genes with at least twice the difference in expression levels between stimulated and unstimulated cells (such as acidic ribosomal protein, beta-actin, beta(2)-microglobulin and beta-glucuronidase). Only GAPDH and transferrin receptor gene expression levels did not change under any of the stimuli tested, thus appeared best suited for gene expression studies in human adipose cells across a wide range of experimental settings.  相似文献   

17.
Zhu J  He F  Hu S  Yu J 《Trends in genetics : TIG》2008,24(10):481-484
Using a collection of expressed sequence tag (EST) data, we re-evaluated the correlation of tissue specificity with genomic structure, phyletic age, evolutionary rate and promoter architecture of human genes. We found that housekeeping genes are less compact and older than tissue-specific genes, and they evolve more slowly in terms of both coding and core promoter sequences. Housekeeping genes primarily use CpG-dependent core promoters, whereas the majority of tissue-specific genes possess neither CpG-islands nor TATA-boxes in their core promoters.  相似文献   

18.
19.
Genome-wide gene expression analyses of the human somatic cell cycle have indicated that the set of cycling genes differ between primary and cancer cells. By identifying genes that have cell cycle dependent expression in HaCaT human keratinocytes and comparing these with previously identified cell cycle genes, we have identified three distinct groups of cell cycle genes. First, housekeeping genes enriched for known cell cycle functions; second, cell type-specific genes enriched for HaCaT-specific functions; and third, Polycomb-regulated genes. These Polycomb-regulated genes are specifically upregulated during DNA replication, and consistent with being epigenetically silenced in other cell cycle phases, these genes have lower expression than other cell cycle genes. We also find similar patterns in foreskin fibroblasts, indicating that replication-dependent expression of Polycomb-silenced genes is a prevalent but unrecognized regulatory mechanism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号