首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The EcoCyc and MetaCyc databases   总被引:5,自引:0,他引:5       下载免费PDF全文
EcoCyc is an organism-specific Pathway/Genome Database that describes the metabolic and signal-transduction pathways of Escherichia coli, its enzymes, and-a new addition-its transport proteins. MetaCyc is a new metabolic-pathway database that describes pathways and enzymes of many different organisms, with a microbial focus. Both databases are queried using the Pathway Tools graphical user interface, which provides a wide variety of query operations and visualization tools. EcoCyc and MetaCyc are available at http://ecocyc.PangeaSystems.com/ecocyc/  相似文献   

2.
MetaCyc (http://metacyc.org) contains experimentally determined biochemical pathways to be used as a reference database for metabolism. In conjunction with the Pathway Tools software, MetaCyc can be used to computationally predict the metabolic pathway complement of an annotated genome. To increase the breadth of pathways and enzymes, more than 60 plant-specific pathways have been added or updated in MetaCyc recently. In contrast to MetaCyc, which contains metabolic data for a wide range of organisms, AraCyc is a species-specific database containing only enzymes and pathways found in the model plant Arabidopsis (Arabidopsis thaliana). AraCyc (http://arabidopsis.org/tools/aracyc/) was the first computationally predicted plant metabolism database derived from MetaCyc. Since its initial computational build, AraCyc has been under continued curation to enhance data quality and to increase breadth of pathway coverage. Twenty-eight pathways have been manually curated from the literature recently. Pathway predictions in AraCyc have also been recently updated with the latest functional annotations of Arabidopsis genes that use controlled vocabulary and literature evidence. AraCyc currently features 1,418 unique genes mapped onto 204 pathways with 1,156 literature citations. The Omics Viewer, a user data visualization and analysis tool, allows a list of genes, enzymes, or metabolites with experimental values to be painted on a diagram of the full pathway map of AraCyc. Other recent enhancements to both MetaCyc and AraCyc include implementation of an evidence ontology, which has been used to provide information on data quality, expansion of the secondary metabolism node of the pathway ontology to accommodate curation of secondary metabolic pathways, and enhancement of the cellular component ontology for storing and displaying enzyme and pathway locations within subcellular compartments.  相似文献   

3.
EcoCyc: Encyclopedia of Escherichia coli genes and metabolism.   总被引:4,自引:2,他引:2       下载免费PDF全文
The encyclopedia of Escherichia coli genes and metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of E.coli. The database describes 3030 genes of E.coli , 695 enzymes encoded by a subset of these genes, 595 metabolic reactions that occur in E.coli, and the organization of these reactions into 123 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc can be thought of as an electronic review article because of its copious references to the primary literature, and as a (qualitative) computational model of E.coli metabolism. EcoCyc is available at URL http://ecocyc.PangeaSystems.com/ecocyc/  相似文献   

4.
MOTIVATION: We seek to determine the accuracy of computational methods for predicting metabolic pathways in sequenced genomes, and to understand the contributions of both the prediction algorithms, and the reference pathway databases used by those algorithms, to the prediction accuracy. RESULTS: The comparisons we performed were as follows. (1) We compared two predictions of the pathway complements of Helicobacter pylori that were computed by an early version of our pathway-prediction algorithm: prediction A used the EcoCyc E. coli pathway DB as the reference database (DB) for prediction, and prediction B used the MetaCyc pathway DB (a superset of EcoCyc) as the reference pathway DB. The MetaCyc-based prediction contained 75% more pathway predictions, but we believe a significant number of those predictions were false positives. (2) We compared two predictions of the pathway complement of H. pylori that used MetaCyc as the reference pathway DB, but that used different algorithms: the original PathoLogic algorithm, and an enhanced version of the algorithm designed to eliminate false-positive pathway predictions. The improved algorithm predicted 30\% fewer metabolic pathways than the original algorithm; all of the eliminated pathways are believed to be false-positive predictions. (3) We compared the 98 pathways predicted by the enhanced algorithm with the results of a manual analysis of the pathways of H. pylori. Results: 40 of the computationally predicted pathways were consistent with the manual analysis, 13 pathways are considered false-positive predictions, and four pathways had partially overlapping topologies. Twenty-six predicted pathways were not mentioned in the manual analysis; we believe these are correct predictions by PathoLogic that were not found by the manual analysis. Five pathways from the manual analysis were not found computationally. Agreement between the computational and manual predictions was good overall, with the computational analysis inferring many pathways that the manual analysis did not identify. Ultimately the manual analysis is also partially speculative, and therefore is not an absolute measure of correctness. The algorithm is designed to err on the side of more false positives to bring more potential pathways to the user's attention. The resulting H. pylori pathway DB is freely available at http://ecocyc.org:1555/HPY/organism-summary?object=HPY. AVAILABILITY: The Pathway Tools software is freely available to academic users, and is available to commercial users for a fee. Contact pkarp@ai.sri.com for information on obtaining the software.  相似文献   

