首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several authors have investigated the antitumor activity of angiotensin II type 1 receptor (AT1R) antagonists, which are widely used as antihypertensive drugs. In this study, we evaluated the efficacy of the AT1R antagonist candesartan against bladder cancer. For the study in vitro, human bladder cancer cells (KU-19-19) were cultured with and without angiotensin II (A II) and candesartan, and cell viability and vascular endothelial growth factor (VEGF) secretion were analyzed. Also for the study in vivo, a tumor xenograft model was prepared in nude mice using KU-19-19 cells. Mice were administered candesartan daily by oral gavage, and paclitaxel via intravenous infusion. Microvessel density, VEGF expression, and apoptosis were investigated. Candesartan did not induce direct toxicity in KU-19-19 cells, but VEGF was significantly lower in candesartan-treated cells than in the A II-treated control cells. In mice, candesartan, paclitaxel and candesartan-paclitaxel significantly suppressed tumor growth to 46.0%, 35.8% and 17.3%, respectively, of the tumor volume in the control group, showing that combined treatment significantly inhibited tumor growth compared to the candesartan group. Microvessel density and VEGF were significantly decreased in the candesartan and candesartan-paclitaxel groups compared to the control group. The apoptotic index was significantly increased in the paclitaxel and candesartan-paclitaxel groups compared to the control and candesartan groups. In our experimental model, candesartan prevented bladder cancer growth by inhibiting angiogenesis. Furthermore, combined treatment with candesartan and paclitaxel enhanced paclitaxel-induced cytotoxicity. These results suggest that the AT1R antagonist candesartan may be a candidate for innovative therapy for bladder cancer.  相似文献   

2.
Hypertension is a major risk factor for human morbidity and mortality through its effects on target organs like heart, brain and kidneys. More intensive treatment for the effective control of blood pressure significantly reduces the morbidity and mortality. The renin angiotensin system (RAS) is a coordinated hormonal cascade of major clinical importance in the regulation of blood pressure. The principal effector peptide of RAS is angiotensin II, which acts by binding to one of the two major angiotensin II receptors AT(1) and AT(2). Angiotensin II through AT(1) receptor mediates vast majority of biologically detrimental actions. Nonpeptidic angiotensin II (AT(1)) antagonists are the most specific means to block the renin angiotensin enzymatic cascade available presently. Majority of AT(1) antagonists are based on modifications of losartan structure, the first clinically used AT(1) antagonist. In this review, a comprehensive presentation of the literature on AT(1) receptor antagonists has been given.  相似文献   

3.
Growth factor receptors activate tyrosine kinases and undergo endocytosis. Recent data suggest that tyrosine kinase inhibition can affect growth factor receptor internalization. The type 1 angiotensin II receptor (AT1R) which is a G-protein-coupled receptor, also activates tyrosine kinases and undergoes endocytosis. Thus, we examined whether tyrosine kinase inhibition affected AT1R internalization. To verify protein tyrosine phosphorylation, both LLCPKCl4 cells expressing rabbit AT1R (LLCPKAT1R) and cultured rat mesangial cells (MSC) were treated with angiotensin II (Ang II) [1-100 nM] then solubilized and immunoprecipitated with antiphosphotyrosine antisera. Immunoblots of these samples demonstrated that Ang II stimulated protein tyrosine phosphorylation in both cell types. Losartan [1 microM], an AT1R antagonist, inhibited Ang II-stimulated protein tyrosine phosphorylation. LLCPKAT1R cells displayed specific 125I-Ang II binding at apical (AP) and basolateral (BL) membranes, and both AP and BL AT1R activated tyrosine phosphorylation. LLCPKAT1R cells, incubated with genistein (Gen) [200 microM] or tyrphostin B-48 (TB-48) [50 microM], were assayed for acid-resistant specific 125I-Ang II binding, a measure of Ang II internalization. Both Gen (n = 7) and TB-48 (n = 3) inhibited AP 125I-Ang II internalization (80+/-7% inhibition; p<0.025 vs. control). Neither compound affected BL internalization. TB-1, a non-tyrosine kinase-inhibiting tyrphostin, did not affect AP 125I-Ang II endocytosis (n = 3), suggesting that the TB-48 effect was specific for tyrosine kinase inhibition. Incubating MSC with Gen (n = 5) or herbimycin A [150 ng/ml] (n = 4) also inhibited MSC 125I-Ang II internalization (82+/-11% inhibition; p<0.005 vs. control). Thus, tyrosine kinase inhibition prevented Ang II internalization in MSC and selectively decreased AP Ang II internalization in LLCPKAT1R cells suggesting that AP AT1R in LLCPKAT1R cells and MSC AT1R have similar endocytic phenotypes, and tyrosine kinase activity may play a role in AT1R internalization.  相似文献   

