首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unlike vertebrates and RNA-containing viruses, the objective estimate of molecular clock for DNA-containing viruses was so far absent. An extended central conservative genomic region of orthopoxviruses (about 102 kbp) and the sequence of DNA polymerase gene (about 3 kbp) of the viruses belonging to various genera from the family Poxviridae were analyzed. During this analysis, the known dating of variola virus (VARV) transfer from West Africa to South America (XVI century) and our own data on close phylogenetic relations between the modem West African and South American VARV isolates were used. As a result of this work, it was calculated for the first time that the rate of mutation accumulation in these DNA-containing viruses amounted to 0.9-1.2 x 10(-6) substitutions per site per year. The poxviruses started separating from the ancestor virus to form the modem genera approximately 500 thousand years ago; the ancestor of the genus Orthopoxvirus separated about 300 thousand years ago; and its division into the modem studied species took place approximately 14 thousand years ago.  相似文献   

2.
Previous restriction fragment length polymorphism analysis divided variola virus (VARV) strains into two subtypes, one of which included West African and South American isolates. This allowed a dating to be introduced for the first time in estimation of the VARV evolution rate. The results were used to analyze the molecular evolution of the total family Poxviridae. Comparisons of the known nucleotide sequences were performed for the extended conserved central genome region in 42 orthopoxvirus strains and for the eight genes of multisubunit RNA polymerase in 65 viruses belonging to various genera of the family Poxviridae. Using the Bayesian dating method, the mutation accumulation rate of poxviruses was estimated at (1.7–8.8) × 10?6 nucleotide substitutions per site per year. Computations showed that the modern poxvirus genera started diverging from an ancestral virus more than 200 thousand years ago and that an ancestor of the genus Orthopoxvirus emerged 131 ± 45 thousand years ago. The other genera of mammalian poxviruses with a low GC content diverged approximately 110–90 thousand years ago. The independent evolution of VARV started 3.4 ± 0.8 thousand years ago. It was shown with the example of VARV and the monkeypox virus (MPXV) that divergent evolution of these orthopoxviruses started and the West African subtypes of VARV and MPXV were formed as geographical conditions changed to allow isolation of West African animals from other African regions.  相似文献   

3.
Babkin IV  Shelkunov SN 《Genetika》2008,44(8):1029-1044
Previous restriction fragment length polymorphism analysis divided variola virus (VARV) strains into two subtypes, one of which included West African and South American isolates. This allowed a dating to be introduced for the first time in estimation of the VARV evolution rate. The results were used to analyze the molecular evolution of the total family Poxviridae. Comparisons of the known nucleotide sequences were performed for the extended conserved central genome region in 42 orthopoxvirus strains and for the eight genes of multisubunit RNA polymerase in 65 viruses belonging to various genera of the family Poxviridae. Using the Bayesian dating method, the mutation accumulation rate of poxviruses was estimated at (1.7-8.8) x 10(-6) nucleotide substitutions per site per year. Computations showed that the modem poxvirus genera started diverging from an ancestral virus more than 200 thousand years ago and that an ancestor of the genus Orthopoxvirus emerged 131 +/- 45 thousand years ago. The other genera of mammalian poxviruses with a low GC content diverged approximately 110-90 thousand years ago. The independent evolution of VARV started 3.4 +/- 0.8 thousand years ago. It was shown with the example of VARV and the monkeypox virus (MPXV) that divergent evolution of these orthopoxviruses started and the West African subtypes of VARV and MPXV were formed as geographical conditions changed to allow isolation of West African animals from other African regions.  相似文献   

4.
Restriction fragment patterns of mitochondrial DNA from sibling species of cyst nematodes Heterodera glycines and H. schachtii were examined. Fourteen restriction endonucleases recognizing four, five, and six base-pair sequences yielded a total of 90 scorable fragments of which 10% were shared by both species. Mitochondrial genome sizes for H. glycines and H. schachtii were estimated to be 22.5-23.5 kb and 23.0 kb, respectively. A single wild type mitochondrial genome was identified in all populations of H. glycines examined, although other mitochondrial genomes were present in some populations. The H. schachtii genome exhibited 57 scorable fragments, compared with 33 identified in the H. glycines wild type genome. The estimated nucleotide sequence divergence between the two species was p = 0.145. This estimate suggests these species diverged from a common ancestor 7.3-14.8 million years ago.  相似文献   

