首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Envelope protein precursors of many viruses are processed by a basic endopeptidase to generate two molecules, one for receptor binding and the other for membrane fusion. Such a cleavage event has not been demonstrated for the hepatitis B virus family. Two binding partners for duck hepatitis B virus (DHBV) pre-S envelope protein have been identified. Duck carboxypeptidase D (DCPD) interacts with the full-length pre-S protein and is the DHBV docking receptor, while duck glycine decarboxylase (DGD) has the potential to bind several deletion constructs of the pre-S protein in vitro. Interestingly, DGD but not DCPD expression was diminished following prolonged culture of primary duck hepatocytes (PDH), which impaired productive DHBV infection. Introduction of exogenous DGD promoted formation of protein-free viral genome, suggesting restoration of several early events in viral life cycle. Conversely, blocking DGD expression in fresh PDH by antisense RNA abolished DHBV infection. Moreover, addition of DGD antibodies soon after virus binding reduced endogenous DGD protein levels and impaired production of covalently closed circular DNA, the template for DHBV gene expression and genome replication. Our findings implicate this second pre-S binding protein as a critical cellular factor for productive DHBV infection. We hypothesize that DCPD, a molecule cycling between the cell surface and the trans-Golgi network, targets DHBV particles to the secretary pathway for proteolytic cleavage of viral envelope protein. DGD represents the functional equivalent of other virus receptors in its interaction with processed viral particles.  相似文献   

2.
J C Pugh  Q Di  W S Mason    H Simmons 《Journal of virology》1995,69(8):4814-4822
To test the hypothesis that susceptibility of hepatocytes to duck hepatitis B virus (DHBV) infection requires cell surface receptors that bind the virus in a specific manner, we developed an assay for the binding of DHBV particles to monolayers of intact cells, using radiolabeled immunoglobulin G specific for DHBV envelope protein. Both noninfectious DHBV surface antigen particles and infectious virions bound to a susceptible fraction (approximately 60%) of Pekin duck hepatocytes. In contrast, binding did not occur to cells that were not susceptible to DHBV infection, including Pekin duck fibroblasts and chicken hepatocytes, and binding to Muscovy duck hepatocytes, which are only weakly susceptible (approximately 1% of cells) to DHBV infection, was virtually undetectable. Within a monolayer, individual Pekin duck hepatocytes appeared to differ markedly in the capacity to bind DHBV, which may explain difficulties that have been encountered in infecting 100% of cells in culture. We have also found that the loss of susceptibility to infection with DHBV that occurs when Pekin duck hepatocytes are maintained for more than a few days in culture correlates with a decline in the number of cells that bind virus particles efficiently. All of these results support the interpretation that the binding event detected by our assay is associated with the interaction between DHBV and specific cell surface receptors that are required for initiation of infection. Our assay may facilitate isolation and identification of hepatocyte receptors for this virus.  相似文献   

3.
J S Li  S P Tong    J R Wands 《Journal of virology》1996,70(9):6029-6035
Infection by human and animal hepadnaviruses displays remarkable host and tissue tropism. The infection cycle probably initiates with binding of the pre-S domain of viral envelope protein to surface receptors present on the hepatocyte. Three types of neutralizing monoclonal antibodies against duck hepatitis B virus (DHBV) have their binding sites clustered within residues 83 to 107 of the pre-S protein, suggesting that this region may constitute a major receptor binding site. A 170- or 180-kDa duck protein (p170 or gp180) which binds DHBV particles through this part of the pre-S sequence has been identified recently. Although the p170 binding protein is host (duck) specific, its distribution is not restricted to DHBV-infectible tissues. Using the pre-S protein fused to glutathione S-transferase and immobilized on Sepharose beads, we have now identified an additional binding protein with a size of 120 kDa (p120). p120 expression is restricted to the liver, kidney, and pancreas, the three major organs of DHBV replication. While optimal p170 binding requires an intact pre-S protein, binding to p120 occurs much more efficiently with a few N- or C-terminally truncated forms. The p120 binding site was mapped to residues 98 to 102 of the pre-S region, which overlaps with a cluster of known virus-neutralizing epitopes. Site-directed mutagenesis revealed residues 100 to 102 (Phe-Arg-Arg) as the critical p120 contact site; nonconservative substitution in any of the three positions abolished p120 binding. Double mutations at positions 100 to 102 markedly reduced DHBV infectivity in cell culture. Short pre-S peptides covering the clustered neutralizing epitopes (also p170 and p120 binding sites) reduced DHBV infectivity in primary duck hepatocyte cultures. Thus, p120 represents a candidate component of the DHBV receptor complex.  相似文献   

