首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to compare the conception rate for fixed-timed artificial insemination (FTAI) and observed heat artificial insemination (HAI) prior to the scheduled FTAI in Ovsynch and Heatsynch synchronization protocols. In Experiment 1, lactating dairy cows (n=535) received two set-up injections of 25mg prostaglandin F(2alpha) (PGF(2alpha)) i.m., 14 days apart starting at 36+/-3 days in milk (DIM). Cows were blocked by parity and were randomly allocated to either Ovsynch or Heatsynch groups. All cows received 100 microg of GnRH i.m. 14 days after the second set-up injection of PGF(2alpha), followed by a third injection of 25mg PGF(2alpha) i.m., 7 days later. In the Ovsynch group, HAI cows (n=29) were bred on standing estrus after the third PGF(2alpha) before the scheduled second GnRH, whereas FTAI cows (n=218) that were not observed in estrus, received a second injection of 100 microg of GnRH i.m., 48 h after the third PGF(2alpha) and received TAI 8 h after the second GnRH. In the Heatsynch group, all cows (n=288) received 0.5 mg of estradiol cypionate (ECP) 24 h after third PGF(2alpha) and HAI cows (n=172) were bred on standing estrus and FTAI cows (n=116) that were not observed in estrus, received TAI 72 h after the third PGF(2alpha). In Experiment 2, repeat breeder cows (n=186) were randomly assigned to either Ovsynch or Heatsynch groups. The FTAI and HAI cows were inseminated similar to Experiment 1. All cows were observed for estrus three times daily. The associations with the conception rate were modeled with logistic regression separately for Experiments 1 and 2. Of all the variables included in the model in Experiment 1, type of AI (HAI versus FTAI, P=0.0003) and parity (primiparous versus multiparous, P=0.05) influenced the first service conception rate. Over-all conception rate and first service conception rate for HAI cows were higher compared to FTAI cows (33.8% versus 21.3%, and 35.3% versus 21.0%; P=0.001). In the Heatsynch group, cows that received HAI had significantly higher over-all conception rate and first service conception rate compared to FTAI (35.2% versus 17.3% and 36.0% versus 15.5%; P=0.0001). The conception rates in repeat breeder cows for HAI and FTAI (30.1% versus 22.3%) were not different (P>0.1). In conclusion, it was recommended to include AI at observed estrus and fixed-time AI for cows not observed in estrus in order to improve the conception rate in synchronization protocols.  相似文献   

2.
This study was designed to determine conception rates in dairy cows after timed-insemination and simultaneous treatment with gonadotrophin releasing hormone (GnRH) and/or prostaglandin F2 alpha (PGF2alpha). A total of 2352 cows was randomly assigned to six groups. Cows in Groups 1 to 5 were palpated per rectum to determine the presence of a corpus luteum (CL) on the ovary, and blood samples were obtained for the determination of plasma progesterone (P4) concentrations. Cows with a CL and P4 concentrations >1 ng/ml were treated (Day 0) with PGF2alpha (25 mg, i.m.) and were observed for estrus. Cows in estrus prior to 72 hours after treatment (Group 5, n = 106) were bred, but were not treated. Cows not observed in estrus by 72 hours were divided into four remaining groups, were bred between 72 and 80 hours and were assigned as follows: Cows in Group 1 (n = 203) were not treated; Cows in Group 2 (n = 200) were treated with GnRH (100 ug, i.m.); Cows in Group 3 (n = 201) were treated with PGF2alpha (25 mg, i.m.); and cows in Group 4 (n = 202) were treated with both GnRH and PGF2alpha. Cows in Group 6 (n = 1440) were not treated with PGF2alpha on Day 0 and were estrual cows that were bred on days when cows in Groups 1 to 5 were time-inseminated. The percentage of cows in all groups pregnant at 45 to 50 days after one insemination was compared using analysis of variance (P<0.05). The conception rate of cows in Group 2 was significantly higher than that of cows in Groups 1 to 4. There was a significant group-by-season interaction. Cows treated with GnRH during the spring had a higher conception rate than at other times of the year. Conception rates of cows in Groups 1 to 4 that were inseminated during the summer were low and not significantly different from each other. Conception rates of cows in Groups 5 and 6 inseminated during the summer were not significantly different from each other, but were significantly higher than that of cows in Groups 1 to 4 that were inseminated during the summer.  相似文献   