4.
Zhang Y  Yang X  Wu P  Xu L  Liao G  Yang G 《Hormone research》2003,60(3):105-110
OBJECTIVE: To investigate the contribution of angiotensin II towards the process of hepatic fibrosis that is largely due to hepatic stellate cell growth. METHODS: Adult rat hepatic stellate cells were cultured and checked for the expression of angiotensin II receptor 1a (AT(1a)) mRNA by RT-PCR and sequence analysis. The effects of angiotensin II were observed on stimulation of hepatic stellate cell growth detected by MTT assays, (3)H-thymidine incorporation and cell count, and collagen synthesis by (3)H-proline incorporation. RESULTS: We demonstrated that cultured adult rat hepatic stellate cells expressed AT(1a) mRNA, and angiotensin II in a concentration-dependent manner stimulated hepatic stellate cell growth at a concentration of 10(-7)-10(-9) mol/l and collagen synthesis at a concentration of 10(-6)-10(-10) mol/l. Also, AT(1a) receptor antagonist, in a concentration-dependent manner, blocked the cell growth from 10(-6) to 10(-8) mol/l and collagen synthesis from 10(-6) to 10(-9) mol/l. CONCLUSIONS: The results provided direct evidence that AT(1a) mRNA was expressed in rat hepatic stellate cells and angiotensin II could contribute towards the development of hepatic fibrosis via AT(1a) receptor.  相似文献   

5.
Speth RC 《Regulatory peptides》2003,115(3):203-209
Studies predating the discovery of the two major subtypes of angiotensin II (Ang II) receptors, AT1 and AT2, revealed anomalous characteristics of sarcosine1,glycine8 Ang II (Sar1,Gly8 Ang II). It competed poorly for 125I-Ang II binding in bovine brain but potently antagonized dipsogenic responses to intracerebroventricularly administered Ang II. Subsequent recognition that bovine brain contains AT(2) receptors, while dipsogenic responses to Ang II are mediated by AT1 receptors, suggests that Sar1,Gly(8) Ang II is AT1 selective. Sar1,Gly8 Ang II competed for 125I-sarcosine1,isoleucine8 Ang II binding to AT1 receptors in pituitary, liver and adrenal (the latter with the AT2 selective antagonist PD 123,319) with Ki's of 0.66, 1.40 and 1.36 nM, respectively. In contrast, the Ki of Sar1,Gly8 Ang II for AT2 receptors in rat adrenal (with the selective AT1 antagonist losartan) was 52 nM. 125I-Sar1,Gly8 Ang II (0.5-3 nM) bound to AT1 receptors in pituitary, liver, heart, adrenal, and hypothalamic membranes with high affinity (Kd=0.43, 1.6, 2.3, 0.96 and 1.8 nM, respectively), but showed no saturable binding to the adrenal AT2 receptor. 125I-Sar1,Gly8 Ang II selectively labeled AT1 receptors in sections of adrenal using receptor autoradiography. Thus, binding studies reveal Sar1,Gly8 Ang II to be the first angiotensin peptide analog to show AT1 receptor selectivity. 125I-Sar1,Gly8 Ang II offers a new means to selectively radiolabel AT1 receptors and may help to characterize ligand docking sites and agonist switches for AT1 versus AT2 receptors.  相似文献   