4.
Duck hepatitis B virus (DHBV) obtained from the serum of congenitally infected ducks was used to infect primary duck hepatocyte cultures 1 to 4 days after plating. Virus replication was demonstrated by the appearance, beginning at 2 days after infection, of intracellular covalently closed-circular and single-stranded DHBV DNA replicative intermediates which were not present in the inoculating virus preparation. With increasing time after infection there was further amplification of intracellular relaxed circular, covalently closed-circular, and single-stranded DHBV DNA. Cultures of primary duck hepatocytes are competent for infection with DHBV only during the first 4 days of culture. Synthesis of DHBV core antigen and DHBV surface antigen was detected by immunofluorescence in 10% of the hepatocytes in culture. De novo synthesis and release of infectious virus was also demonstrated. Therefore, all stages of viral replication were carried out by these experimentally infected primary hepatocyte cultures. This system makes it possible to study DHBV replication in vitro.  相似文献   

5.
To test the hypothesis that in vivo resistance to hepadnavirus infection was due to resistance of host hepatocytes, we isolated hepatocytes from Muscovy ducklings and chickens, birds that have been shown to be resistant to duck hepatitis B virus (DHBV) infection, and attempted to infect them in vitro with virus from congenitally infected Pekin ducks. Chicken hepatocytes were resistant to infection, but we were able to infect approximately 1% of Muscovy duck hepatocytes in culture. Infection requires prolonged incubation with virus at 37 degrees C. Virus spread occurs in the Muscovy cultures, resulting in 5 to 10% DHBV-infected hepatocytes by 3 weeks after infection. The relatively low rate of accumulation of DHBV DNA in infected Muscovy hepatocyte cultures is most likely due to inefficient spread of virus infection; in the absence of virus spread, the rates of DHBV replication in Pekin and Muscovy hepatocyte cultures are similar. 5-Azacytidine treatment can induce susceptibility to DHBV infection in resistant primary Pekin hepatocytes but appears to have no similar effect in Muscovy cultures. The relatively inefficient infection of Muscovy duck hepatocytes that we have described may account for the absence of a detectable viremia in Muscovy ducklings experimentally infected with DHBV.  相似文献   

6.
S Tong  J Li    J R Wands 《Journal of virology》1995,69(11):7106-7112
Identification of cell surface viral binding proteins is important for understanding viral attachment and internalization. We have fused the pre-S domain of the duck hepatitis B virus (DHBV) large envelope protein to glutathione S-transferase and demonstrated a 170-kDa binding protein (p170) in [35S]methionine-labeled duck hepatocyte lysates. This glycoprotein was found abundantly in all extrahepatic tissues infectible with DHBV and in some noninfectible tissues, though it is not secreted into the blood. The interaction of pre-S fusion protein with p170 was competitively inhibited by wild-type DHBV in a dose-dependent manner. In addition, infection of hepatocytes with DHBV blocked the binding of pre-S fusion protein to p170, which suggests a biological role for p170 during natural infection. The p170 binding site was mapped to a conserved sequence of 16 amino acid residues (positions 87 to 102) by using 24 pre-S deletion mutants; this binding domain coincides with a major virus-neutralizing antibody epitope. Furthermore, site-directed mutagenesis revealed that an arginine residue at position 97 is critical for p170 binding. p170 was purified by a combination of ion-exchange and affinity chromatographies, and four peptide sequences were obtained. Two peptides showed significant similarities to human and animal carboxypeptides H, M, and N. Taken together, these results raise the possibility that the p170 binding protein is important during the replication cycle of DHBV.  相似文献   

