首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using sulfolipid to locate plastid thylakoid membranes in gradients from dark-grown resting cells it has been possible to study the plastid thylakoid membrane polypeptides of Euglena gracilis var. bacillaris undergoing light-induced chloroplast development. All plastid thylakoid bands seen in dark-growing wild-type cells and in mutant W3BUL in which plastid DNA is undetectable, are observed to increase in amount during plastid development. Others, which are undetectable in dark-grown wild-type and W3BUL increase greatly during plastid development and appear to be those associated with pigment-protein complexes. The data obtained from experiments where the polypeptides were labeled with 35S during development, either continuously or in pulses, were consistent with these findings. Cycloheximide strongly inhibited the increases in amount in all bands and chloramphenicol or streptomycin produced a lower level of inhibition in all bands indicating tight control of theformation of each plastid membrane constituent by the others. The formation of a polypeptide band of 25 000 molecular weight, thought to be a part of a pigment-protein complex of the thylakoid, and chlorophyll synthesis were inhibited identically by these antibiotics.  相似文献   

2.
Scott Bingham  Jerome A. Schiff 《BBA》1979,547(3):531-543
Using sulfolipid to locate plastid thylakoid membranes in gradients from dark-grown resting cells it has been possible to study the plastid thylakoid membrane polypeptides of Euglena gracilis var. bacillaris undergoing light-induced chloroplast development. All plastid thylakoid bands seen in dark-growing wild-type cells and in mutant W3BUL in which plastid DNA is undetectable, are observed to increase in amount during plastid development. Others, which are undetectable in dark-grown wild-type and W3BUL increase greatly during plastid development and appear to be those associated with pigment-protein complexes. The data obtained from experiments where the polypeptides were labeled with 35S during development, either continuously or in pulses, were consistent with these findings. Cycloheximide strongly inhibited the increases in amount in all bands and chloramphenicol or streptomycin produced a lower level of inhibition in all bands indicating tight control of the formation of each plastid membrane constituent by the others. The formation of a polypeptide band of 25 000 molecular weight, thought to be a part of a pigment-protein complex of the thylakoid, and chlorophyll synthesis were inhibited identically by these antibiotics.  相似文献   

3.
Techniques are described for the isolation of plastid thylakoid membranes from light-grown and dark-grown cells of Euglena gracilis var. bacillaris, and from mutants affecting plastid development. These membranes, which have minimal contamination with other cell fractions, are localized in sucrose gradients by using the thylakoid membrane sulfolipid as a specific marker. The plastid thylakoid membrane polypeptides isolated from these membranes were separated on SDS polyacrylamide gels and yielded patterns containing 30-40 polypeptides. Light-grown strain Z gave patterns identical with bacillaris. Since the plastid thylakoid polypeptide patterns obtained from dark-grown wild-type cells and from a bleached mutant W3BUL in which plastid DNA is undetectable are identical, it appears that the proplastid thylakoid polypeptides of wild-type cannot be coded in plastid DNA and are probably coded in nuclear DNA. The plastid thylakoid polypeptide patterns obtained from various dark-grown mutants, making large but abnormal chloroplasts, show a correlation between the amount of chlorophyll formed and the amount of a plastid thylakoid polypeptide thought to be associated wtth one of the pigment-protein light-harvesting complexes. Treatment with SAN 9789 (4-chloro-5-(methylamino)-2(alpha, alpha, alpha,-trifluoro-m-tolyl)-3-(2H(pyridazinone) known to block carotenoid synthesis at the level of phytoene, causes a progressive loss of all plastid thylakoid polypeptides during growth in darkness and results in the establishment of a new, lowere steady-state level of sulfolipid. At least ten of the plastid thylakoid polypeptides become labeled when isolated chloroplasts are supplied with radioactive amono acids; of these six are undectable in W3BUL and are, therefore, candidates for coding by plastid DNA.  相似文献   