5.
Eco Cyc: encyclopedia of Escherichia coli genes and metabolism.   总被引:1,自引:0,他引:1       下载免费PDF全文
The EcoCyc database describes the genome and gene products of Escherichia coli, its metabolic and signal-transduction pathways, and its tRNAs. The database describes 4391 genes of E.coli, 695 enzymes encoded by a subset of these genes, 904 metabolic reactions that occur in E.coli, and the organization of these reactions into 129 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc has many references to the primary literature, and is a (qualitative) computational model of E. coli metabolism. EcoCyc is available at URL http://ecocyc. PangeaSystems.com/ecocyc/  相似文献   

6.
AraCyc is a database containing biochemical pathways of Arabidopsis, developed at The Arabidopsis Information Resource (http://www.arabidopsis.org). The aim of AraCyc is to represent Arabidopsis metabolism as completely as possible with a user-friendly Web-based interface. It presently features more than 170 pathways that include information on compounds, intermediates, cofactors, reactions, genes, proteins, and protein subcellular locations. The database uses Pathway Tools software, which allows the users to visualize a bird's eye view of all pathways in the database down to the individual chemical structures of the compounds. The database was built using Pathway Tools' Pathologic module with MetaCyc, a collection of pathways from more than 150 species, as a reference database. This initial build was manually refined and annotated. More than 20 plant-specific pathways, including carotenoid, brassinosteroid, and gibberellin biosyntheses have been added from the literature. A list of more than 40 plant pathways will be added in the coming months. The quality of the initial, automatic build of the database was compared with the manually improved version, and with EcoCyc, an Escherichia coli database using the same software system that has been manually annotated for many years. In addition, a Perl interface, PerlCyc, was developed that allows programmers to access Pathway Tools databases from the popular Perl language. AraCyc is available at the tools section of The Arabidopsis Information Resource Web site (http://www.arabidopsis.org/tools/aracyc).  相似文献   

7.
MOTIVATION: There is an imperative need to integrate functional genomics data to obtain a more comprehensive systems-biology view of the results. We believe that this is best achieved through the visualization of data within the biological context of metabolic pathways. Accordingly, metabolic pathway reconstruction was used to predict the metabolic composition for Medicago truncatula and these pathways were engineered to enable the correlated visualization of integrated functional genomics data. Results: Metabolic pathway reconstruction was used to generate a pathway database for M. truncatula (MedicCyc), which currently features more than 250 pathways with related genes, enzymes and metabolites. MedicCyc was assembled from more than 225,000 M. truncatula ESTs (MtGI Release 8.0) and available genomic sequences using the Pathway Tools software and the MetaCyc database. The predicted pathways in MedicCyc were verified through comparison with other plant databases such as AraCyc and RiceCyc. The comparison with other plant databases provided crucial information concerning enzymes still missing from the ongoing, but currently incomplete M. truncatula genome sequencing project. MedicCyc was further manually curated to remove non-plant pathways, and Medicago-specific pathways including isoflavonoid, lignin and triterpene saponin biosynthesis were modified or added based upon available literature and in-house expertise. Additional metabolites identified in metabolic profiling experiments were also used for pathway predictions. Once the metabolic reconstruction was completed, MedicCyc was engineered to visualize M. truncatula functional genomics datasets within the biological context of metabolic pathways. Availability: freely accessible at http://www.noble.org/MedicCyc/  相似文献   

8.
BioSilico is a web-based database system that facilitates the search and analysis of metabolic pathways. Heterogeneous metabolic databases including LIGAND, ENZYME, EcoCyc and MetaCyc are integrated in a systematic way, thereby allowing users to efficiently retrieve the relevant information on enzymes, biochemical compounds and reactions. In addition, it provides well-designed view pages for more detailed summary information. BioSilico is developed as an extensible system with a robust systematic architecture.  相似文献   