3.
Our objective was to determine the feasibility of prompt reinsemination of dairy cows when diagnosed not pregnant 27-29 days after first-service timed AI (TAI). We assumed that a first-wave dominant follicle was present at that time that would ovulate in response to GnRH once precocious luteal regression was induced after administration of PGF(2alpha). Cows that had not been detected in estrus and reinseminated by Days 27-29 after a first-service TAI were diagnosed not pregnant by ultrasonography. Nonpregnant cows from three herds were assigned randomly to receive either no further treatment until reinsemination (controls; n=189); 25mg i.m. of PGF(2alpha) and then reinsemination according to detected estrus (81 of 108) or at 72-80h after PGF(2alpha) treatment (PGF) in the absence of estrus (27 of 108); or 25mg i.m. of PGF(2alpha) followed by 100 microg i.m. of GnRH 48h later (PGF+GnRH) and then reinsemination after detection of estrus (9 of 160) or at 16-20h after GnRH (151 of 160). Blood samples were collected at the time of the not-pregnant diagnosis and again 48h later. Concentrations of progesterone before treatment with PGF(2alpha) were elevated (<1ng/ml) in 61% of the cows when PGF(2alpha) was administered and 81% of the cows given PGF(2alpha) had low (<1ng/ml) concentrations of progesterone 48h after PGF(2alpha). Treated cows were re-inseminated earlier (P<0.01; 31+/-1days) after first-service TAI than controls (55+/-1days). Conception rates after treatment were not different among treatments: PGF (22%), PGF+GnRH (23%), and control (23%). Average intervals from calving to conception were 22-23 days less (P<0.001) in treated cows than in controls. We concluded that treating nonpregnant cows with PGF(2alpha) on Days 27-29 after insemination produced acceptable conception rates when inseminations were made after detected estrus or when TAI was used after GnRH treatment. Further, both treatments reduced days between first-service TAI and second inseminations, and days from calving to conception.  相似文献   

4.
A total of 585 repeat-breeder dairy cows was used to study the effect of GnRH treatment, either at or prior to insemination, on the pregnancy rate. The cows were divided into 6 treatment groups. Cows in Group 1 (n = 142) were observed in estrus, and 11 +/- 0.42 hours (mean +/- SEM) later they were given 100 ug, i.m. gonadotropin releasing hormone (GnRH) and were inseminated. Cows in Group 2 (n = 139) were observed in estrus and were inseminated 11.4 +/- 0.43 hours later. Cows in Group 3 (n = 33) were monitored for estrus with an activated heatmount detector but were not observed in estrus; they were inseminated 1.5 +/- 0.87 hours later and were given 100 ug, i.m. GnRH. Cows in Group 4 (n = 35) were not observed in estrus, but they did activate the heatmount detector and were inseminated 2.2 +/- 0.87 hours later. Cows in Group 5 (n = 107) were observed in estrus, given 100 ug, i.m. GnRH 2.0 +/- 0.40 hours later, and were inseminated 9 +/- 0.60 hours after GnRH treatment. Cows in Group 6 (n = 129) were observed in estrus and were inseminated 10 +/- 0.50 hours later. Pregnancy rates were analyzed by Chi-square. Interactions between pregnancy rate, treatment and time of insemination were evaluated using ANOVA and LSM (P < 0.05). There was no effect on pregnancy rate when GnRH was given at or prior to insemination. Cows inseminated on the basis of observed estrus had a higher pregnancy rate (P < 0.05) than cows inseminated on the observation of an activated heatmount detector. From the results of this study, it is concluded that treatment with GnRH at or prior to insemination did not improve the pregnancy rate of repeat-breeder dairy cows.  相似文献   

5.
Experiments tested whether supplemental antioxidants improved fertility. To test effects of beta-carotene, cows in a hot environment were injected with prostaglandin F2 alpha (PGF2 alpha) and were given 3 injections, i.m., of 800 mg beta-carotene or saline at Days -6 and -3 before the anticipated date of insemination and at insemination (n = 37-41 inseminated cows/group). There was no effect of beta-carotene on the proportion of cows detected in estrus following PGF2 alpha, timing of estrus after PGF2 alpha injection or pregnancy rate in inseminated cows. In a second trial, cows in a temperate climate received intramuscular injections of vitamin E (500 mg) and selenium (50 mg) at 30 d post partum (n = 97) or were untreated controls (n = 89). Treatment did not affect interval from calving to first insemination or the proportion of cows pregnant at first service, but it increased the pregnancy rate at second service (69.8 vs 52.1%; P = 0.07) and reduced services per conception (1.7 vs 2.0; P < 0.05) and interval from calving to conception (84.6 vs 98.1; P < 0.05). Thus, injection of vitamin E and selenium increased fertility in cattle that did not become pregnant at first service.  相似文献   