4.
The present paper reports that the development ultrastructural observations of chloroplasts from sacred lotus (Nelumbo nucifera) embryo buds under invisible light. Embryo bud of sacred lotus is enclosed by three layers of thick integument (pericap, seed coat and thick fleshy cotyledons). During the period of the formation of embryo bud, it remained in dark condition, but turned from pale yellow to bluish-green. It was noteworthy that chloroplasts of the embryo bud had well developed giant grana under invisible light. Their developmental pathway in sacred lotus, however, was different from those of other higher plants grown under sunlight, intermittent light, or even in dark conditions (Fig. 1). The chloroplast development of embryo buds in Sacred lotus seeds in invisible light underwent only in the following three stages: (1) In the first stage the development was similar to that from other higher plants, the inner envelope membranes of the proplastids were invaginating. (2) In the second stage, a proplastid centre composed of prolamellar bodies (PLB)with semicrystalline structure was formed, and was accompanied by one or two huge starch grains in almost each proplastid. In the meantime, prothylakoid membranes extended parallelly from the plastid centre in three forms: (a) One plastid centre extending parallelly prothylakoid membranes from itself in one direction; (b) The same to (a), but extending in two directions; (c) Two plastid centres extending parallelly prothylakoid membranes between the centres. (3) In the third stage, grana and stroma thylakoid membranes of chloroplasts were formed. It is to be noted that most of chloroplasts had only one or two giant grana which often extended across the entire chloroplast body, and the length of the grana thylakoid membranes of the chloroplasts from embryo bud in Sacred lotus is 3 to 5 times as many as that in other higher plants. However, their stromatic thylakoid membranes were rather rare and very short. The giant grana were squeezed to the margin of the chloroplast envelope by one or two huge starch grains.  相似文献   

5.
Reprogramming metabolism, in addition to modifying the structure and function of the photosynthetic machinery, is crucial for plant acclimation to changing light conditions. One of the key acclimatory responses involves reorganization of the photosynthetic membrane system including changes in thylakoid stacking. Glycerolipids are the main structural component of thylakoids and their synthesis involves two main pathways localized in the plastid and the endoplasmic reticulum (ER); however, the role of lipid metabolism in light acclimation remains poorly understood. We found that fatty acid synthesis, membrane lipid content, the plastid lipid biosynthetic pathway activity, and the degree of thylakoid stacking were significantly higher in plants grown under low light compared with plants grown under normal light. Plants grown under high light, on the other hand, showed a lower rate of fatty acid synthesis, a higher fatty acid flux through the ER pathway, higher triacylglycerol content, and thylakoid membrane unstacking. We additionally demonstrated that changes in rates of fatty acid synthesis under different growth light conditions are due to post-translational regulation of the plastidic acetyl-CoA carboxylase activity. Furthermore, Arabidopsis mutants defective in one of the two glycerolipid biosynthetic pathways displayed altered growth patterns and a severely reduced ability to remodel thylakoid architecture, particularly under high light. Overall, this study reveals how plants fine-tune fatty acid and glycerolipid biosynthesis to cellular metabolic needs in response to long-term changes in light conditions, highlighting the importance of lipid metabolism in light acclimation.

Lipid metabolism is fine-tuned to cellular metabolic demands during thylakoid membrane remodeling in response to long-term changes in light intensity.  相似文献   

6.
Scott Bingham  Jerome A. Schiff 《BBA》1979,547(3):512-530
Techniques are described for the isolation of plastid thylakoid membranes from light-grown and dark-grown cells of Euglena gracilis var. bacillaris, and from mutants affecting plastid development. These membranes, which have minimal contamination with other cell fractions, are localized in sucrose gradients by using the thylakoid membrane sulfolipid as a specific marker. The plastid thylakoid membrane polypeptides isolated from these membranes were separated on SDS polyacrylamide gels and yielded patterns containing 30–40 polypeptides. Light-grown strain Z gave patterns identical with bacillaris. Since the plastid thylakoid polypeptide patterns obtained from dark-grown wild-type cells and from a bleached mutant W3BUL in which plastid DNA is undetectable are identical, it appears that the proplastid thylakoid polypeptides of wild-type cannot be coded in plastid DNA and are probably coded in nuclear DNA. The plastid thylakoid polypeptide patterns obtained from various dark-grown mutants are identical to those obtained from dark-grown wild-type cells. Light-grown mutants, making large but abnormal chloroplasts, show a correlation between the amount of chlorophyll formed and the amount of a plastid thylakoid polypeptide thought to be associated with one of the pigment-protein light-harvesting complexes. Treatment with SAN 9789 (4-chloro-5-(methyl-amino)-2-(α,α,α,-trifluoro-m-tolyl)-3-(2H(pyridazinone) known to block carotenoid synthesis at the level of phytoene, causes a progressive loss of all plastid thylakoid polypeptides during growth in darkness and results in the establishment of a new, lower steady-state level of sulfolipid. At least ten of the plastid thylakoid polypeptides become labeled when isolated chloroplasts are supplied with radioactive amino acids; of these six are undectable in W3BUL and are, therefore, candidates for coding by plastid DNA.  相似文献   