9.
The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing.  相似文献   

10.
We present a web-based network-construction system, CINPER (CSBL INteractive Pathway BuildER), to assist a user to build a user-specified gene network for a prokaryotic organism in an intuitive manner. CINPER builds a network model based on different types of information provided by the user and stored in the system. CINPER’s prediction process has four steps: (i) collection of template networks based on (partially) known pathways of related organism(s) from the SEED or BioCyc database and the published literature; (ii) construction of an initial network model based on the template networks using the P-Map program; (iii) expansion of the initial model, based on the association information derived from operons, protein-protein interactions, co-expression modules and phylogenetic profiles; and (iv) computational validation of the predicted models based on gene expression data. To facilitate easy applications, CINPER provides an interactive visualization environment for a user to enter, search and edit relevant data and for the system to display (partial) results and prompt for additional data. Evaluation of CINPER on 17 well-studied pathways in the MetaCyc database shows that the program achieves an average recall rate of 76% and an average precision rate of 90% on the initial models; and a higher average recall rate at 87% and an average precision rate at 28% on the final models. The reduced precision rate in the final models versus the initial models reflects the reality that the final models have large numbers of novel genes that have no experimental evidences and hence are not yet collected in the MetaCyc database. To demonstrate the usefulness of this server, we have predicted an iron homeostasis gene network of Synechocystis sp. PCC6803 using the server. The predicted models along with the server can be accessed at http://csbl.bmb.uga.edu/cinper/.  相似文献   

11.
The PathoLogic component of the Pathway Tools software performs prediction of metabolic pathways in sequenced and annotated genomes. This article provides a detailed presentation of the PathoLogic algorithm. The algorithm consists of two phases. The reactome inference phase infers the reactions catalyzed by the organism from the set of enzymes present in the annotated genome. The pathway inference phase infers the metabolic pathways present in the organism from the reactions catalyzed by the organism. Both phases draw on the MetaCyc database of metabolic reactions and pathways. MetaCyc contains two data fields to support pathway inference: the expected taxonomic range of each pathway, and a list of key reactions for pathways. These fields have significantly increased the predictive accuracy of PathoLogic.  相似文献   

12.

Background  

Metabolic reconstruction of microbial, plant and animal genomes is a necessary step toward understanding the evolutionary origins of metabolism and species-specific adaptive traits. The aims of this study were to reconstruct conserved metabolic pathways in the cattle genome and to identify metabolic pathways with missing genes and proteins. The MetaCyc database and PathwayTools software suite were chosen for this work because they are widely used and easy to implement.  相似文献   

13.
On the basis of the annotated genome we reconstructed the metabolic pathways of the lactic acid bacterium Lactobacillus plantarum WCFS1. After automatic reconstruction by the Pathologic tool of Pathway Tools (http://bioinformatics.ai.sri.com/ptools/), the resulting pathway-genome database, LacplantCyc, was manually curated extensively. The current database contains refinements to existing routes and new gram-positive bacterium-specific reactions that were not present in the MetaCyc database. These reactions include, for example, reactions related to cell wall biosynthesis, molybdopterin biosynthesis, and transport. At present, LacplantCyc includes 129 pathways and 704 predicted reactions involving some 670 chemical species and 710 enzymes. We tested vitamin and amino acid requirements of L. plantarum experimentally and compared the results with the pathways present in LacplantCyc. In the majority of cases (32 of 37 cases) the experimental results agreed with the final reconstruction. LacplantCyc is the most extensively curated pathway-genome database for gram-positive bacteria and is open to the microbiology community via the World Wide Web (www.lacplantcyc.nl). It can be used as a reference pathway-genome database for gram-positive microbes in general and lactic acid bacteria in particular.  相似文献   

14.
We present DR-GAS1, a unique, consolidated and comprehensive DNA repair genetic association studies database of human DNA repair system. It presents information on repair genes, assorted mechanisms of DNA repair, linkage disequilibrium, haplotype blocks, nsSNPs, phosphorylation sites, associated diseases, and pathways involved in repair systems. DNA repair is an intricate process which plays an essential role in maintaining the integrity of the genome by eradicating the damaging effect of internal and external changes in the genome. Hence, it is crucial to extensively understand the intact process of DNA repair, genes involved, non-synonymous SNPs which perhaps affect the function, phosphorylated residues and other related genetic parameters. All the corresponding entries for DNA repair genes, such as proteins, OMIM IDs, literature references and pathways are cross-referenced to their respective primary databases. DNA repair genes and their associated parameters are either represented in tabular or in graphical form through images elucidated by computational and statistical analyses. It is believed that the database will assist molecular biologists, biotechnologists, therapeutic developers and other scientific community to encounter biologically meaningful information, and meticulous contribution of genetic level information towards treacherous diseases in human DNA repair systems. DR-GAS is freely available for academic and research purposes at: http://www.bioinfoindia.org/drgas.  相似文献   

15.

Background

A convergence of high-throughput sequencing and computational power is transforming biology into information science. Despite these technological advances, converting bits and bytes of sequence information into meaningful insights remains a challenging enterprise. Biological systems operate on multiple hierarchical levels from genomes to biomes. Holistic understanding of biological systems requires agile software tools that permit comparative analyses across multiple information levels (DNA, RNA, protein, and metabolites) to identify emergent properties, diagnose system states, or predict responses to environmental change.