6.
The brain and the peripheral (hormonal) angiotensin II systems are stimulated during stress. Activation of brain angiotensin II AT(1) receptors is required for the stress-induced hormone secretion, including CRH, ACTH, corticoids and vasopressin, and for stimulation of the central sympathetic activity. Long-term peripheral administration of the angiotensin II AT(1) antagonist candesartan blocks not only peripheral but also brain AT(1) receptors, prevents the hormonal and sympathoadrenal response to isolation stress and prevents the formation of stress-induced gastric ulcers. The mechanisms responsible for the prevention of stress-induced ulcers by the AT(1) receptor antagonist include protection from the stress-induced ischemia and inflammation (neutrophil infiltration and increase in ICAM-1 and TNF-alpha) in the gastric mucosa and a partial blockade of the stress-induced sympathoadrenal stimulation, while the protective effect of the glucocorticoid release during stress is maintained. AT(1) receptor antagonism prevents the stress-induced decrease in cortical CRH(1) and benzodiazepine binding and is anxiolytic. Blockade of brain angiotensin II AT(1) receptors offers a novel therapeutic opportunity for the treatment of anxiety and other stress-related disorders.  相似文献   

7.
The present study was undertaken to characterize, determine and localize angiotensin II receptors in the nonpregnant and pregnant bovine uterus. In addition, the concentration of active renin, which is responsible for the generation of angiotensin, was determined. Autoradiography and angiotensin II receptor binding studies showed that all compartments of the bovine uterus contained high concentrations of angiotensin II receptors. In general, the type 1 angiotensin II receptor (AT1) predominated over the AT2 receptor. In the endometrium, the highest density was found in the caruncles and the AT1 receptor was always predominant. The density of angiotensin II receptors in the endometrium increased at the beginning of pregnancy, but decreased and reached values similar to those in nonpregnant animals near term. In the myometrium, the density of angiotensin II receptors was highest at or near the endometrial-myometrial junction. In this area, the predominant type of angiotensin II receptor in the uterus of cyclic cows varied, whereas the AT1 receptor always predominated during pregnancy. Non-AT1 and non-AT2 binding sites were found in the same locations as the angiotensin II receptors, but at lower densities. With the exception of the pregnant endometrium, all compartments contained higher active renin concentrations than found in plasma, indicating local synthesis of renin. This study demonstrates a difference in the expression of types of angiotensin II receptor in the bovine uterus compared with other species. The high densities of angiotensin II receptors localized in several important areas imply that the renin-angiotensin system participates in regulation of growth and tissue function in the bovine uterus.  相似文献   

8.
Earlier studies indicate that binding sites of type II angiotensin (AT2) receptors are detected all over the pancreas, as well as in the pancreatic exocrine cell line AR4-2J. However, lack of corresponding functional AT2 receptor responses can be detected in the exocrine pancreas. The aim of present study is to determine the protein expression of AT2 receptors in the pancreas by probing with an AT2 receptor-specific antibody, and to examine the role of AT2 receptors in the regulation of pancreatic endocrine hormone release. In Western protein analysis of adult rat tissues, expression of AT2 receptor-immunoreactive bands of 56, 68, and 78 kDa was detected in the adrenal, kidney, liver, salivary glands, and pancreas. In adult rat pancreas, strong immunoreactivity was detected on cells that were located at the outer region of Langerhans islets. Immunohistochemical studies indicated that AT2 receptors colocalized with somatostatin-producing cells in the endocrine pancreas. Consistent with the findings in adult pancreas, abundant expression of AT2 receptors was also detected in immortalized rat pancreatic endocrinal cells lines RIN-m and RIN-14B. To examine the role of AT2 receptors on somatostatin secretion in the pancreas, angiotensin-stimulated somatostatin release from pancreatic RIN-14B cells was studied by an enzyme immunoassay in the absence or presence of various subtype-selective angiotensin analogues. There was a basal release of somatostatin from RIN-14B cells at a rate of 8.72 +/- 4.21 ng/10(6) cells (n = 7). Angiotensin II (1 nM-10 microM) stimulated a biphasic somatostatin release in a dose-dependent manner with an apparent EC50 value of 49.3 +/- 25.9 nM (n = 5), and reached maximal release at 1 microM angiotensin II (982 +/- 147.34% over basal secretion; n = 5). Moreover, the AT2 receptor-selective angiotensin analogue, CGP42112, was 1000 times more potent than the AT1 receptor-selective angiotensin analogue, losartan, in inhibiting angiotensin II-stimulated somatostatin release. These results suggest that angiotensin may modulate pancreatic hormone release via regulation of somatostatin secretion.  相似文献   