5.
Issues associated with newly emerging viruses, their genetic diversity, and viral evolution in modern environments are currently attracting growing attention. In this study, a phylogenetic analysis was performed and the evolution rate was evaluated for such pathogenic flaviviruses endemic to Russia as tick-borne encephalitis virus (TBEV) and Powassan virus (PV). The analysis involved 47 nucleotide sequences of the TBEV genome region encoding protein E and 17 sequences of the PV NS5-encoding region. The nucleotide substitution rate was estimated as 1.4 × 10−4 and 5.4 × 10−5 substitutions per site per year for the E protein-encoding region of the TBEV genome and for the NS5 genome region of PV, respectively. The ratio of non-synonymous to synonymous nucleotide substitutions (dN/dS) in viral sequences was calculated as 0.049 for TBEV and 0.098 for PV. The highest dN/dS values of 0.201–0.220 were found in the subcluster of Russian and Canadian PV strains, and the lowest value of 0.024 was observed in the cluster of Russian and Chinese strains of the Far Eastern TBEV genotype. Evaluation of time intervals between the events of viral evolution showed that the European subtype of TBEV diverged from the common TBEV ancestor approximately 2750 years ago, while the Siberian and Far Eastern subtypes emerged approximately 2250 years ago. The PV was introduced into its natural foci of the Russian Primorskii krai only approximately 70 years ago; these strains were very close to Canadian PV strains. The pattern of PV evolution in North America was similar to the evolution of the Siberian and Far Eastern TBEV subtypes in Asia. The moments of divergence between major genetic groups of TBEV and PV coincide with historical periods of climate warming and cooling, suggesting that climate change was a key factor in the evolution of flaviviruses in past millennia.  相似文献   

6.
Viruses in the Ebolavirus and Marburgvirus genera (family Filoviridae) have been associated with large outbreaks of hemorrhagic fever in human and nonhuman primates. The first documented cases occurred in primates over 45 years ago, but the amount of virus genetic diversity detected within bat populations, which have recently been identified as potential reservoir hosts, suggests that the filoviruses are much older. Here, detailed Bayesian coalescent phylogenetic analyses are performed on 97 whole-genome sequences, 55 of which are newly reported, to comprehensively examine molecular evolutionary rates and estimate dates of common ancestry for viruses within the family Filoviridae. Molecular evolutionary rates for viruses belonging to different species range from 0.46 × 10−4 nucleotide substitutions/site/year for Sudan ebolavirus to 8.21 × 10−4 nucleotide substitutions/site/year for Reston ebolavirus. Most recent common ancestry can be traced back only within the last 50 years for Reston ebolavirus and Zaire ebolavirus species and suggests that viruses within these species may have undergone recent genetic bottlenecks. Viruses within Marburg marburgvirus and Sudan ebolavirus species can be traced back further and share most recent common ancestors approximately 700 and 850 years before the present, respectively. Examination of the whole family suggests that members of the Filoviridae, including the recently described Lloviu virus, shared a most recent common ancestor approximately 10,000 years ago. These data will be valuable for understanding the evolution of filoviruses in the context of natural history as new reservoir hosts are identified and, further, for determining mechanisms of emergence, pathogenicity, and the ongoing threat to public health.  相似文献   

7.
Toward a more accurate time scale for the human mitochondrial DNA tree   总被引:11,自引:0,他引:11  
Several estimates of the time of occurrence of the most recent common mitochondrial DNA (mtDNA) ancestor of modern humans have been made. Estimates derived from noncoding regions based on a model that classifies sites into two categories (variable and invariable) have been consistently older than those derived from the third positions of codons. This discrepancy can be attributed to a violation of the assumption of rate homogeneity among variable sites when analyzing the noncoding regions. Additional data from the partial control region sequences allow us to take into account some of this further heterogeneity. By assigning the sites to three classes (highly variable, moderately variable, and invariable) and by assuming that the last common mtDNA ancestor of humans and chimpanzees lived 4 million years ago, the most recent common mtDNA ancestor of humans is estimated to have occurred 211,000 ±111,000 years ago (±1 SE), consistent with the estimate, 101,000 ± 52,000 years, made from third positions of codons and also with those proposed previously. We used the same technique to estimate when a putative expansion of modern humans out of Africa took place and estimated a time of 89,000 ± 69,000 years ago. Even though the standard errors of these estimates are large, they allow us to reject the multiregional hypothesis of modern human origin.Deceased July 21, 1991 Correspondence to: M. Hasegawa  相似文献   