Results

Here we adopt the MetaPathways annotation and analysis pipeline and Pathway Tools to construct environmental pathway/genome databases (ePGDBs) that describe microbial community metabolism using MetaCyc, a highly curated database of metabolic pathways and components covering all domains of life. We evaluate Pathway Tools’ performance on three datasets with different complexity and coding potential, including simulated metagenomes, a symbiotic system, and the Hawaii Ocean Time-series. We define accuracy and sensitivity relationships between read length, coverage and pathway recovery and evaluate the impact of taxonomic pruning on ePGDB construction and interpretation. Resulting ePGDBs provide interactive metabolic maps, predict emergent metabolic pathways associated with biosynthesis and energy production and differentiate between genomic potential and phenotypic expression across defined environmental gradients.

Conclusions

This multi-tiered analysis provides the user community with specific operating guidelines, performance metrics and prediction hazards for more reliable ePGDB construction and interpretation. Moreover, it demonstrates the power of Pathway Tools in predicting metabolic interactions in natural and engineered ecosystems.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-619) contains supplementary material, which is available to authorized users.  相似文献   

16.
The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle.  相似文献   

17.
Bioterrorism is the intended use of pathogenic strains of microbes to widen terror in a population. There is a definite need to promote research for development of vaccines, therapeutics and diagnostic methods as a part of preparedness to any bioterror attack in the future. BIRS is an open-access database of collective information on the organisms related to bioterrorism. The architecture of database utilizes the current open-source technology viz PHP ver 5.3.19, MySQL and IIS server under windows platform for database designing. Database stores information on literature, generic- information and unique pathways of about 10 microorganisms involved in bioterrorism. This may serve as a collective repository to accelerate the drug discovery and vaccines designing process against such bioterrorist agents (microbes). The available data has been validated from various online resources and literature mining in order to provide the user with a comprehensive information system.

Availability

The database is freely available at http://www.bioterrorism.biowaves.org  相似文献   

18.
19.
In pursuit of a better updated source including 'omics' information for breast cancer, Breast Cancer Database (BCDB) has been developed to provide the researcher with the quick overview of the Breast cancer disease and other relevant information. This database comprises of myriad of information about genes involved in breast cancer, its functions and drug molecules which are currently being used in the treatment of breast cancer. The data available in BCDB is retrieved from the biomedical research literature. It facilitates the user to search information on gene, its location in chromosome, functions and its importance in cancer diseases. Broadly, this can be queried by giving gene name, protein name and drug name. This database is platform independent, user friendly and freely accessible through internet. The data present in BCDB is directly linked to other on-line resources such as NCBI, PDB and PubMed. Hence, it can act as a complete web resource comprising gene sequences, drug structures and literature information related to breast cancer, which is not available in any other breast cancer database. AVAILABILITY: The database is freely available at http://122.165.25.137/bioinfo/breastcancerdb/  相似文献   

20.
Protein-protein interactions (PPIs) are the basis of biological functions. Knowledge of the interactions of a protein can help understand its molecular function and its association with different biological processes and pathways. Several publicly available databases provide comprehensive information about individual proteins, such as their sequence, structure, and function. There also exist databases that are built exclusively to provide PPIs by curating them from published literature. The information provided in these web resources is protein-centric, and not PPI-centric. The PPIs are typically provided as lists of interactions of a given gene with links to interacting partners; they do not present a comprehensive view of the nature of both the proteins involved in the interactions. A web database that allows search and retrieval based on biomedical characteristics of PPIs is lacking, and is needed. We present Wiki-Pi (read Wiki-π), a web-based interface to a database of human PPIs, which allows users to retrieve interactions by their biomedical attributes such as their association to diseases, pathways, drugs and biological functions. Each retrieved PPI is shown with annotations of both of the participant proteins side-by-side, creating a basis to hypothesize the biological function facilitated by the interaction. Conceptually, it is a search engine for PPIs analogous to PubMed for scientific literature. Its usefulness in generating novel scientific hypotheses is demonstrated through the study of IGSF21, a little-known gene that was recently identified to be associated with diabetic retinopathy. Using Wiki-Pi, we infer that its association to diabetic retinopathy may be mediated through its interactions with the genes HSPB1, KRAS, TMSB4X and DGKD, and that it may be involved in cellular response to external stimuli, cytoskeletal organization and regulation of molecular activity. The website also provides a wiki-like capability allowing users to describe or discuss an interaction. Wiki-Pi is available publicly and freely at http://severus.dbmi.pitt.edu/wiki-pi/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号