首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A function for IL-7R for CD4+CD25+Foxp3+ T regulatory cells   总被引:1,自引:0,他引:1  
The IL-2/IL-2R interaction is important for development and peripheral homeostasis of T regulatory (Treg) cells. IL-2- and IL-2R-deficient mice are not completely devoid of Foxp3+ cells, but rather lack population of mature CD4+CD25+Foxp3high Treg cells and contain few immature CD4+CD25-Foxp3low T cells. Interestingly, common gamma chain (gammac) knockout mice have been shown to have a near complete absence of Foxp3+ Treg cells, including the immature CD25-Foxp3low subset. Therefore, other gammac-cytokine(s) must be critically important during thymic development of CD4+CD25+Foxp3+ Treg cells apart from the IL-2. The present study was undertaken to determine whether the gammac-cytokines IL-7 or IL-15 normally contribute to expression of Foxp3 and Treg cell production. These studies revealed that mice double deficient in IL-2Rbeta and IL-7Ralpha contained a striking lack in the CD4+Foxp3+ population and the Treg cell defect recapitulated the gammac knockout mice. In the absence of IL-7R signaling, IL-15/IL-15R interaction is dispensable for the production of CD4+CD25+Foxp3+ Treg cells, indicating that normal thymic Treg cell production likely depends on signaling through both IL-2 and IL-7 receptors. Selective thymic reconstitution of IL-2Rbeta in mice double deficient in IL-2Rbeta and IL-7Ralpha established that IL-2Rbeta is dominant and sufficient to restore production of Treg cells. Furthermore, the survival of peripheral CD4+Foxp3low cells in IL-2Rbeta-/- mice appears to depend upon IL-7R signaling. Collectively, these data indicate that IL-7R signaling contributes to Treg cell development and peripheral homeostasis.  相似文献   

2.
3.
An important unresolved question with regard to T regulatory (Treg) cell specificity and suppressive activity is whether allogeneic Treg cells inhibit self-reactive T cells. In the present study, this issue was addressed using IL-2Rbeta-deficient mice that develop rapid lethal autoimmunity due to impaired production of Treg cells. We show that adoptive transfer of completely MHC-mismatched Treg cells into IL-2Rbeta(-/-) mice resulted in life-long engraftment of the donor cells, which exhibited skewed reactivity toward host alloantigens, and prevented autoimmunity. Thus, Treg cells that underwent thymic selection by peptide/MHC class II complexes distinct from those recognized by autoreactive T cells, still effectively suppress autoimmunity. Remarkably, when such animals were skin grafted, they exhibited dominant tolerance to those grafts bearing MHC molecules that were shared with donor Treg cells. Collectively, these data demonstrate that effective engraftment by allogeneic Treg cells controls autoimmunity and results in permissive conditions for long-term acceptance of allografts.  相似文献   

4.
We have previously shown that mice lacking the IL-12-specific receptor subunit beta2 (IL-12Rbeta2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rbeta2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rbeta2(-/-) mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rbeta2-deficient mice to autoimmune diseases. T cells from IL-12Rbeta2(-/-) mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25(+)CD4(+) regulatory T cells (Tregs) in the thymus and spleen of IL-12Rbeta2(-/-) mice were comparable to those of WT mice. However, IL-12Rbeta2(-/-) mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-beta, as shown by significantly lower numbers of CD25(+)CD4(+) T cells that expressed Foxp3. Functionally, CD25(+)CD4(+) Tregs derived from IL-12Rbeta2(-/-) mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rbeta2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rbeta2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway.  相似文献   

5.
The importance of IL-2Rbeta function for immune regulation is highlighted by the severe impairment in lymphoid cell function in IL-2Rbeta-deficient mice. It has been speculated that failed IL-2/IL-2R signaling in peripheral T cells causes the associated autoimmunity, imbalanced peripheral lymphoid homeostasis, and defective T cell function. This study explored the requirement for IL-2Rbeta function in mature T lymphocytes. We show that transgenic thymic expression of the IL-2R beta-chain in IL-2Rbeta-deficient mice prevents lethal autoimmunity, restores normal production of B lymphocytes, and results in a peripheral T cell compartment that is responsive to triggering through the TCR, but not the IL-2R. The dysfunction of the IL-2R is illustrated by the near complete failure of mature T cells to proliferate to IL-2 in vitro and in vivo, to differentiate into CTL, and to up-regulate IL-2Ralpha expression. These data indicate that lymphoid homeostasis is largely maintained despite a nonfunctional IL-2R in mature T lymphocytes and suggest that IL-2Rbeta provides an essential signal during thymic development to regulate self-reactivity.  相似文献   