7.
To date, no detailed analysis of the neutralization properties of duck hepatitis B virus (DHBV) has been reported, and it is not clear whether any of the known neutralization epitopes correspond to the viral receptor binding site or to sequences involved in the cell entry pathway. We demonstrate here that antibodies directed against two overlapping peptides (amino acids 83 to 97 and 93 to 107), covering the sequences of most DHBV pre-S neutralizing epitopes, both inhibit virus binding to primary duck hepatocytes and neutralize virus infectivity. An extensive mutagenesis of the motif 88WTP90, which is the shortest sequence of the epitope recognized by the virus-neutralizing monoclonal antibody (MAb) 900 was performed in order to define the amino acids involved in these interactions. Single point mutations within this epitope affected neither virus replication nor infectivity but abolished virus neutralization by MAb 900 completely. Interestingly, mutants with two and three consecutive residue replacements (SIP and SIH) within this epitope retained replication competence but were no longer infectious. The loss of infectivity of SIH and SIP mutant particles was associated with significantly reduced binding to primary duck hepatocytes and could be rescued by trans complementation with wild-type pre-S protein. Taken together, these results indicate that each amino acid of the DHBV pre-S sequence 88WTP90 is critical for recognition by the neutralizing MAb 900 and that replacement of the first two or all three residues strongly reduces virus interaction with hepatocytes and abrogates infectivity. These data imply that the motif 88WTP90 contains key residues which are critical for interaction with both the neutralizing MAb and the host cell.  相似文献   

8.
J Kck  E M Borst    H J Schlicht 《Journal of virology》1996,70(9):5827-5831
The infectious entry pathway of duck hepatitis B virus (DHBV) was investigated with primary duck hepatocytes. Virus uptake was measured by a selective PCR technique which allows for the detection of a successful infection without the need for viral replication or gene expression. To test whether DHBV uptake occurs by endocytosis, the effects of energy depletion were analyzed. The requirement for an acidic intracellular pH was tested with the lysosomotropic agent ammonium chloride. The data show that energy depletion prevents the uptake of DHBV into primary hepatocytes whereas ammonium chloride has no effect. From these data, we conclude that DHBV is taken up by its host cells by endocytosis. However, in contrast to that of most other enveloped viruses, escape of DHBV from the endocytotic route does not depend on an acidic intracellular compartment.  相似文献   

9.
Superinfection exclusion is the phenomenon whereby a virus prevents the subsequent infection of an already infected host cell. The Pekin duck hepatitis B virus (DHBV) model was used to investigate superinfection exclusion in hepadnavirus infections. Superinfection exclusion was shown to occur both in vivo and in vitro with a genetically marked DHBV, DHBV-ClaI, which was unable to establish an infection in either DHBV-infected ducklings or DHBV-infected primary duck hepatocytes (PDHs). In addition, exclusion occurred in vivo even when the second virus had a replicative advantage. Superinfection exclusion appears to be restricted to DHBV, as adenovirus, herpes simplex virus type 1, and vesicular stomatitis virus were all capable of efficiently infecting DHBV-infected PDHs. Exclusion was dependent on gene expression by the original infecting virus, since UV-irradiated DHBV was unable to mediate the exclusion of DHBV-ClaI. Using recombinant adenoviruses expressing DHBV proteins, we determined that the large surface antigen mediated exclusion. The large surface antigen is known to cause down-regulation of a DHBV receptor, carboxypeptidase D (CPD). Receptor down-regulation is a mechanism of superinfection exclusion seen in other viral infections, and so it was investigated as a possible mechanism of DHBV-mediated exclusion. However, a mutant large surface antigen which did not down-regulate CPD was still capable of inhibiting DHBV infection of PDHs. In addition, exclusion of DHBV-ClaI did not correlate with a decrease in CPD levels. Finally, virus binding assays and confocal microscopy analysis of infected PDHs indicated that the block in infection occurs after internalization of the second virus. We suggest that superinfection exclusion may result from the role of the L surface antigen as a regulator of intracellular trafficking.  相似文献   