9.
The angiotensin II AT2 receptor is an AT1 receptor antagonist   总被引:9,自引:0,他引:9  
The vasopressor angiotensin II activates AT(1) and AT(2) receptors. Most of the known in vivo effects of angiotensin II are mediated by AT(1) receptors while the biological functions of AT(2) receptors are less clear. We report here that the AT(2) receptor binds directly to the AT(1) receptor and thereby antagonizes the function of the AT(1) receptor. The AT(1)-specific antagonism of the AT(2) receptor was independent of AT(2) receptor activation and signaling, and it was effective on different cells and on human myometrial biopsies with AT(1)/AT(2) receptor expression. Thus, the AT(2) receptor is the first identified example of a G-protein-coupled receptor which acts as a receptor-specific antagonist.  相似文献   

10.
The binding of [3H]angiotensin II to AT(1) receptors on Chinese Hamster Ovary cells expressing the human AT(1) receptor (CHO-AT(1) cells) is potently inhibited by venoms of the marine snails Conus geographus and C. betulinus. On the other hand, the binding of the nonpeptide AT(1) receptor-selective antagonist [3H]candesartan is not affected but competition binding curves of angiotensin II and the peptide antagonist [Sar(1),Ile(8)]angiotensin II (sarile) are shifted to the right. These effects resulted from the breakdown of angiotensin II into smaller fragments that do not bind to the AT(1) receptor. In this context, angiotensin-(1-7) is the most prominent fragment and angiotensin-(1-4) and angiotensin-(1-5) are also formed but to a lesser extent. The molecular weight of the involved peptidases exceeds 50 kDa, as determined by gel chromatography and ultrafitration.  相似文献   

11.
The angiotensin II type 1 (AT1) receptor has a crucial role in load-induced cardiac hypertrophy. Here we show that the AT1 receptor can be activated by mechanical stress through an angiotensin-II-independent mechanism. Without the involvement of angiotensin II, mechanical stress not only activates extracellular-signal-regulated kinases and increases phosphoinositide production in vitro, but also induces cardiac hypertrophy in vivo. Mechanical stretch induces association of the AT1 receptor with Janus kinase 2, and translocation of G proteins into the cytosol. All of these events are inhibited by the AT1 receptor blocker candesartan. Thus, mechanical stress activates AT1 receptor independently of angiotensin II, and this activation can be inhibited by an inverse agonist of the AT1 receptor.  相似文献   