6.
Common gamma chain (gammac)-receptor dependent cytokines are required for regulatory T cell (Treg) development as gammac(-/-) mice lack Tregs. However, it is unclear which gammac-dependent cytokines are involved in this process. Furthermore, thymic stromal lymphopoietin (TSLP) has also been suggested to play a role in Treg development. In this study, we demonstrate that developing CD4(+)Foxp3(+) Tregs in the thymus express the IL-2Rbeta, IL-4Ralpha, IL-7Ralpha, IL-15Ralpha, and IL-21Ralpha chains, but not the IL9Ralpha or TSLPRalpha chains. Moreover, only IL-2, and to a much lesser degree IL-7 and IL-15, were capable of transducing signals in CD4(+)Foxp3(+) Tregs as determined by monitoring STAT5 phosphorylation. Likewise, IL-2, IL-7, and IL-15, but not TSLP, were capable of inducing the conversion of CD4(+)CD25(+)Foxp3(-) thymic Treg progenitors into CD4(+)Foxp3(+) mature Tregs in vitro. To examine this issue in more detail, we generated IL-2Rbeta(-/-) x IL-7Ralpha(-/-) and IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice. We found that IL-2Rbeta(-/-) x IL-7Ralpha(-/-) mice were devoid of Tregs thereby recapitulating the phenotype observed in gammac(-/-) mice; in contrast, the phenotype observed in IL-2Rbeta(-/-) x IL-4Ralpha(-/-) mice was comparable to that seen in IL-2Rbeta(-/-) mice. Finally, we observed that Tregs from both IL-2(-/-) and IL-2Rbeta(-/-) mice show elevated expression of IL-7Ralpha and IL-15Ralpha chains. Addition of IL-2 to Tregs from IL-2(-/-) mice led to rapid down-regulation of these receptors. Taken together, our results demonstrate that IL-2 plays the predominant role in Treg development, but that in its absence the IL-7Ralpha and IL-15Ralpha chains are up-regulated and allow for IL-7 and IL-15 to partially compensate for loss of IL-2.  相似文献   

7.
Signaling domains of the interleukin 2 receptor   总被引:7,自引:0,他引:7  
Gaffen SL 《Cytokine》2001,14(2):63-77
Interleukin (IL-)2 and its receptor (IL-2R) constitute one of the most extensively studied cytokine receptor systems. IL-2 is produced primarily by activated T cells and is involved in early T cell activation as well as in maintaining homeostatic immune responses that prevent autoimmunity. This review focuses on molecular signaling pathways triggered by the IL-2/IL-2R complex, with an emphasis on how the IL-2R physically translates its interaction with IL-2 into a coherent biological outcome. The IL-2R is composed of three subunits, IL-2Ralpha, IL-2Rbeta and gammac. Although IL-2Ralpha is an important affinity modulator that is essential for proper responses in vivo, it does not contribute to signaling due a short cytoplasmic tail. In contrast, IL-2Rbeta and gammac together are necessary and sufficient for effective signal transduction, and they serve physically to connect the receptor complex to cytoplasmic signaling intermediates. Despite an absolute requirement for gammac in signaling, the majority of known pathways physically link to the receptor via IL-2Rbeta, generally through phosphorylated cytoplasmic tyrosine residues. This review highlights work performed both in cultured cells and in vivo that defines the functional contributions of specific receptor subdomains-and, by inference, the specific signaling pathways that they activate-to IL-2-dependent biological activities.  相似文献   

8.
9.
We have prepared transgenic mice whose T cells constitutively express a chimeric receptor combining extracellular human IL-4R and intracellular IL-2Rbeta segments. This receptor can transmit IL-2/IL-15-like signals in response to human, but not mouse, IL-4. We used these animals to explore to what extent functional IL-2R/IL-15R expression controls the capacity of T cells to proliferate in response to IL-2/IL-15-like signals. After activation with Con A, naive transgenic CD8+ and CD4+ T cells respond to human IL-4 as well as to IL-2. Without prior activation, they failed to proliferate in response to human IL-4, although human IL-4 did prolong their survival. Thus, IL-2-induced proliferation of activated T cells requires at least one other Ag-induced change apart from the induction of a functional IL-2R. However, a fraction of CD8+CD44high T cells proliferate in human IL-4 without antigenic stimulation or syngeneic feeder cells. In contrast, CD4+CD44high T cells are not constitutively responsive to human IL-4. We conclude that although all transgenic T cells express a functional chimeric receptor, only some CD8+CD44high T cells contain all molecules required for entry into the cell cycle in response to human IL-4 or IL-15.  相似文献   