7.
Plastid Structure and Development in Green Callus Tissues of Oxalis dispar   总被引:3,自引:0,他引:3  
SUNDERLAND  N.; WELLS  B. 《Annals of botany》1968,32(2):327-346
Cultured callus tissues derived from endosperm of Oxalis disparare shown to contain virescent amyloplasts. In darkness, proplastidsdevelop into typical amyloplasts, starch being deposited assingle or multiple grains. In light, amyloplasts are transformedinto chloroplasts. Thylakoid formation begins in spaces aroundand between existing starch grains. As thylakoids are assembledinto grana, starch slowly disappears; the plastids increasein size and the photosynthetic apparatus enlarges to fill thewhole of the plastid. Slight carotenoid synthesis takes placeas amyloplasts are laid down, but there is no chlorophyll synthesis.All pigments accumulate rapidly during the early stages of granaldevelopment, but slowly, and at a declining rate, during thelater stages. Treatment of the tissues with auxins suppressesthe development of thylakoid membranes, but has no effect uponthe development of amyloplast membranes. The possible significanceof this observation is discussed. Greening is accompanied by a marked decline in the rates ofboth cell division and cell expansion. This is attributed inpart to the diversion of nitrogen from the normal growth channelsinto the synthesis of thylakoid proteins.  相似文献   

8.
Plastid organization within phenotypically green leaf tissue that forms in albino plants of a genetic albino strain of Nicotiana has been examined with the transmission electron microscope. Studies revealed the presence of plastids with and without thylakoids. When present, thylakoids were loosely and irregularly scattered in the stroma or organized either into several large spindle-shaped grana or into a single compound granum with deeply indented margins. Plastids without thylakoids were vesiculated and resembled the typical genetic albino type. Plastid types were not segregrated into individual cells and no plastid type appeared to be typical for the mutant tissue. Orientation of grana and thylakoid membrane associations were noted as well as the presence of osmiophilic globules, starch grains and DNA-like fibrillar areas.  相似文献   

9.
10.
The biogenesis of chloroplasts is genetically complex, involving hundreds of genes distributed between the nucleus and organelle. In higher plants, developmental parameters confer an added layer of complexity upon the genetic control of chloroplast biogenesis: the properties of plastids differ dramatically between different cell types. While the biochemistry and structure of different plastid types have been described in detail, factors that determine the timing and localization of chloroplast development and that mediate chloroplast assembly have remained elusive. To identify nuclear genes that play novel roles in chloroplast biogenesis, we are exploiting nuclear mutations that block the accumulation of subsets of chloroplast proteins. Detailed study of the mutant phenotypes provides clues concerning the primary defect in each mutant. Mutants with defects in chloroplast translation and mRNA metabolism have been identified. Other mutants defective in the accumulation of multiple thylakoid complexes show no apparent defect in the synthesis of the missing proteins. These may identify factors involved in the integration of proteins into the thylakoid membrane and their assembly into functional complexes.  相似文献   

11.
The relationship between nuclear and plastid DNA synthesis in cultured tobacco cells was measured by following3H-thymidine incorporation into total cellular DNA in the absence or presence of specific inhibitors. Plastid DNA synthesis was determined by hybridization of total radiolabeled cellular DNA to cloned chloroplast DNA. Cycloheximide, an inhibitor of nuclear encoded cytoplasmic protein synthesis, caused a rapid and severe inhibition of nuclear DNA synthesis and a delayed inhibition of plastid DNA synthesis. By contrast, chloramphenicol which only inhibits plastid and mitochondrial protein production, shows little inhibition of either nuclear or plastid DNA synthesis even after 24 h of exposure to the cells. The inhibition of nuclear DNA synthesis by aphidicolin, which specifically blocks the nuclear DNA polymeraseα, has no significant effect on plastid DNA formation. Conversely, the restraint of plastid DNA synthesis exerted by low levels of ethidium bromide has no effect on nuclear DNA synthesis. These results show that the synthesis of plastid and nuclear DNA are not coupled to one another. However, both genomes require the formation of cytoplasmic proteins for their replication, though our data suggest that different proteins regulate the biosynthesis of nuclear and plastid DNA.  相似文献   