10.
To better define the molecules involved in the initial interaction between hepadnaviruses and hepatocytes, we performed binding and infectivity studies with the duck hepatitis B virus (DHBV) and cultured primary duck hepatocytes. In competition experiments with naturally occurring subviral particles containing DHBV surface proteins, these DNA-free particles were found to interfere with viral infectivity if used at sufficiently high concentrations. In direct binding saturation experiments with radiolabelled subviral particles, a biphasic titration curve containing a saturable component was obtained. Quantitative evaluation of both the binding and the infectivity data indicates that the duck hepatocyte presents about 10(4) high-affinity binding sites for viral and subviral particles. Binding to these productive sites may be preceded by reversible virus attachment to a large number of less specific, nonsaturable primary binding sites. To identify which of the viral envelope proteins is responsible for hepatocyte-specific attachment, subviral particles containing only one of the two DHBV surface proteins were produced in Saccharomyces cerevisiae. In infectivity competition experiments, only particles containing the large pre-S/S protein were found to markedly reduce the efficiency of DHBV infection, while particles containing the small S protein had only a minor effect. Similarly, physical binding of radiolabelled serum-derived subviral particles to primary duck hepatocytes was inhibited well only by the yeast-derived pre-S/S particles. Together, these results strongly support the notion that hepadnaviral infection is initiated by specific attachment of the pre-S domain of the large DHBV envelope protein to a limited number of hepatocellular binding sites.  相似文献   

11.
Residual hepatitis B virus (HBV) DNA can be detected in serum and liver after apparent recovery from transient infection. However, it is not known if this residual HBV DNA represents ongoing viral replication and antigen expression. In the current study, ducks inoculated with duck hepatitis B virus (DHBV) were monitored for residual DHBV DNA following recovery from transient infection until 9 months postinoculation (p.i.). Resolution of DHBV infection occurred in 13 out of 15 ducks by 1-month p.i., defined as clearance of DHBV surface antigen-positive hepatocytes from the liver and development of anti-DHBV surface antibodies. At 9 months p.i., residual DHBV DNA was detected using nested PCR in 10/11 liver, 7/11 spleen, 2/11 kidney, 1/11 heart, and 1/11 adrenal samples. Residual DHBV DNA was not detected in serum or peripheral blood mononuclear cells. Within the liver, levels of residual DHBV DNA were 0.0024 to 0.016 copies per cell, 40 to 80% of which were identified as covalently closed circular viral DNA by quantitative PCR assay. This result, which was confirmed by Southern blot hybridization, is consistent with suppressed viral replication or inactive infection. Samples of liver and spleen cells from recovered animals did not transmit DHBV infection when inoculated into 1- to 2-day-old ducklings, and immunosuppressive treatment of ducks with cyclosporine and dexamethasone for 4 weeks did not alter levels of residual DHBV DNA in the liver. These findings further characterize a second form of hepadnavirus persistence in a suppressed or inactive state, quite distinct from the classical chronic carrier state.  相似文献   