6.
The benefit of using timed-insemination in lactating dairy cows for the treatment of ovarian cysts lies in the fact that cows do not have to be detected in estrus for insemination and achieving pregnancy. We compared the effectiveness of synchronization of ovulation with timed-insemination and induction of estrus with insemination at estrus in the treatment of bovine ovarian cysts in lactating dairy cows. After Day 65 post partum, a total of 368 lactating dairy cows was divided into 3 groups. Cows in Group 1 (n = 209, normal, noncystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and 100 ug, i.m. GnRH on Day 9 and then were time-inseminated 16 h later. Cows in Group 2 (n = 76, abnormal, cystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and 100 ug, i.m. GnRH on Day 9 and time-inseminated 16 h later. Cows in Group 3 (n = 83, abnormal, cystic) were treated with 100 ug, i.m. GnRH on Day 0; 25 mg, i.m. PGF2 alpha on Day 7; and inseminated at induced estrus within 7 d after treatment with PGF2 alpha. Day 0 was the day of initiation of the study. Conception and pregnancy rates among groups were compared using logistic regression and adjusted for parity, time of year and days in milk. Conception and pregnancy rates of Group 1 cows (31.5%) were not significantly different from those of Group 2 cows (23.6%). However, the pregnancy rate in normal cows (Group 1) was higher (P < 0.01) than in cystic cows (Groups 2 and 3). Cows in Group 3 had a higher conception rate than cows in Group 2 (51.7% > 23.6%; P < 0.01). However, pregnancy rates for cows in Groups 2 (23.6%) and 3 (18%) were not significantly different. The finding indicated that synchronization of ovulation and timed-insemination resulted in pregnancy rates similar to those of synchronization of estrus and insemination at an induced estrus within 7 d for the treatment of ovarian cysts in lactating dairy cows.  相似文献   

7.
Postpartum beef cows and heifers in Group 1 received 8 mug of buserelin on Day 0 (the beginning of the experiment) and 500 mug of cloprostenol (PGF) on Day 6 (GnRH I, n = 54). In Group 2 (GnRH II, n = 54), the females were injected with buserelin on Day 0 (8 mug) and Day 3 (4 mug), and PGF on Day 6 and Day 9 for females not detected in estrus previously. Animals were bred by AI 12 hours after the onset of estrus. Blood samples were collected on Day -11 and Day 0 to assess cyclicity and on Day 3 and Days 6 to 12 to examine luteal activity. Progesterone levels did not differ between the 2 groups between Days 0 to 9. In both groups, the proportion of spontaneous estruses from Days 0 to 6 was reduced. Precision of estrus was higher (P < 0.005) in the GnRH II group than in the GnRH I group of cows that were detected in estrus between Days 6 and 9. The synchronization rate, interval to estrus, pregnancy and conception rates were similar in GnRH I and GnRH II groups. The conception rate and interval to estrus were similar in cyclic and acyclic cows. Increasing the number of buserelin injections enhanced the precision of estrus, but not the conception rate, without any detrimental effect on luteal activity and induced more estruses in postpartum acyclic beef cattle.  相似文献   

8.
The objective of this study was to determine the reproductive performance of lactating dairy cows treated with GnRH and/or PGF2a for synchronization of estrus and ovulation. Between Days 43 and 57 post partum, a total of 374 dairy cows was divided into 4 groups. Cows in Group 1 (n = 62) were treated with 25 mg, i.m. PGF2a on Days 43 and 57; cows in Group 2 (n = 65) were not treated at this time; cows in Group 3 (n = 118) were treated with 100 ug, i.m. GnRH on Day 50, 25 mg, i.m. PGF2a on Day 57, 100 ug, i.m. GnRH on Day 59, and time-inseminated 16 h later; cows in Group 4 (n = 129) were treated with 25 mg, i.m. PGF2a once on Day 57. Cows in Groups 1 and 4 were inseminated at an induced estrus within 7 d after the last PGF2a treatment, and cows in Group 2 were inseminated at a noninduced estrus within a corresponding period of time. Conception rate, estrus detection rate and pregnancy rate were analyzed using logistic regression, and controlled for lactation number, body condition score and time of year. Days from calving to conception were analyzed using the GLM procedures of SAS, and the model included group, body condition score, lactation number, time of year, and their interactions. Cows in Group 3 had a significantly higher pregnancy rate than cows in Groups 1, 2 and 4. Orthogonal contrasts of mean days from calving to conception showed that cows in Group 3 had significantly (P < 0.01) less days from calving to conception than cows in Group 1 and Group 4. There was a significant effect of time of year on pregnancy rate and days from calving to conception, but there was no interaction between time of year and these reproductive characteristics. There was no effect of body condition score and lactation number on the reproductive characteristics evaluated. From the results of this study, it was concluded that better reproductive performance was observed in cows inseminated at a synchronized ovulation than in those inseminated at a synchronized estrous period.  相似文献   