10.
11.
The high-affinity IL-2R results from the noncovalent association between at least two subunits; alpha (p55) and beta (p70), both of which are capable of binding IL-2 with a low and intermediate affinity, respectively. Although the alpha-chain itself has been shown to be nonfunctional, suggestions have been made that the beta-chain mediates an IL-2 signal. To directly study the role of the beta-chain in the signal transduction, we transfected with the cDNA encoding the IL-2R beta-chain a human T lymphotropic virus-I-transformed T cell line, MT-1 originally expressing low-affinity alpha-chain alone, and established a stable transformant (designated MT-beta 7) which expressed both alpha- and beta-chains simultaneously. We showed 1) MT-beta 7 manifested the high-affinity IL-2 binding, which was completely disrupted by the anti-beta chain mAb (Mik-beta 1), 2) the 125I-IL-2 crosslinking patterns of MT-beta 7 were indistinguishable from those of cells expressing the native high-affinity IL-2R, 3) MT-beta 7, but not parental MT-1, internalized the bound IL-2 and responded to IL-2 with a negative signal, i.e., inhibition of the de novo DNA synthesis. These results clearly demonstrate that the beta-chain not only participates in forming the high-affinity IL-2R with the alpha-chain but also is directly involved in the IL-2 signal transduction.  相似文献   

12.
IL-2 influences both survival and differentiation of CD4(+) T effector and regulatory T cells. We studied the effect of i.n. administration of Abs against the alpha- and the beta-chains of the IL-2R in a murine model of allergic asthma. Blockade of the beta- but not the alpha-chain of the IL-2R after allergen challenge led to a significant reduction of airway hyperresponsiveness. Although both treatments led to reduction of lung inflammation, IL-2 signaling, STAT-5 phosphorylation, and Th2-type cytokine production (IL-4 and IL-5) by lung T cells, IL-13 production and CD4(+) T cell survival were solely inhibited by the blockade of the IL-2R beta-chain. Moreover, local blockade of the common IL-2R/IL-15R beta-chain reduced NK cell number and IL-2 production by lung CD4(+)CD25(+) and CD4(+)CD25(-) T cells while inducing IL-10- and TGF-beta-producing CD4(+) T cells in the lung. This cytokine milieu was associated with reduced CD4(+) T cell proliferation in the draining lymph nodes. Thus, local blockade of the beta-chain of the IL-2R restored an immunosuppressive cytokine milieu in the lung that ameliorated both inflammation and airway hyperresponsiveness in experimental allergic asthma. These findings provide novel insights into the functional role of IL-2 signaling in experimental asthma and suggest that blockade of the IL-2R beta-chain might be useful for therapy of allergic asthma in humans.  相似文献   

13.
Naturally occurring CD4(+)CD25(+)FoxP3(+) T regulatory (Treg) cells require three distinct signals transduced via TCR, CD28, and IL-2R for their development and maintenance. These requirements served as the basis for several recently developed ex vivo expansion protocols that relied on the use of solid support-bound Abs to CD3 and CD28 in the presence of high dose IL-2. We report in this study that Treg cells up-regulate the expression of inducible costimulatory receptor 4-1BB in response to IL-2, and stimulation using this receptor via a novel form of 4-1BB ligand (4-1BBL) fused to a modified form of core streptavidin (SA-4-1BBL) was effective in expanding these cells up to 110-fold within 3 wk. Expanded cells up-regulated CD25, 4-1BB, and membranous TGF-beta, suppressed T cell proliferation, and prevented the rejection of allogeneic islets upon adoptive transfer into graft recipients. Importantly, SA-4-1BBL rendered CD4(+)CD25(-) T effector cells refractive to suppression by Treg cells. This dual function of signaling via 4-1BB, vis-à-vis Treg cell expansion and licensing T effector cells resistant to Treg cell suppression, as well as the up-regulation of 4-1BB by IL-2 may serve as important regulatory mechanisms for immune homeostasis following antigenic challenge. Stimulation using a soluble form of SA-4-1BBL represents a novel approach to expand Treg cells with potential therapeutic applications in autoimmunity and transplantation.  相似文献   