12.
Virus-cell surface receptor interactions are of major interest. Hepadnaviruses are a family of partially double-stranded DNA viruses with liver tropism and a narrow host range of susceptibility to infection. At least in the case of duck hepatitis B virus (DHBV), host specificity seems controlled partly at the receptor level. The middle portion in the pre-S region of the viral large envelope protein binds specifically to duck carboxypeptidase D (DCPD) but not to its human or chicken homologue. Although domain C of DCPD is implicated in ligand binding, the exact pre-S contact site remains to be determined. We prepared and tested a panel of chimeric constructs consisting of DCPD and human carboxypeptidase D (HCPD). Our results indicate that a short region at the N terminus of domain C (residues 920 to 949) is critical to DHBV binding and is a major determinant for the host specificity of DHBV infection. Replacing this region of the DCPD molecule with its human homologue abolished the DHBV interaction, whereas introducing this DCPD sequence into HCPD conferred efficient DHBV binding. Extensive analysis of site-directed mutants revealed that both conserved and nonconserved residues were important for the pre-S interaction. There were primary sequence variations and secondary structural differences that contributed to the inability of HCPD to bind the DHBV pre-S domain.  相似文献   

13.
Carboxypeptidase D Is an Avian Hepatitis B Virus Receptor   总被引:3,自引:0,他引:3       下载免费PDF全文
The receptor molecules for human and animal hepatitis B viruses have not been defined. Previous studies have described a 170 to 180 kDa molecule (p170 or gp180) that binds in vitro to the pre-S domain of the large envelope protein of duck hepatitis B virus (DHBV); cDNA cloning revealed the binding protein to be duck carboxypeptidase D (DCPD). In the present study, the DCPD cDNA was transfected into several nonpermissive human-, monkey-, and avian species-derived cell lines. Cells transfected with a plasmid encoding the full-length DCPD protein bound DHBV particles, whereas cells expressing truncated versions of DCPD protein that fail to bind the pre-S protein did not. The DHBV binding to DCPD-reconstituted cells was blocked by a monoclonal antibody that neutralizes DHBV infection of primary duck hepatocytes (PDH) and also by a pre-S peptide previously shown to inhibit DHBV infection of PDH. In addition to promoting virus binding, DCPD expression was associated with internalization of viral particles. The entry process was prevented by incubation of reconstituted cells with DHBV at 4 degrees C and by the addition of energy-depleting agents known to block DHBV entry into PDH. These results demonstrated that DCPD is a DHBV receptor. However, the lack of complete viral replication in DCPD-reconstituted cells suggested that additional factors are required for postentry events in immortalized cell lines.  相似文献   

14.
We have investigated the mechanism of duck hepatitis B virus (DHBV) entry into susceptible primary duck hepatocytes (PDHs), using mutants of carboxypeptidase D (gp180), a transmembrane protein shown to act as the primary cellular receptor for avian hepatitis B virus uptake. The variant proteins were abundantly produced from recombinant adenoviruses and tested for the potential to functionally outcompete the endogenous wild-type receptor. Overexpression of wild-type gp180 significantly enhanced the efficiency of DHBV infection in PDHs but did not affect ongoing DHBV replication, an observation further supporting gp180 receptor function. A gp180 mutant deficient for endocytosis abolished DHBV infection, indicating endocytosis to be the route of hepadnaviral entry. With further gp180 variants, carrying mutations in the cytoplasmic domain and characterized by an accelerated turnover, the ability of gp180 to function as a DHBV receptor was found to depend on a wild-type-like sorting phenotype which largely avoids transport toward the endolysosomal compartment. Based on these data, we propose a model in which a distinct intracellular DHBV traffic to the endosome, but not beyond, is a prerequisite for completion of viral entry, i.e., for fusion and capsid release. Furthermore, the deletion of the two enzymatically active carboxypeptidase domains of gp180 did not lead to a loss of receptor function.  相似文献   