9.
A retrospective study was conducted to evaluate the outcome of 223 prostaglandin F(2)alpha (PGF) treatments given to lactating Holstein and Jersey cows over a 44-mo period. The cows were part of a commercial dairy herd. Treated cows were given PGF (25 mg i.m.) because they had not been observed in estrus or because they had been diagnosed as having a luteal cyst or pyometra. Outcome of treatments was assessed for frequency of response to treatment (the detection of estrus), time interval to detection and pregnancy outcome of breedings at PGF induced estrus. Of the 223 administrations of PGF, 70% (156 223 ) were given for unobserved estrus, 12.1% (27 223 ) were given for cystic ovarian disease and 15.2% (34 223 ) were given for pyometra. Estrus was detected in 55.3% (120 217 ) of cows over a period of 36 to 130 hours after PGF administration. Interval to estrus and response rates were not influenced by the reason for treatment. Mean time interval to response was 79.1 h. Time interval for response was affected by season (P < 0.01) housing location (P < 0.01) and lactation number (P < 0.05). Insemination was performed following 157 of the treatments. For cows treated for unobserved estrus, insemination was performed in response to estrus or at 80 h if no estrus had been previously seen. Of this group, 39.7% (58 146 ) failed to show estrus and were inseminated at 80 h. Reinsemination was required for 22.7% (20 88 ) of the cows that manifested estrus following insemination at 80 h. Overall conception rate was 41.4% (65 157 ). Cows inseminated in response to estrus had a 53.4% (47 88 ) conception rate, and appointment bred (80 h) cows had a 20.7% (12 58 ) conception rate. Factors significantly influencing conception were response to PGF administration (P < 0.05), season (P < 0.01) and lactation number (P < 0.01). It was concluded that estrus detection efficiency affects the outcome of PGF administration and that conception rates resulting from 80 h breeding when no estrus is observed may be unacceptably low.  相似文献   

10.
In the present study, two new short estrus synchronization methods have been developed for lactating dairy cows. The study was completed in three consecutive phases. In experiment (Exp) 1, 32 cows, that were not detected in estrus since calving between the 50th and 84th post-partum days, were treated with PGF2alpha (PGF, d-cloprostenol, 0.150 mg), estradiol propionate (EP, 2mg) and GnRH (lecirelina, 50 microg) at 24h intervals, respectively, and timed artificial insemination (TAI) was performed 48 h after PGF. Different from Exp 1, EP and GnRH were given at 48 and 60 h, respectively after PGF in Exp 2 (n=20), instead of 24 and 48 h. Ovulations were investigated by ultrasound for 7 days starting from the day of PGF treatment, and ovulation rates were compared with the ones obtained in Exp 1. In Exp 3, cows were given the same treatments as Exp 2, but treatments started at certain estrus stages. Cows detected in estrus and with a confirmed ovulation (n=27) after the second PGF given 11 days apart were assigned to three treatment groups. Treatment was initiated at Day 3 (group metestrus, n=9), Day 12 (group diestrus, n=9) and Day 18 (group proestrus, n=9) after ovulation. All cows included in Exp 3 were TAI between 16 and 20 h after GnRH treatment. In Exp 2 and 3, blood samples were obtained once every 2 days, starting from Day 0 to the 10th day after GnRH injection, and once every 4 days between the 10th and the 22nd days after GnRH to examine post-treatment luteal development. During the study, animals exhibiting natural estrus were inseminated and served as controls (n=85). The rate of estrus was found to be significantly higher in cows with an active corpus luteum (CL) at the start of Exp 1 (72.7% vs. 30.0%, P<0.05) and the pregnancy rate tended to be higher than cows without an active CL (40.9% vs. 10.0%, P=0.08). Compared to those in Exp 1, cows in Exp 2 had higher rates of synchronized ovulation (94.1% vs. 59.1%, P=0.013). In Exp 3, estrus (P<0.001) and pregnancy rates (P=0.01) were found to be significantly higher in cows in the proestrus group than in those in the metestrus group. Comparable pregnancy rates were obtained from the first and second inseminations in Exp 1 and 3 with results from those inseminated at natural estrus (P>0.05). It was concluded from the study that the treatment in Exp 1 and 3 could result in comparable pregnancy rates after timed AI of lactating dairy cows at random stages of the estrus cycle relating to those inseminated at natural estrus, but the stage of the estrus cycle can have significant effects on pregnancy rates.  相似文献   

11.
Two experiments were conducted to compare pregnancy rates when GnRH or estradiol were given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based estrus synchronization program. Crossbred beef cattle were fed melengestrol acetate (MGA, 0.5 mg per day) for 7 days (designated days 0-6, without regard to stage of the estrous cycle) and given cloprostenol (PGF; 500 microg intramuscular (im)) on day 7. In Experiment 1, lactating beef cows (n=140) and pubertal heifers (n=40) were randomly allocated to three groups to receive 100 microg gonadorelin (GnRH), 5 mg estradiol-17beta and 100 mg progesterone (E+P) in canola oil or no treatment (control) on day 0. All cattle were observed for estrus every 12 h from 36 to 96 h after PGF. Cattle in the GnRH group that were detected in estrus 36 or 48 h after PGF were inseminated 12 h later; the remainder were given 100 microg GnRH im 72 h after PGF and concurrently inseminated. Cattle in the E+P group were randomly assigned to receive either 0.5 or 1.0 mg estradiol benzoate (EB) in 2 ml canola oil im 24 h after PGF and were inseminated 30 h later. Cattle in the control group were inseminated 12 h after the first detection of estrus; if not in estrus by 72 h after PGF, they were given 100 microg GnRH im and concurrently inseminated. In the absence of significant differences, all data for heifers and for cows were combined and the 0.5 and 1.0 mg EB groups were combined into a single estradiol group. Estrus rates were 57.6, 57.4 and 60.0% for the GnRH, E+P and control groups, respectively (P=0.95). The mean (+/-S.D.) interval from PGF treatment to estrus was shorter (P<0.001) and less variable (P<0.001) in the E+P group (49.0+/-6.1 h) than in either the GnRH (64.2+/-15.9 h) or control (66.3+/-13.3 h) groups. Overall pregnancy rates were higher (P<0.005) in the GnRH (57.6%) and E+P (55.7%) groups than in the control group (30.0%) as were pregnancy rates to fixed-time AI (47.5, 55.7 and 28.3%, respectively). In Experiment 2, 122 crossbred beef heifers were given either 100 microg GnRH or 2 mg EB and 50 mg progesterone in oil on day 0 and subsequently received either 100 microg GnRH 36 h after PGF and inseminated 14 h later or 1 mg EB im 24 h after PGF and inseminated 28 h later in a 2 x 2 factorial design. Pregnancy rates were not significantly different among groups (41.9, 32.2, 33.3 and 36.7% in GnRH/GnRH, GnRH/EB, EB/GnRH and EB/EB groups, respectively). In conclusion, GnRH or estradiol given to synchronize ovarian follicular wave emergence and ovulation in an MGA-based synchronization regimen resulted in acceptable pregnancy rates to fixed-time insemination.  相似文献   