12.
Chloroplast ontogeny has been examined in 42-day etiolated triploid aspen callus (Populus tremuloides Michx.) subjected to two different light conditions. White and low-intensity red illumination showed little differences in their stimulatory effects on plastid development, the red light-irradiated plastids developing only slightly more slowly. Asynchronous plastid development was noted in both lighting systems. Etioplasts contained an interconnected tubular net, phytoferritin aggregates, electron-transparent vesicles which seem to invaginate from the inner plastid membrane, membrane-bound homogeneous spheroids and starch grains. Irradiation caused various morphological changes within the proplastids; the tubular complex became transformed into the more ordered prolamellar body-like structure from which radiated membrane-bound sacs filled with electron-dense material. These sacs, characterized as thylakoid precursors, were transformed into a thylakoidal system typical of mature chloroplasts. This ontogenetic scheme represents an additional pathway for the development of photosynthetic lamellae. Other light-induced changes in the developing plastid include disappearance of phytoferritin particles and homogeneous spheroids, decrease in starch content, and appearance of osmiophilic droplets.  相似文献   

13.
Björn Walles 《Protoplasma》1971,73(2):159-175
Summary The lethal recessive mutantlycopenic in maize is characterized by the synthesis of lycopene instead of the normal carotenoids. At normal conditions of illumination it loses chlorophyll by photo-oxidation. Seedlings of this mutant and of normal maize were grown at light intensities of 25–30 lux and 500–30,000 lux. Their plastid development was studied by electron microscopy.At low light intensities a kind of mesophyll chloroplast with elongated grana, long unpaired thylakoid segments, and sometimes prolamellar bodies is formed in mutant plants. In corresponding bleached plants the plastids are transformed into chromoplasts containing characteristic lycopene crystalloids similar to those found in tomato fruits. Various stages in this chromoplast development are described and illustrated. Also bundle-sheath plastids were found to develop into chromoplasts.It is concluded that the ultrastructure of plastids in a tissue is influenced by the nature of their pigments and that an altered carotenoid composition therefore can give rise to development of chromoplasts in plants which normally lack such organelles.  相似文献   

14.
Various kinds of pathological effects of the Abutilon Mosaic Virus (AbMV) in seasonal dependency have been observed on the macroscopic as well as on the microscopic level. The annual rhythmic fluctuation of light caused by the varying length and intensity of light incidence is directly correlated with the realization of symptoms, leading to an intensification of the leaf mosaic and to an increase in the light leaf areas during the summer. These macroscopic observations are correlated with an annual change in the plastid fine structure in the mesophyll of the lightest areas of the leaf. The grana-stroma-organization of the plastids is completely eliminated through a reduction and disorganization in the thylakoid system during the spring and summer, restored in the autumn, and preserved over the winter. This change in the plastid fine structure is limited to the leaf mesophyll. The plastids of the leaf stem, like the plastids of non-infected plants, do not display any change in their fine structure.  相似文献   