15.
A study was carried out to determine some of the factors that might distinguish transient from chronic hepadnavirus infection. First, to better characterize chronic infection, Pekin ducks, congenitally infected with the duck hepatitis B virus (DHBV), were used to assess age-dependent variations in viremia, percentage of DHBV-infected hepatocytes, and average levels of DNA replication intermediates in the cytoplasm and of covalently closed circular DNA in the nuclei of infected hepatocytes. Levels of viremia and viral DNA were found to peak at about the time of hatching but persisted at relatively constant levels in chronically infected birds up to 2 years of age. The percentage of infected hepatocytes was also constant, with DHBV replication in virtually 100% of hepatocytes in all birds. Next, we found that adolescent ducks inoculated intravenously with a large dose of DHBV also developed massive infection of hepatocytes with an early but low-level viremia, followed by rapid development of a neutralizing antibody response. No obvious quantitative or qualitative differences between transiently and chronically infected liver tissue were detected in the intracellular markers of viral replication examined. However, in the adolescent duck experiment, DHBV infection was rapidly cleared from the liver even when up to 80% of hepatocytes were initially infected. In all of these ducks, clearance of infection was accompanied by only a mild hepatitis, with no evidence that massive cell death contributed to the clearance. This finding suggested that mechanisms in addition to immune-mediated destruction of hepatocytes might make major contributions to clearance of infections, including physiological turnover of hepatocytes in the presence of a neutralizing antibody response and/or spontaneous loss of the capacity of hepatocytes to support virus replication.  相似文献   

16.
A cell surface protein that binds avian hepatitis B virus particles.   总被引:16,自引:10,他引:6       下载免费PDF全文
K Kuroki  R Cheung  P L Marion    D Ganem 《Journal of virology》1994,68(4):2091-2096
We have identified a 180-kDa cellular glycoprotein (gp180) that binds with high affinity to duck hepatitis B virus (DHBV) particles. The protein was detected by coprecipitating labeled duck hepatocyte proteins with virions or recombinant DHBV envelope proteins, using nonneutralizing monoclonal antibodies to the virion envelope. Binding of gp180 requires only the pre-S region of the viral large envelope protein, since recombinant fusion proteins bearing only this region efficiently coprecipitate gp180. The DHBV-gp180 interaction is blocked by two independent neutralizing monoclonal antibodies. The protein is found on both internal and surface membranes of the cell, and the species distribution of gp180 binding activity mirrors the known host range of DHBV infection. Functional gp180 is expressed in a wide variety of tissues in susceptible ducks.  相似文献   

17.
The duck hepatitis B virus (DHBV) envelope is comprised of two transmembrane (TM) proteins, the large (L) and the small (S), that assemble into virions and subviral particles. Secondary-structure predictions indicate that L and S have three alpha-helical, membrane-spanning domains, with TM1 predicted to act as the fusion peptide following endocytosis of DHBV into the hepatocyte. We used bafilomycin A1 during infection of primary duck hepatocytes to show that DHBV must be trafficked from the early to the late endosome for fusion to occur. Alanine substitution mutations in TM1 of L and S, which lowered TM1 hydrophobicity, were used to examine the role of TM1 in infectivity. The high hydrophobicity of the TM1 domain of L, but not of S, was shown to be essential for virus infection at a step downstream of receptor binding and virus internalization. Using wild-type and mutant synthetic peptides, we demonstrate that the hydrophobicity of this domain is required for the aggregation and the lipid mixing of phospholipid vesicles, supporting the role of TM1 as the fusion peptide. While lipid mixing occurred at pH 7, the kinetics of insertion of the fusion peptide was increased at pH 5, consistent with the location of DHBV in the late-endosome compartment and previous studies of the nonessential role of low pH for infectivity. Exchange of the TM1 of DHBV with that of hepatitis B virus yielded functional, infectious DHBV particles, suggesting that TM1 of all of the hepadnaviruses act similarly in the fusion mechanism.  相似文献   