12.
Synchronization of ovulation in dairy cows using PGF2alpha and GnRH   总被引:2,自引:0,他引:2  
This paper reports a new method for synchronizing the time of ovulation in cattle using GnRH and PGF(2alpha). In Experiments 1 and 2, lactating dairy cows (n=20) ranging from 36 to 280 d postpartum and dairy heifers (n=24) 14 to 16 mo old were treated with an intramuscular injection of 100 mug GnRH at a random stage of the estrous cycle. Seven d later the cattle received PGF(2alpha) to regress corpora lutea (CL). Lactating cows and heifers received a second injection of 100 mug GnRH 48 and 24 h later, respectively. Lactating cows were artificially inseminated 24 h after the second GnRH injection. Ovarian morphology was monitored daily by trans-rectal ultrasonography from 5 d prior to treatment until ovulation. In Experiment 3, the flexibility in the timing of hormonal injections with this synchronization protocol was evaluated by randomly assigning 66 lactating dairy cows to 3 different treatment groups. Lactating cows received the injection of PGF(2alpha) 48 (Group 1), 24 (Group 2), and 0 h (Group 3) prior to the second injection of GnRH, which was administered at the same time in each group to ensure the second injection of GnRH was given when follicles were at a similar stage of growth. In Experiments 1 and 2, the first injection of GnRH caused ovulation and formation of a new or accessory CL in 18 20 cows and 13 24 heifers. In addition, this injection of GnRH initiated or was coincident with initiation of a new follicular wave in 20 20 lactating cows and 18 24 heifers. Corpora lutea regressed after PGF(2alpha) in 20 20 cows and in 18 24 heifers. All cows and 18 24 heifers ovulated a newly formed dominant follicle between 24 and 32 h after the second injection of GnRH. Ten of 20 cows conceived to the timed artificial insemination. In Experiment 3, the conception rate in Groups 1 and 2 were greater than in Group 3, (55 and 46 % vs 11%, respectively). In summary, this protocol could have a major impact on managing reproduction in lactating dairy cows, because it allows for AI to occur at a known time of ovulation and eliminates the need for detection of estrus.  相似文献   

13.
We wished to compare the effect of summer heat stress on pregnancy rate in cows that were inseminated at a set interval associated with a synchronized ovulation vs those inseminated upon routine estrus detection. The study was carried out on a commercial dairy farm in Florida from May to September 1995. Lactating dairy cows were given PGF2 alpha (25 mg i.m.) at 30 + 3 d postpartum and randomly assigned to be inseminated at a set time (Timed group) or when estrus was detected (Control group). Cows in the Timed group were synchronized by sequential administration of Buserelin (8 micrograms i.m.) on Day 0 at 1600 h, PGF2 alpha (25 mg i.m.) on Day 7 at 1600 h and Buserelin (8 micrograms i.m.) on Day 9 at 1600 h. They were inseminated on Day 10 between 0800 and 0900 h (Day 9 + 16 h). Cows in the Control group were given PGF2 alpha at 57 + 3 d postpartum and inseminated when detected in estrus. Estrus detection or insemination rate for control insemination cows was 18.1 +/- 2.5% versus 100% for time inseminated cows (P < 0.01). Mean interval from PGF2 alpha to insemination was shorter for time inseminated cows (3 +/- 2.1 d < 35.5 +/- 1.9 d; P < 0.01). Pregnancy rate was greater for time inseminated cows (13.9 +/- 2.6 > 4.8 +/- 2.5%; P < 0.01) as was overall pregnancy rate by 120 d postpartum (27.0 +/- 3.6 > 16.5 +/- 3.5%; P < 0.05). Number of days open for cows conceiving by 120 d postpartum was less for time inseminated cows (77.6 +/- 3.8 < 90.0 +/- 4.2 d; P < 0.05), as was interval to first service (58.7 +/- 2.1 < 91.0 +/- 1.9 d; P < 0.01). Services per conception were greater for time inseminated cows (1.63 +/- 0.10 > 1.27 +/- 0.11; P < 0.05). The timed insemination program did improve group reproductive performance. However, the timed insemination program will not protect the embryo from temperature-induced embryonic mortality, but management limitations induced by heat stress on estrus detection are eliminated. An economical evaluation of the timed insemination program indicates an increase in net revenue per cow with implementation of timed insemination for first service during the summer months.  相似文献   