8.
The plant-infecting Secoviridae family of viruses forms part of the Picornavirales order, an important group of non-enveloped viruses that infect vertebrates, arthropods, plants and algae. The impact of the secovirids on cultivated crops is significant, infecting a wide range of plants from grapevine to rice. The overwhelming majority are transmitted by ecdysozoan vectors such as nematodes, beetles and aphids. In this study, we have applied a variety of computational methods to examine the evolutionary traits of these viruses. Strong purifying selection pressures were calculated for the coat protein (CP) sequences of nine species, although for two species evidence of both codon specific and episodic diversifying selection were found. By using Bayesian phylogenetic reconstruction methods CP nucleotide substitution rates for four species were estimated to range from between 9.29×10−3 to 2.74×10−3 (subs/site/year), values which are comparable with the short-term estimates of other related plant- and animal-infecting virus species. From these data, we were able to construct a time-measured phylogeny of the subfamily Comovirinae that estimated divergence of ninety-four extant sequences occurred less than 1,000 years ago with present virus species diversifying between 50 and 250 years ago; a period coinciding with the intensification of agricultural practices in industrial societies. Although recombination (modularity) was limited to closely related taxa, significant and often unique similarities in the protein domains between secovirid and animal infecting picorna-like viruses, especially for the protease and coat protein, suggested a shared ancestry. We discuss our results in a wider context and find tentative evidence to indicate that some members of the Secoviridae might have their origins in insects, possibly colonizing plants in a number of founding events that have led to speciation. Such a scenario; virus infection between species of different taxonomic kingdoms, has significant implications for virus emergence.  相似文献   

9.
Molecular evolutionary analyses were carried out to elucidate the phylogenetic relationships, the evolutionary rate, and the divergence times of hepatitis C viruses. Using the nucleotide sequences of the viruses isolated from various locations in the world, we constructed phylogenetic trees. The trees showed that strains isolated from a single location were not necessarily clustered as a group. This suggests that the viruses may be transferred with blood on a worldwide scale. We estimated the evolutionary rates at synonymous and nonsynonymous sites for all genes in the viral genome. We then found that the rate (1.35 × 10–3 per site per year) at synonymous sites for the C gene was much smaller than those for the other genes (e.g., 6.29 × 10–3 per site per year for the E gene). This indicates that a special type of functional constraint on synonymous substitutions may exist in the C gene. Because we found an open reading frame (ORF) with the C gene region, the possibility exists that synonymous substitutions for the C gene are constrained by the overlapping ORF whose reading frame is different from that of the C gene. Applying the evolutionary rates to the trees, we also suggest that major groups of hepatitis C viruses diverged from their common ancestor several hundred years ago. Correspondence to: T. Gojobori  相似文献   

10.
Phylogenetic associations among six closely related South American felid species were defined by changes in protein-encoding gene loci. We analyzed proteins isolated from skin fibroblasts using two-dimensional electrophoresis and allozymes extracted from blood cells. Genotypes were determined for multiple individuals of ocelot, margay, tigrina, Geoffroy's cat, kodkod, and pampas cat at 548 loci resolved by two-dimensional electrophoresis and 44 allozyme loci. Phenograms were constructed using the methods of Fitch-Margoliash and neighbor-joining on a matrix of Nei's unbiased genetic distances for all pairs of species. Results of a relative-rate test indicate changes in two-dimensional electrophoresis data are constant among all South American felids with respect to a hyena outgroup. Allelic frequencies were transformed to discrete character states for maximum parsimony analysis. Phylogenetic reconstruction indicates a major split occurred approximately 5–6 million years ago, leading to three groups within the ocelot lineage. The earliest divergence led to Leopardus tigrina, followed by a split between an ancestor of an unresolved trichotomy of three species (Oncifelis guigna, O. geoffroyi, and Lynchaduris colocolo) and a recent common ancestor of Leopardus pardalis and L. wiedii. The results suggest that modern South American felids are monophyletic and evolved rapidly after the formation of the Panama land bridge between North and South America.Correspondence to: J. Pecon Slattery  相似文献   

11.
We estimated phylogenetic relationships among species of the bee genus Diadasia, a group of new world, specialist bees. We sequenced approximately 2 kb of the mitochondrial genes cytochrome oxidase subunit I and II and tRNA leucine and approximately 1 kb of the nuclear gene elongation factor 1-alpha for 24 North American Diadasia species, 4 South American species, and five outgroup genera. Parsimony analyses of the two data sets were highly congruent. A combined analysis produced a well-resolved phylogenetic hypothesis that supported the monophyly of Diadasia, but not that of traditional subgenera: Diadasia s. str. was paraphyletic in all analyses. With one exception, the North and South American species formed separate clades, supporting previous hypotheses that two lineages of Diadasia have dispersed from South to North America: a more recent dispersal of D. ochracea and an older dispersal of the ancestor to all other North American species. Different species of Diadasia specialize on pollen from at least five different plant families; the phylogeny presented here, along with known host affinities, indicates that host-switching has been rare.  相似文献   