18.
Functionally relevant hepadnavirus-cell surface interactions were investigated with the duck hepatitis B virus (DHBV) animal model by using an in vitro infection competition assay. Recombinant DHBV pre-S polypeptides, produced in Escherichia coli, were shown to inhibit DHBV infection in a dose-dependent manner, indicating that monomeric pre-S chains were capable of interfering with virus-receptor interaction. Particle-associated pre-S was, however, 30-fold more active, suggesting that cooperative interactions enhance particle binding. An 85-amino-acid pre-S sequence, spanning about half of the DHBV pre-S chain, was characterized by deletion analysis as essential for maximal inhibition. Pre-S polypeptides from heron hepatitis B virus (HHBV) competed DHBV infection equally well despite a 50% difference in amino acid sequence and a much-reduced infectivity of HHBV for duck hepatocytes. These observations are taken to indicate (i) that the functionality of the DHBV pre-S subdomain, which interacts with the cellular receptor, is determined predominantly by a defined three-dimensional structure rather than by primary sequence elements; (ii) that cellular uptake of hepadnaviruses is a multistep process involving more than a single cellular receptor component; and (iii) that gp180, a cellular receptor candidate unable to discriminate between DHBV and HHBV, is a common component of the cellular receptor complex for avian hepadnaviruses.  相似文献   

19.
A 120-kilodalton protein (p120) was identified in the duck liver that binds to several truncated versions of duck hepatitis B virus (DHBV) pre-S envelope protein, suggesting p120 may serve as a DHBV co-receptor. The amino acid sequences of tryptic peptides from purified p120 were found to be the duck p protein of the glycine decarboxylase complex (DGD). DGD cDNA cloning revealed extensive protein conservation with the chicken homologue except for several insertions in the N-terminal leader sequence. The DGD cDNA contained no in-frame AUG codon at the predicted initiation site of the open reading frame, and site-directed mutagenesis experiments established an AUU codon as the translational initiator. The DGD protein expressed in rabbit reticulocyte lysates bound truncated DHBV pre-S protein identical to that of p120 derived from duck liver confirming DGD as p120. Moreover, transfection studies in liver- and kidney-derived cells revealed both cell surface and cytoplasmic expression of the protein. Cloning of the glycine decarboxylase cDNA will permit a direct test of whether it functions as a cell surface co-receptor or as a co-factor in the DHBV replication cycles.  相似文献   

20.
Previous studies have demonstrated that nucleic acid polymers (NAPs) have both entry and post-entry inhibitory activity against duck hepatitis B virus (DHBV) infection. The inhibitory activity exhibited by NAPs prevented DHBV infection of primary duck hepatocytes in vitro and protected ducks from DHBV infection in vivo and did not result from direct activation of the immune response. In the current study treatment of primary human hepatocytes with NAP REP 2055 did not induce expression of the TNF, IL6, IL10, IFNA4 or IFNB1 genes, confirming the lack of direct immunostimulation by REP 2055. Ducks with persistent DHBV infection were treated with NAP 2055 to determine if the post-entry inhibitory activity exhibited by NAPs could provide a therapeutic effect against established DHBV infection in vivo. In all REP 2055-treated ducks, 28 days of treatment lead to initial rapid reductions in serum DHBsAg and DHBV DNA and increases in anti-DHBs antibodies. After treatment, 6/11 ducks experienced a sustained virologic response: DHBsAg and DHBV DNA remained at low or undetectable levels in the serum and no DHBsAg or DHBV core antigen positive hepatocytes and only trace amounts of DHBV total and covalently closed circular DNA (cccDNA) were detected in the liver at 9 or 16 weeks of follow-up. In the remaining 5/11 REP 2055-treated ducks, all markers of DHBV infection rapidly rebounded after treatment withdrawal: At 9 and 16 weeks of follow-up, levels of DHBsAg and DHBcAg and DHBV total and cccDNA in the liver had rebounded and matched levels observed in the control ducks treated with normal saline which remained persistently infected with DHBV. These data demonstrate that treatment with the NAP REP 2055 can lead to sustained control of persistent DHBV infection. These effects may be related to the unique ability of REP 2055 to block release of DHBsAg from infected hepatocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号