14.
The objectives of the present study were to evaluate the induction of estrus and fertility in yak cows treated with Co-Synch regimens or progesterone (P(4)). In Experiment 1, postpartum suckled yaks were assigned to three treatments: (1) A (n=28), insertion of an intravaginal device containing P(4) (CIDR) on Day 0, PGF(2alpha) (i.m.) on Day 6 and PMSG (i.m.) at the time of CIDR removal on Day 7 (P(4)-PGF(2alpha)-PMSG); (2) B (n=21), PGF(2alpha) (i.m.) on Day 6 and PMSG on Day 7; (3) C (n=26), control group. Seven yak bulls were grazed with the cows for natural breeding. Rate of estrus within 96h of the end of treatment was greater (P<0.05) in A (100.0%) than in B (28.6%) or C (0.0%). First service conception rate (CR) determined by serum P(4) on Day 21 after breeding was greater (P<0.05) in A (78.6%) than in B (22.2%). Also, pregnancy rate (PR) during the breeding season was greater (P<0.05) in A (82.1%) than in B (19.0%) and C (7.7%). In Experiment 2, non-suckled yaks that calved in previous years but not in the current year were assigned to three treatments: (1) A (n=31), GnRH (i.m.) on Day 0, followed by PGF(2alpha) on Day 7 and timed artificial insemination (TAI) concurrently with GnRH treatment on Day 9 (Co-Synch regimen); (2) B (n=50), a CIDR device for 7 days plus PGF(2alpha) and PMSG at the time of CIDR withdrawal on Day 7 and TAI on Day 9 (P(4)-PGF(2alpha)-PMSG); (3) C (n=50), yak cows were artificially inseminated at spontaneous estrus. Frozen semen of Holstein and Jersey were used for insemination in Experiment 2. The CR assessed by rectal palpation 35 days after TAI was not different in A (22.6%), B (30.0%) and C (33.3%), but PR was greater in A and B than in C, when based on those cows presented for estrous synchronization programs. It is concluded that P(4)-PGF(2alpha)-PMSG protocol could efficiently induce estrus and result in an acceptable pregnancy rate in postpartum suckled yak cows. This technique and Co-Synch regimen can be applied successfully for TAI of non-suckled yak cows.  相似文献   

15.
Lactating Holstein cows (n=288) were grouped as pairs at parturition and randomly assigned to two treatments (control, C vs intervenient treatment, T). The reproductive management of the Group C cows (n=130) consisted of the intramuscular administration of 500 microg PGF2alpha analogue (PG) on Days 28 and 63 postpartum and breeding on the basis of estrus signs with the a.m.-p.m. rule after Day 63. Cows that were not bred by 77 d postpartum received another injection of PG and were bred at estrus or 84 h after PG treatment. Pregnancy diagnoses were perfomed by palpation of the uterus per rectum 42 to 48 d after AI. Cows in the T group (n=139) received intramuscular injections of 100 microg GnRH 14 d and PG 28 d after calving. On Day 56 postpartum, cows were given a second dose of GnRH followed by PG on Day 63 postpartum and a third GnRH injection 48 h after PG (OvSynch). Cows were inseminated at a fixed time (22+/-1 h) after GnRH. Five days after the fixed-time insemination cows were given 1500 IU hCG i.m.. Group C and T cows that returned to service or were diagnosed as non-pregnant continued to receive PG at intervals of 14 d with breeding at estrus or 84 h after the second PGF2alpha dose. A sustained increase in milk progesterone concentration was observed in 59.0% of T cows after GnRH administration on Day 14. A similar rise in milk progesterone concentrations was observed in 53.8% of C cows. The PG on Day 28 induced luteolysis more in Group T cows (53.2%) than in Group C cows (36.9%). The PG on Day 63 reduced milk progesterone concentrations to basal levels in 50.7% of T and 49.2% of Group C animals. The first service pregnancy rates (T, 40.3% vs C, 36.2%) and the overall pregnancy rates (all services, T, 83.5% vs C, 86.9%) were not different between the two groups. The two treatments did not differ in the interval from first service to pregnancy, calving to pregnancy or in calving interval, number of services per pregnancy or culling rates.  相似文献   