15.
A. Scheer  B. Parthier 《Planta》1982,156(3):274-281
Transfer of light-grown autotrophic Euglena gracilis cells to darkness and carbon (glucose) containing heterotrophic media causes structural and functional decomposition of the photosynthetic apparatus. The process can be ascribed to a strict diluting-out mechanism of stroma constituents among the progeny, as shown for ribulose-1,5-bisphosphate carboxylase (RuBPCase, EC 4.1.1.39), and aminoacyl-tRNA synthetases (Aa-RS; especially Leu-RS, EC 6.1.1.4) activities. The diluting-out effect of thylakoid membranes and chlorophyll seems to be superimposed by additional degradations, beginning soon after the transfer of cells to darkness. Cultivation of cells in darkness in 0.03 M KCl or without utilizable organic carbon (resting media) preserves chloroplast structure and function over a long period, indicating negligible turnover in these cells. Thus, under both growing and resting conditions, darkness induces the arrest of synthesis of plastid constituents. Experiments with the inhibitors cycloheximide, chloramphenicol, and nalidixic acid demonstrate that chloroplast dedifferentiation does not require organelle gene expression, but it is more strictly dependent on biosynthetic events in the nucleo-cytoplasmic compartment than the reverse process, light-induced chloroplast formation. Since cycloheximide at low concentrations in growth medium causes a marked suppression of precursor uptake or re-utilization similar to that in cells of resting media, intracellular precursor deficiency is suggested to control the observed blockade in cytoplasmic synthesis of plastid proteins. On the other hand, darkness might signalize the stop of gene expression in the organelles.Abbreviations Aa aminoacid - CH cycloheximide - CM chloramphenicol - Leu-RS leucyl-tRNA synthetase - RuBP ribulose-1,5-bisphosphate - TCA trichloroacetic acid  相似文献   

16.
A role for lipid trafficking in chloroplast biogenesis   总被引:2,自引:0,他引:2  
Chloroplasts are the defining plant organelle carrying out photosynthesis. Photosynthetic complexes are embedded into the thylakoid membrane which forms an intricate system of membrane lamellae and cisternae. The chloroplast boundary consists of two envelope membranes controlling the exchange of metabolites between the plastid and the extraplastidic compartments of the cell. The plastid internal matrix (stroma) is the primary location for fatty acid biosynthesis in plants. Fatty acids can be assembled into glycerolipids at the envelope membranes of plastids or they can be exported and assembled into lipids at the endoplasmic reticulum (ER) to provide building blocks for extraplastidic membranes. Some of these glycerolipids, assembled at the ER, return to the plastid where they are remodeled into the plastid typical glycerolipids. As a result of this cooperation of different subcellular membrane systems, a rich complement of lipid trafficking phenomena contributes to the biogenesis of chloroplasts. Considerable progress has been made in recent years towards a better mechanistic understanding of lipid transport across plastid envelopes. Lipid transporters of bacteria and plants have been discovered and their study begins to provide detailed mechanistic insights into lipid trafficking phenomena relevant to chloroplast biogenesis.  相似文献   