12.
13.
We aimed to clarify responsiveness to angiotensin (Ang) II in the porcine basilar artery and the role of Ang II receptor subtypes by functional, radioligand binding, and cell culture studies. Ang II induced more potent contractions in the proximal part than in the distal part of isolated porcine basilar arteries. The contraction induced by Ang II was inhibited by the Ang II type 1 (AT1) receptor antagonist losartan, but the Ang II type 2 (AT2) receptor antagonist PD123319 enhanced it. After removal of the endothelium, the effect of losartan remained but the effect of PD123319 was abolished. The specific binding site of [3H]Ang II on the smooth muscle membrane was inhibited by losartan, but not by PD123319. Stimulation of angiotensin II increased nitric oxide (NO) production in cultured basilar arterial endothelial cells. This production was inhibited by PD123319 and the NO synthase inhibitor L-NG-nitroarginine. These results suggest that the contraction induced by Ang II might be mediated via the activation of AT1 receptors on the basilar arterial smooth muscle cells and be modulated via the activation of AT2 receptors on the endothelial cells, followed by NO production.  相似文献   

14.
The relative roles of angiotensin II (Ang II) type 1 receptor (AT(1)R) and Ang II type 2 receptor (AT(2)R) in immune-mediated nephritis are unknown, and the effect of the blockade of AT(1)R and its indirect counter-activation of AT(2)R relative to the anti-fibrotic action in this disease is unclear. To address this question, we studied the role of AT(1)R and AT(2)R in anti-glomerular basement membrane nephritis in SJL mice. Groups of mice were treated with either an AT(1)R antagonist (CGP-48933; CGP group), an AT(2)R antagonist (PD-123319; PD group), both (CGP/PD group), or a vehicle (PCt group) from Day 29 to 56. At Day 56 post-treatment, fibrosis-related parameters such as interstitial matrix deposition, and the expression of genes of TGF-beta1, plasminogen activator inhibitor-1, and type I collagen were significantly reduced in the kidney in the CGP group. There were no significant effects on these parameters in the PD group. However, this anti-fibrotic action by CGP-48933 was totally abolished by co-treatment with PD-123319 in the CGP/PD group. The gene expression of renin was significantly increased in the kidneys in the CGP and CGP/PD groups, suggesting that CGP-48933 had increased Ang II generation in those groups. In conclusion, counter-activation of AT(2)R by increased Ang II under AT(1)R blockade likely conferred an anti-fibrotic protection in this model.  相似文献   

15.
Liu HQ  Wei XB  Sun R  Cai YW  Lou HY  Wang JW  Chen AF  Zhang XM 《Life sciences》2006,78(12):1293-1298
Microvascular changes in the brain are significant causes of cerebral edema and ischemia injury. A number of studies suggest that angiotensin (Ang) II may be involved in the initiation and regulation of processes occurring in brain ischemia. We recently reported that Ang II injures brain microvascular endothelial cells (BMEC) partially via stimulating intercellular adhesion molecule-1 (ICAM-1) expression. However, the signaling cascade leading to Ang II-induced ICAM-1 expression in BMEC was unclear. The present study tested the hypothesis that Ang II induces ICAM-1 expression via an AT1 receptor/nuclear factor-kappaB (NF-kappaB) pathway in BMEC. Ang II directly stimulated the expression of ICAM-1 mRNA and protein in primary cultured BMEC. Ang II treatment also resulted in the degradation of IkappaBalpha and increase of NF-kappaB p65 subunit in the nucleus as well as the DNA binding activity of nuclear NF-kappaB. These effects were abolished by pretreatment with the selective AT1 receptor antagonists, losartan and compound EXP-2528, or losartan plus the AT2 receptor antagonist PD123319, but not by PD123319 alone. Moreover, there were no significant differences between the losartan and losartan plus PD123319 groups. These findings indicate that Ang II-induced ICAM-1 upregulation in brain microvascular endothelial cells may be mediated via an AT1 receptor/NF-kappaB pathway.  相似文献   