14.
From the sequence of human IL-2 we have recently characterized a peptide (p1-30), which is the first IL-2 mimetic described. P1-30 covers the entire alpha helix A of IL-2 and spontaneously folds into a alpha helical homotetramer mimicking the quaternary structure of a hemopoietin. This neocytokine interacts with a previously undescribed dimeric form of the human IL-2 receptor beta-chain likely to form the p1-30 receptor (p1-30R). P1-30 acts as a specific IL-2Rbeta agonist, selectively inducing activation of CD8 and NK lymphocytes. From human PBMC we have also shown that p1-30 induces the activation of lymphokine-activated killer cells and the production of IFN-gamma. Here we demonstrate the ability of p1-30 to act in synergy with IL-2, -4, -9, and -15. These synergistic effects were analyzed at the functional level by using TS1beta, a murine T cell line endogenously expressing the common cytokine gamma gene and transfected with the human IL-2Rbeta gene. At the receptor level, we show that expression of human IL-2Rbeta is absolutely required to obtain synergistic effects, whereas IL-2Ralpha specifically impedes the synergistic effects obtained with IL-2. The results suggest that overexpression of IL-2Ralpha inhibits p1-30R formation in the presence of IL-2. Finally, concerning the molecular effects, although p1-30 alone induces the antiapoptotic molecule bcl-2, we show that it does not influence mRNA expression of c-myc, c-jun, and c-fos oncogenes. In contrast, p1-30 enhances IL-2-driven expression of these oncogenes. Our data suggest that p1-30R (IL-2Rbeta)(2) and intermediate affinity IL-2R (IL-2Rbetagamma), when simultaneously expressed at the cell surface, may induce complementary signal transduction pathways and act in synergy.  相似文献   

15.
IL-2R alpha-chain is expressed on a subset of mouse CD4- and CD8-, double negative (DN) thymocytes. This expression of IL-2R alpha-chain on some DN thymocytes in the mouse has led to the proposal that IL-2 might serve as a principal growth and/or differentiation factor for immature thymocytes. However, previous histologic observations have indicated that IL-2R alpha-chain is not expressed on the subcapsular thymic blasts (an area rich in DN cells) in either huma or rat thymus, whereas all three species display IL-2R expression on a few cells in the thymic medulla. Therefore, we characterized rat DN thymocytes to determine whether they contained an IL-2R+ population. The results show that rat thymic DN cells share several characteristics with mouse DN cells. However, most of the rat strains do not express the IL-2R on DN cells as shown either by immunofluorescence or by IL-2 binding and receptor cross-linking. Thus, the rare medullary IL-2R+ cells were not found in the DN cells. Only in the exceptional F344 rat strain is the IL-2R alpha-chain expressed on a major proportion of thymocytes, including both DN cells and small cortical-type thymocytes. Furthermore, rat DN cells do not contain detectable IL-2 mRNA or cytoplasmic IL-2 activity, thus supporting the conclusion that it is unlikely that IL-2 and IL-2R serve to maintain the proliferation of rat DN thymocytes in vivo. The possible significance of in vivo expression of IL-2R alpha-chain on immature thymocytes in the mouse and in a single rat strain is discussed.  相似文献   

16.
Female B10.S mice are highly resistant to proteolipid protein (PLP) 139-151-induced experimental autoimmune encephalomyelitis (EAE) and depletion of PLP 139-151-reactive CD4+CD25+ regulatory T (Treg) cells can slightly increase their EAE susceptibility. Although male B10.S mice are moderately susceptible to EAE, we report that depletion of Treg cells in male B10.S mice before immunization with PLP 139-151 renders them highly susceptible to severe EAE with more CNS neutrophil infiltrates than nondepleted controls. Increased susceptibility is associated with an enhanced PLP 139-151-specific T cell response and greater production of IFN-gamma, IL-6, and IL-17. Male CD4+CD25- effector cells depleted of Treg cells proliferate to a greater degree than those from females in response to either anti-CD3 or PLP 139-151. These data suggest that because of their capacity to regulate potent autoaggressive effector cells, Treg cells partly contribute to the resistance to autoimmunity in the male mice.  相似文献   

17.
CD1d-restricted NKT cells and CD4+CD25+ regulatory T (Treg) cells are thymus-derived subsets of regulatory T cells that have an important role in the maintenance of self-tolerance. Whether NKT cells and Treg cells cooperate functionally in the regulation of autoimmunity is not known. We have explored this possibility in experimental autoimmune myasthenia gravis (EAMG), an animal model of human myasthenia gravis, induced by immunization of C57BL/6 mice with the autoantigen acetylcholine receptor. We have demonstrated that activation of NKT cells by a synthetic glycolipid agonist of NKT cells, alpha-galactosylceramide (alpha-GalCer), inhibits the development of EAMG. alpha-GalCer administration in EAMG mice increased the size of the Treg cell compartment, and augmented the expression of foxp3 and the potency of CD4+CD25+ cells to inhibit proliferation of autoreactive T cells. Furthermore, alpha-GalCer promoted NKT cells to transcribe the IL-2 gene and produce IL-2 protein. Depletion of CD25+ cells or neutralization of IL-2 reduced the therapeutic effect of alpha-GalCer in this model. Thus, alpha-GalCer-activated NKT cells can induce expansion of CD4+CD25+ Treg cells, which in turn mediate the therapeutic effects of alpha-GalCer in EAMG. Induced cooperation of NKT cells and Treg cells may serve as a superior strategy to treat autoimmune disease.  相似文献   