17.
It has been reported in quite a number of literatures that doubled CO2 concentration increased the photosynthetic rate and dry matter production of C3 plants, but substantially affected C4 plants little. However, why may CO2 enrichment promote growth and either no change or decrease reproductive allocation of the C3 species, but havinag no effects on growth characteristics of the C4 plants? So far, there has been no satisfactory explanation on that mentioned above, except the differences in their CO2 compensatory points. In the past, although some studies on ultrastructure of the chloroplasts under doubled CO2 concentration were limitedly conducted. Almost all the relevant experimental materials were only from C3 plants not from C4 plants, and even though the results were of inconsistancy. Thereby, it needs to verify whether the differences in photosynthesis of C3 and C4 plants at doubled CO2 level is caused by the difference in their chloroplast deterioration. Experiments to this subject were conducted at the Botanical Garden of Institute of Botany, Academia Sinica in 1993 and 1994. Both experimental materials from C3 plant alfalfa (Medicago sativa) and C4 plant foxtail millet (Setaria italica) were cultivated in the cylindrical open-top chambers (2.2 m in diameter × 2.4 m in height) with aluminum frames covered by polyethylene film. Natural air or air with 350× 10-6 CO2 were blown from the bottom of the chamber space with constant temperature between inside and outside of the chamber 〈0.2℃〉. Electron microscopic observation revealed that the ultrastructure of the chloroplasts from C3 plant Medicago sativa and C4 plant Seteria italica growing under the same doubled CO2 concentration were quite different from each other. The differential characteristics in ultrastructure of chloro plasts displayed mainly in the configuration of thylakoid membrances and the accumulation of starch grains. They were as follows: 1. The most striking feature was the building up of starch grains in the chloroplasts of the bundle sheath cells (BSCs) and the mesophyll cells (MCs) at doubled CO2 concentra tion. The starch grains appeared centrifugally first in the BSCs and then in the chloroplast of the other MCs. It was worthy to note that the starch grains in the chloroplasts of C4 plant Setaria ira/ica were much more than those of the C3 plant Medicago sativa . The decline of photosynthesis in the doubled CO2-grown C4 plants might be caused by an over accumulation of starch grains, that deformed the chloroplast even demaged the stroma thylakoids and grana. There might exsist a correlation between the comformation of thylakoid system and starch grain accumulation, namely conversion and transfer of starch need energy from ATP, and coupling factor (CF) for ATP formation distributed mainly on protoplastic surface (PSu) of stroma thylakoid membranes, as well as end and margin membranes of grana thylakoids. Thereby, these results could provide a conclusive evidence for the reason of non effectiveness on growth characteristics of C4 plant. 2. Under normal condition , the mature chlolroplats of higher plants usually develop complete and regularly arranged photosynthetic membrane systems . Chloroplasts from the C4 plant Setaria italica, however, exerted significant changes on stacking degree, grana width and stroma thylakoid length under doubled CO2 concentration; In these changes, the grana stacks were smaller and more numerous, and the number of thylakoids per granum was greatly increased, and the stroma thylakoid was greatly lengthened as compared to those of the control chloroplasts. But the grana were mutually intertwined by stroma thylakoid. The integrity of some of the grana were damaged due to the augmentation of the intrathylakoid space . Similarly, the stroma thylakoids were also expanded. In case. the plant was seriously effected by doubled CO2 concentration as observed in C4 plant Setaria italica , its chloroplasts contained merely the stroma (matrix) with abundant starch grains, while grana and stroma thylakoid membranes were unrecognizable, or occasionally a few residuous pieces of thylakoid membranes could be visualized, leaving a situation which appeared likely to be chloroplast deterioration. However, under the same condition the C3 plant Medicago sativa possessed normally developed chloroplasts, with intact grana and stroma thylakoid membranes. Its chloroplasts contained grana intertwined with stroma thylakoid membranes, and increased in stacking degree and granum width, in spite of more accumulated starch grains within the chloroplasts. These configuration changes of the thylakoid system were in consistant with the results of the authors another study on chloroplast function, viz. the increased capacity of chloroplasts for light absorption and efficiency of PSⅡ.  相似文献   

18.
Leaf discs from etiolated bean plants were found to incorporate [3H]lysine into 80 S ribosomesynthesized proteins in the presence of chloramphenicol (100 mg l–1) when exposed to light. After a 7 min pulse of [3H]lysine, the discs were transferred to the same medium but with nonradioactive lysine, and postincubation was carried out for 24 h. The number of silver grains over the plastids, after the first period of a lag phase, indicates a large increase between 12 and 24 h of postincubation. Simultaneously, the labeling of the cytoplasm becomes reduced during that period. The results show that during inhibition of the protein formation within plastids, the synthesis of plastid-destined proteins in cytoplasm, as well as their transport into plastids, can still proceed.  相似文献   

19.
Under the endosymbiont hypothesis, over a billion years ago a heterotrophic eukaryote entered into a symbiotic relationship with a cyanobacterium (the cyanobiont). This partnership culminated in the plastid that has spread to forms as diverse as plants and diatoms. However, why primary plastid acquisition has not been repeated multiple times remains unclear. Here, we report a possible answer to this question by showing that primary plastid endosymbiosis was likely to have been primed by the secretion in the host cytosol of effector proteins from intracellular Chlamydiales pathogens. We provide evidence suggesting that the cyanobiont might have rescued its afflicted host by feeding photosynthetic carbon into a chlamydia-controlled assimilation pathway.  相似文献   

20.
Peter Brandt 《Planta》1976,133(1):81-83
Summary The multiplication of chloroplasts in synchronized Euglena gracilis, strain Z, requires the existence of a regulating system which coordinates both the synthesis of plastid proteins coded in the plastom and the synthesis of plastid proteins coded in the genom. At 27°C this system can not be influenced by external factors, such as chloramphenicol and cycloheximide. At 35°C, however, the inhibition of the synthesis of plastom-coded proteins by chloramphenicol increases the synthesis of certain plastid proteins coded in the genom. The inhibitor cycloheximide acts vice versa. These results are in favour of the hypothesis that the synthesis of plastid proteins is coordinated by regulator proteins.
Abkürzungen CAP Chloramphenicol - CHM Cycloheximid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号