16.
Acute nitric oxide (NO) inhibits angiotensin II (ANG II)-stimulated aldosterone synthesis in zona glomerulosa (ZG) cells. In this study, we investigated the effects of chronic administration of NO on the ANG II receptor type 1 (AT1) expression and aldosterone synthesis. ZG cells were treated daily with DETA NONOate (10(-4) M), an NO donor, for 0, 12, 24, 48, 72, and 96 h. Chinese hamster ovary (CHO) cells, stably transfected with the AT1B receptor, were used as a positive control. Western blot analysis indicated that AT1 receptor expression was decreased as a function of time of NO administration in both CHO and ZG cells. ANG II binding to its receptors was determined by radioligand binding. NO treatment of ZG cells for 96 h resulted in a decrease in ANG II binding compared with control. The receptor density was decreased to 1,864 +/- 129 fmol/mg protein from 3,157 +/- 220 fmol/mg protein (P < 0.005), but the affinity was not changed (1.95 +/- 0.22 vs. 1.88 +/- 0.21 nM). Confocal Raman microspectroscopy and immunocytochemistry both confirmed that the expression of AT1 receptors in ZG cells decreased with chronic NO administration. In addition, chronic NO administration also decreased the expression of cholesterol side-chain cleavage enzyme in ZG cells and inhibited ANG II- and 25-hydroxycholesterol-stimulated aldosterone synthesis in ZG cells. This study demonstrates that chronic administration of NO inhibits aldosterone synthesis in ZG cells by downregulation of the expression of both AT1 receptors and cholesterol side-chain cleavage enzyme.  相似文献   

17.
18.
19.
The renin-angiotensin system (RAS) plays important roles in various pathophysiological processes. However, the role of the RAS in pancreatic fibrosis has not been established. We investigated the role of angiotensin II (ANG II)-ANG II type 1 (AT(1)) receptor pathway in the development of pancreatic fibrosis with AT(1a) receptor-deficient [AT(1a)(-/-)] mice. To induce pancreatic fibrosis, AT(1a)(-/-) and wild-type (WT) mice were submitted to three episodes of acute pancreatitis induced by six intraperitoneal injections of 50 microg/kg body wt cerulein at hourly intervals, per week, for four consecutive weeks. Pancreatic fibrosis was assessed by histology and hydroxyproline content. Pancreatic stellate cell (PSC) activation and the localization of AT(1) receptors were assessed by Western blot analysis for alpha-smooth muscle actin and immunostaining. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA expression in the pancreas was assessed by RT-PCR. Six intraperitoneal injections of cerulein induced acute pancreatitis in both AT(1a)(-/-) and WT mice. There were no significant differences between two groups with regard to serum amylase and histological changes. Pancreatic fibrosis induced by repeated episodes of acute pancreatitis was significantly attenuated in AT(1a)(-/-) mice compared with that in WT mice. This finding was accompanied by a reduction of activated PSCs. Dual-immunofluorescence staining in WT mice revealed that activated PSCs express AT(1) receptors. The level of TGF-beta(1) mRNA was lower in AT(1a)(-/-) mice than in WT mice. Our results demonstrate that the ANG II-AT(1) receptor pathway is not essential for the local pancreatic injury in acute pancreatitis but plays an important role in the development of pancreatic fibrosis through PSC activation and proliferation.  相似文献   

20.
The mRNA level of the type-1 angiotensin II receptor (AT1) was down-regulated by angiotensin II in cultured rat glomerular mesangial cells. The effect was maximum with 1 microM AII at 6 h, sensitive to cycloheximide, and specific to AT1 since this phenomenon was blocked by DuP753, an AT1 antagonist, but not by type-2 antagonist PD123319. Dibutyryl cAMP, forskolin, and cholera toxin also caused AT1 down-regulation. These effects were not altered by either the protein kinase A inhibitor H-8 or cycloheximide. Calcium ionophore A23187, pertussis toxin, protein kinase C inhibitor staurosporine, or prolonged incubation with phorbol ester were without effect. These results suggest that there are at least two pathways to down-regulate AT1 mRNA; one way is an angiotensin II-induced, protein kinase C-independent, and cycloheximide-sensitive pathway and the other is an angiotensin II-independent, cAMP-induced, and cycloheximide-insensitive pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号