16.
Anestrus is common during the postpartum period in high-producing dairy cows. In a previous investigation, we were able to diagnose persistent follicles of 8 to 12 mm in anestrous cows. This report describes 2 consecutive studies. The objectives of the first were to 1) assess the association of persistent follicles with anestrus; and 2) evaluate 2 therapeutic treatments. In the second study, we compared the effectiveness of the best treatment established in Study 1 with the Ovsynch protocol. For Study 1, anestrous cows were considered to have a persistent follicle if it was possible to observe a single follicular structure > 8 mm in the absence of a corpus luteum or a cyst in 2 ultrasonographic examinations performed at an interval of 7 d. At diagnosis (Day 0), cows were assigned to 1 of 3 treatment groups. Cows in Group GnRH/PGF (n=17) were treated with 100 microg GnRH i.m., and 25 mg PGF2alpha i.m. on Day 14. Cows in Group PRID (n=18) were fitted with a progesterone releasing intravaginal device (PRID, containing 1.55 g of progesterone) for 9 d and were given 100 microg GnRH i.m. at the time of PRID insertion, and 25 mg PGF2alpha i.m. on Day 7. Cows in Group Control (n=18) received no treatment. The animals were inseminated at observed estrus and were monitored weekly by ultrasonography until AI or 5 weeks from diagnosis. Blood samples were also collected on a weekly basis for progesterone determination. The mean size of persistent follicles on Day 0 was 9.4 +/- 0.04 mm. Progesterone levels were < 0.2 ng/mL during the first 35 d in 16 of 18 Control cows. Cows in the PRID group showed a lower persistent follicle rate (16.7% < 70.6% < 88.9%; P < 0.0001; PRID vs GnRH/PGF vs Control, respectively); a higher estrus detection rate (83.3% > 29.4% > 11.1%; P < 0.0001) and a higher pregnancy rate (27.8% > 5.9% > 0%; P = 0.02). For the second study, 145 cows with persistent follicles were randomly assigned to 1 of 2 treatment groups: cows in Group Ovsynch (n=73) were treated with 100 microg GnRH i.m. on Day 0, 25 mg PGF2alpha i.m. on Day 7, and 100 microm GnRH i.m. 32 h later. Cows in this group were inseminated 16 to 20 h after the second GnRH dose (Ovsynch protocol). Cows in Group PRID (n=72) were treated as those in the PRID group of Study 1, and were inseminated 56 h after PRID removal. Cows in the PRID group showed a higher ovulation rate (84.8% > 8.2%: P < 0.0001); a higher pregnancy rate (34.2% > 4.1%; P < 0.0001) and lower follicular persistence rate (22.2% < 63%; P < 0.0001) than those in Ovsynch. Our results indicate that persistent follicles affect cyclic ovarian function in lactating dairy cows. Cows with persistent follicles can be successfully synchronized and time inseminated using progesterone, GnRH and PGF2alpha but show a limited response to treatment with GnRH plus PGF2alpha.  相似文献   

17.
In this study, the fertility of postpartum dairy cows after a sequence of treatments with GnRH (Day 0), PGF2alpha (Day 7) and GnRH (Day 9) (GnRH group; n = 164) or hCG (Day 0), PGF2alpha (Day 7) and hCG (Day 9) (group hCG; n = 166) was investigated in summer and winter seasons. All cows were artificially inseminated without estrus detection, 16-18 h after the end of treatment. Control cows (CONT; n = 226) were not treated and were inseminated at natural estrus. The pregnancy rates at Day 90 (46% versus 33%; P < 0.05) and at Day 135 (76% versus 62%; P < 0.05) postpartum were significantly lower in CONT cows in summer compared to winter months but this effect was not observed in the two treated groups. The number of days from calving to conception was significantly lower in GnRH and hCG treatment groups compared to CONT cows in cold months (102 +/- 3.2, 106 +/- 4.2, 126 +/- 3.1, respectively; P < 0.001) and in hot months (112 +/- 3.2, 114 +/- 4.2, 139 +/- 3.1, respectively; P < 0.001). The concentration of insulin was significantly higher in winter (P < 0.001). There were no differences in average plasma concentration of glucose (P = 0.474), GH (P = 0.441) or IGF-I (P = 0.190). In conclusion, we have shown that veterinary supervision combined with a program of estrous synchronization and fixed time insemination can improve fertility of cows suffering heat stress.  相似文献   