12.
With the aim of elucidating evolutionary features of GB virus C/hepatitis G virus (GBV-C/HGV), molecular evolutionary analyses were conducted using the entire coding region of this virus. In particular, the rate of nucleotide substitution for this virus was estimated to be less than 9.0 × 10−6 per site per year, which was much slower than those for other RNA viruses. The phylogenetic tree reconstructed for GBV-C/HGV, by using GB virus A (GBV-A) as outgroup, indicated that there were three major clusters (the HG, GB, and Asian types) in GBV-C/HGV, and the divergence between the ancestor of GB- and Asian-type strains and that of HG-type strains first took place more than 7000–10,000 years ago. The slow evolutionary rate for GBV-C/HGV suggested that this virus cannot escape from the immune response of the host by means of producing escape mutants, implying that it may have evolved other systems for persistent infection. Received: 2 June 1998 / Accepted: 8 August 1998  相似文献   

13.
The mechanisms of evolution of plant viruses are being unraveled, yet the timescale of their evolution remains an enigma. To address this critical issue, the divergence time of plant viruses at the intra- and inter-specific levels was assessed. The time of the most recent common ancestor (TMRCA) of Rice yellow mottle virus (RYMV; genus Sobemovirus) was calculated by a Bayesian coalescent analysis of the coat protein sequences of 253 isolates collected between 1966 and 2006 from all over Africa. It is inferred that RYMV diversified approximately 200 years ago in Africa, i.e., centuries after rice was domesticated or introduced, and decades before epidemics were reported. The divergence time of sobemoviruses and viruses of related genera was subsequently assessed using the age of RYMV under a relaxed molecular clock for calibration. The divergence time between sobemoviruses and related viruses was estimated to be approximately 9,000 years, that between sobemoviruses and poleroviruses approximately 5,000 years, and that among sobemoviruses approximately 3,000 years. The TMRCA of closely related pairs of sobemoviruses, poleroviruses, and luteoviruses was approximately 500 years, which is a measure of the time associated with plant virus speciation. It is concluded that the diversification of RYMV and related viruses has spanned the history of agriculture, from the Neolithic age to the present.  相似文献   

14.

The genus Stevia comprises approximately 200 species, which are distributed in North and South America, and are representative of the species diversity of the Asteraceae in the New World. We reconstructed the phylogenetic relationships using sequences of ITS and cpDNA and estimated the divergence times of the major clade of this genus. Our results suggested that Stevia originated in Mexico 7.0–7.3 million years ago (Mya). Two large clades, one with shrub species and another with herb species, were separated at about 6.6 Mya. The phylogenetic reconstruction suggested that an ancestor of Stevia was a small shrub in temperate pine–oak forests and the evolutionary change from a shrub state to a herb state occurred only once. A Brazilian clade was nested in a Mexican herb clade, and its origin was estimated to be 5.2 Mya, suggesting that the migration from North America to South America occurred after the formation of the Isthmus of Panama. The species diversity in Mexico appears to reflect the habitat diversity within the temperate pine–oak forest zone. The presence of many conspecific diploid–polyploid clades in the phylogenetic tree reflects the high frequency of polyploidization among the perennial Stevia species.

  相似文献   

15.
Hippidions were equids with very distinctive anatomical features. They lived in South America 2.5 million years ago (Ma) until their extinction approximately 10 000 years ago. The evolutionary origin of the three known Hippidion morphospecies is still disputed. Based on palaeontological data, Hippidion could have diverged from the lineage leading to modern equids before 10 Ma. In contrast, a much later divergence date, with Hippidion nesting within modern equids, was indicated by partial ancient mitochondrial DNA sequences. Here, we characterized eight Hippidion complete mitochondrial genomes at 3.4–386.3-fold coverage using target-enrichment capture and next-generation sequencing. Our dataset reveals that the two morphospecies sequenced (H. saldiasi and H. principale) formed a monophyletic clade, basal to extant and extinct Equus lineages. This contrasts with previous genetic analyses and supports Hippidion as a distinct genus, in agreement with palaeontological models. We date the Hippidion split from Equus at 5.6–6.5 Ma, suggesting an early divergence in North America prior to the colonization of South America, after the formation of the Panamanian Isthmus 3.5 Ma and the Great American Biotic Interchange.  相似文献   