18.
Identification of the mechanisms underlying the survival of effector T cells and their differentiation into memory T lymphocytes are critically important to understanding memory development. Because cytokines regulate proliferation, differentiation, and survival of T lymphocytes, we hypothesized that cytokine signaling dictates the fate of effector T cells. To follow cytokine receptor expression during T cell responses, we transferred murine TCR transgenic T cells into naive recipients followed by immunization with peptide emulsified in adjuvant or pulsed on dendritic cells. Our findings did not correlate IL-7R alpha-chain and IL-2R beta-chain expression on effector CD8+ cells with the generation of memory T lymphocytes. However, we could correlate the extent of IL-7R alpha expression down-regulation on effector T cells with the level of inflammation generated by the immunization. Furthermore, our findings showed that the maintenance of a high level of IL-7R expression by effector T cells at the peak of the response does not preclude their death. This suggests that maintenance of IL-7R expression is not sufficient to prevent T cell contraction. Thus, our results indicate that expression of the IL-7R is not always a good marker for identifying precursors of memory T cells among effectors and that selective expression of the IL-7R by effector T cells should not be used to predict the success of vaccination.  相似文献   

19.
Interleukin-5 (IL-5) regulates the production and function of B cells, eosinophils, and basophils. The IL-5 receptor (IL-5R) consists of two distinct membrane proteins, alpha and beta. The alpha chain (IL-5R alpha) is specific to IL-5. The beta chain is the common beta chain (beta c) of receptors for IL-3 and granulocyte-macrophage colony-stimulating factor (GM-CSF). The cytoplasmic domains of both alpha and beta chains are essential for signal transduction. In this study, we generated cDNAs of IL-5R alpha having various mutations in their cytoplasmic domains and examined the function of these mutants by expressing them in IL-3-dependent FDC-P1 cells. The membrane-proximal proline-rich sequence of the cytoplasmic domain of IL-5R alpha, which is conserved among the alpha chains of IL-5R, IL-3R, and GM-CSF receptor (GM-CSFR), was found to be essential for the IL-5-induced proliferative response, expression of nuclear proto-oncogenes such as c-jun, c-fos, and c-myc, and tyrosine phosphorylation of cellular proteins including JAK2 protein-tyrosine kinase. In addition, analysis using chimeric receptors which consist of the extracellular domain of IL-5R alpha and the cytoplasmic domain of beta c suggested that dimerization of the cytoplasmic domain of beta c may be an important step in activating the IL-5R complex and transducing intracellular growth signals.  相似文献   

20.
Studies assessing the role of Stat5 in the IL-2 proliferative signal have produced contradictory, and thus inconclusive, results. One factor confounding many of these studies is the ability of IL-2R to deliver redundant mitogenic signals from different cytoplasmic tyrosines on the IL-2R beta-chain (IL-2Rbeta). Therefore, to assess the role of Stat5 in mitogenic signaling independent of any redundant signals, all cytoplasmic tyrosines were deleted from IL-2Rbeta except for Tyr510, the most potent Stat5-activating site. This deletion mutant retained the ability to induce Stat5 activation and proliferation in the T cell line CTLL-2 and the pro-B cell line BA/F3. A set of point mutations at or near Tyr510 that variably compromised Stat5 activation also compromised the proliferative signal and revealed a quantitative correlation between the magnitude of Stat5 activation and proliferation. Proliferative signaling by a receptor mutant with a weak Stat5 activating site could be rescued by overexpression of wt Stat5a or b. Additionally, the ability of this receptor mutant to induce c-myc, bcl-x, and bcl-2 was enhanced by overexpression of wt Stat5. By contrast, overexpression of a version of Stat5a lacking the C-terminal trans-activation domain inhibited the induction of these genes and cell proliferation. Thus, Stat5 is a critical component of the proliferative signal from Tyr510 of the IL-2R and regulates expression of both mitogenic and survival genes through its trans-activation domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号