18.
The efficacy of GnRH and PGF2alpha (7-day injection interval) for estrus synchronization is diminished by estrous expression before PGF2alpha (premature estrus; PE). Effects of modifications to GnRH-PGF2alpha protocols on the incidence of PE and other indicators of reproductive performance were evaluated. In Experiment 1, Angus-based crossbred cows (n=51) received 25 mg of PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity and interval postpartum to receive GnRH 100 microg i.m. on either Day -7 or Day -6. Estrous detection and AI were conducted from Day -3 to Day 5. Treatment had no effect on the incidence of PE, estrous response, conception rate per AI or synchronized pregnancy rate (6- vs. 7-day interval; 8 vs. 15%; 92 vs. 93%; 77 vs. 76%; 71 vs. 70%, respectively). In Experiment 2, Angus cows (n=150) received GnRH 100 microg i.m. on Day -7 and 25 mg PGF2alpha i.m. on Day 0. Animals were randomly assigned by parity, interval postpartum, and body condition score to receive either no further treatment (Control) or 0.5 mg melengestrol acetate/hd/d from Day -7 to Day -1 (MGA). Estrous detection and AI were conducted from Day -2 to Day 7. Fewer (P < 0.05) MGA-treated cows were detected in PE (0%) compared to controls (7%). Treatment had no effect on estrous response or synchronized pregnancy rates (Control vs. MGA; 78 vs. 84%; 52 vs. 60%, respectively). Conception rate per AI of cows > or = 60 days postpartum were not affected by treatment (Control vs. MGA; 79 vs. 73%) however, control cows < 60 days postpartum tended (P < 0.10) to have lower conception rates per AI (39%) than did their MGA-treated counterparts (69%). In summary, 6- and 7-day GnRH-PGF2alpha injection intervals resulted in similar synchronized reproductive performance. Inclusion of MGA feeding between GnRH and PGF2alpha injections eliminated the occurrence of premature estrus and improved conception rate per AI of late-calving cows.  相似文献   

19.
Two experiments (Experiment 1, 185 cows in 1996/97; Experiment 2, 168 cows in 1997/98) were conducted with Prim Holstein dairy cattle in the Mayenne region of France to investigate subestrus. Cows which had not been observed in estrus since calving were allocated alternately to treatment groups between 60 and 90 d post partum as follows: Experiment 1-Group 1: GnRH (Day 0, 100 micrograms i.m.), PGF2 alpha (Day 7, 25 mg i.m.), GnRH (Day 9, 100 micrograms i.m.) and AI (Day 10); Group 2: PGF2 alpha (Day 0, 25 mg i.m.), AI at estrus, or, if estrus was not observed, a second PGF2 alpha injection on Day 13, and AI on Day 16 and Day 17. Treatments in Experiment 2 were as follows: Group 1: as Experiment 1-Group 1 but AI at the observed estrus after Day 0, or at Day 10 if estrus was not observed; Group 2: as Experiment 1--Group 2, however, if a second PGF2 alpha injection was given on Day 13, AI at the observed estrus. Progesterone was measured in serum at Day 0 and in milk at AI. Pregnancy diagnosis was performed by measuring bovine pregnancy-specific protein B (bPSPB; Day 50 +/- 3) and confirmed by ultrasonography when the result was doubtful. In Experiment 1, farmers observed 47/101 (46.9%) Group 1 cows in estrus, 33/91 cows on Day 10 and 10 cows before Day 10. The progesterone concentrations were compatible with estrus in 69/86 (80%) cows on Day 10. In Group 2, 36/83 (43.4%) cows were inseminated after the first PGF2 alpha injection. After the second PGF2 alpha injection, only 29/43 (67%) cows had a low progesterone concentration at AI. Pregnancy rates were 36.1 and 32.5% for Groups 1 and 2, respectively. In Experiment 2, estrus was observed in 31/93 (33.7%) Group 1 cows. In Group 2, 51/75 (66%) cows were inseminated after the first injection of PGF2 alpha, 13/75 (17.3%) cows after the second injection, while 11/75 (14.7%) were not observed in estrus. Pregnancy rates were 53.7 and 53.3% in Groups 1 and 2, respectively. In conclusion, it is recommended that subestrus be treated with PGF2 alpha followed by AI at the observed estrus when estrus detection is good, while the use of GnRH + PGF2 alpha + GnRH is recommended when estrus detection is poor.  相似文献   

20.
Two experiments were conducted to examine the effects of repeated low-dose injections of gonadotropin releasing hormone (GnRH) 30 to 40 d post partum on reproductive characteristics in multiparous suckled Brahman cross cows. In Experiment I, 39 cows were injected (i.v.) with GnRH (5 mug/injection) at 2-h intervals for either 0 (control), 6, 12, or 24 h at 30 to 37 d post partum. GnRH injections for short periods (6h) increased the number of cows exibiting estrus within 45 d of treatment, but cows injected for 24 h failed to exhibit estrus during this period. The period from treatment to first estrus was shorter in the 6-h GnRH group compared to the control group. Injections for 6h significantly (P < 0.05) increased in serum luteinizing hormone (LH) concentrations 1 d after GnRH treatment. In Experiment II we examined the effect of i.v. GnRH injections (5 mug/injection at 2-h intervals) for 6h in a larger group of cows (n = 70). The days from treatment to first estrus were reduced (P < 0.05) in GnRH-treated cows; however, first-service conception rates were significantly lower (P < 0.01) in treated compared to control cows (46.4 and 80.0%, respectively). The results led us to believe that GnRH injections for short periods reduce postpartum interval to first estrus, but fertility at first estrus is lowered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号