16.
Indigenous cattle of India belong to the species, Bos indicus and they possess various adaptability and production traits. However, little is known about the genetic diversity and origin of these breeds. To investigate the status, we sequenced and analyzed the whole mitochondrial DNA (mtDNA) of seven Indian cattle breeds. In total, 49 single-nucleotide variants (SNVs) were identified among the seven breeds analyzed. We observed a common synonymous SNV in the COII gene (m.7583G?>?A) of all the breeds studied. The phylogenetic analysis and genetic distance estimation showed the close genetic relationship among the Indian cattle breeds, whereas distinct genetic differences were observed between Bos indicus and Bos taurus cattle. Our results indicate a common ancestor for European Zwergzebu breed and South Indian cattle. The estimated divergence time demonstrated that the Bos indicus and Bos taurus cattle lineages diverged 0.92 million years ago. Our study also demonstrates that ancestors of present zebu breeds originated in South and North India separately ~30,000 to 20,000 years ago. In conclusion, the identified genetic variants and results of the phylogenetic analysis may provide baseline information to develop appropriate strategies for management and conservation of Indian cattle breeds.  相似文献   

17.
A recent study(1) of sequence data from many different proteins has suggested that contemporary prokaryotes and eukaryotes may have shared a common ancestor as recently as 2 billion years ago (the molecular clock). Strong evidence from the geological record, however, indicates that oxygen-producing microorganisms, perhaps similar to modern cyanobacteria, existed 3.5 billion years ago. The fossil evidence, therefore, suggests that any common ancestor of prokaryotes and eukaryotes must have existed at least 1.5 billion years earlier than suggested by the molecular clock evidence. The discrepancy between molecular and geological evidence for the age of modern cells is considered here, as are aspects of gene descent in the tree of life that might help to account for it.  相似文献   

18.
Smallpox, caused by the variola virus (VARV), was a highly virulent disease with high mortality rates causing a major threat for global human health until its successful eradication in 1980. Despite previously published historic and modern VARV genomes, its past dissemination and diversity remain debated. To understand the evolutionary history of VARV with respect to historic and modern VARV genetic variation in Europe, we sequenced a VARV genome from a well-described eighteenth-century case from England (specimen P328). In our phylogenetic analysis, the new genome falls between the modern strains and another historic strain from Lithuania, supporting previous claims of larger diversity in early modern Europe compared to the twentieth century. Our analyses also resolve a previous controversy regarding the common ancestor between modern and historic strains by confirming a later date around the seventeenth century. Overall, our results point to the benefit of historic genomes for better resolution of past VARV diversity and highlight the value of such historic genomes from around the world to further understand the evolutionary history of smallpox as well as related diseases.This article is part of the theme issue ‘Insights into health and disease from ancient biomolecules’.  相似文献   

19.
Diatoms are considered the most successful and widespread group of photosynthetic eukaryotes. Their contribution to primary production is remarkably significant to the earth''s ecosystems. Diatoms are composed of two orders: Centrales and Pennales. Thus far, viruses infecting centric diatom species have been isolated and characterized; however, viruses infecting pennates have not been reported. Here, we describe the first isolations and preliminary characterizations of two distinct pennate diatom viruses, AglaRNAV (31 nm in diameter, accumulates in the host cytoplasm) and TnitDNAV (35 nm in diameter, accumulates in the host nuclei) infecting Asterionellopsis glacialis and Thalassionema nitzschioides, respectively. Their genomes contain a single-stranded RNA of approximately 9.5 kb, and a closed, circular single-stranded DNA of approximately 5.5 kb harboring a partially double-stranded region, respectively. Further analysis of these viruses may elucidate many aspects of diatom host–virus relationships.  相似文献   

20.
Liu et al. reported the cultivation and DNA sequencing of 69 fungal isolates (Ascomycota and Basidiomycota) from ancient subseafloor sediments, suggesting that they represent living fungal populations that have persisted for over 20 million years. Because these findings could bring about a paradigm shift in our understanding of the spatial breadth of the deep subsurface biosphere as well as the longevity of ancient DNA, it is extremely important to verify that their samples represent pure ancient fungi from 20 million years ago without contamination by modern species. For this purpose, we estimated the divergence times of Dikarya (Ascomycota + Basidiomycota) and Mucoromycota fungi assuming that the fungal isolates were actually sampled from 20 Ma (mega-annum) sediments and evaluated the validity of the sample ages. Using this approach, we estimate that the age of the last common ancestor of Dikarya and Mucoromycota fungi greatly exceeds the age of the Earth. Our finding emphasizes the importance of using reliable approaches to confirm the dating of ancient samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号