首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptosis is characterised by the degradation of DNA into a specific pattern of high and low molecular weight fragments seen on agarose gels as a distribution of sizes between 50-300 kb and sometimes, but not always, a ladder of smaller oligonucleosomal fragments. Using a 2D pulsed field-conventional agarose gel electrophoresis technique, where the second dimension is run under either normal or denaturing conditions, we show that single-strand breaks are introduced into DNA at the initial stages of fragmentation. Using single-strand specific nuclease probes we further show that the complete fragmentation pattern, including release of small oligonucleosomal fragments can also be generated by a single-strand endonuclease. Three classes of sites where single-strand breaks accumulate were identified. The initial breaks produce a distribution of fragment sizes (50 kb to >1 Mb) similar to those generated by Topoisomerase II inhibitors suggesting that cleavage may commence at sites of attachment of DNA to the nuclear matrix. A second class of rare sites is also cut further reducing the size distribution of the fragments to 50-300 kb. Thirdly, single-strand breaks accumulate at the linker region between nucleosomes eventually causing double-strand scissions which release oligonucleosomes. These observations further define the properties of the endonuclease responsible for DNA fragmentation in apoptosis.  相似文献   

2.
H W White 《BioTechniques》1992,12(4):574-579
This report describes the use of a new type of agarose (FastLane agarose) for faster separation of DNA by agarose gel electrophoresis. DNA molecules separated in this agarose exhibited electrophoretic mobilities up to 30% higher than similar separations in standard analytical grade agarose. DNA molecules of all sizes examined showed higher mobilities in FastLane agarose. The mobility increase was predominantly due to the low electroendosmosis of FastLane agarose and was most pronounced in pulsed field gel electrophoresis separations. The magnitude of mobility increase varied depending on the conditions used for electrophoresis.  相似文献   

3.
To determine the yield of radiation-induced single-strand, double-strand and potential breaks (breaks which are converted into actual breaks by alkali or heat treatment) oxygenated aqueous solutions of phi X174 supercoiled circular double-stranded (RFI) DNA were irradiated with increasing doses of gamma-irradiation and subjected to electrophoresis on agarose gels both before and after heat treatment. A complete separation was obtained of RFI, RFII (relaxed circle due to one or more single-strand breaks) and RFIII (linear DNA due to one double-strand break). A computer-assisted spectrophotometric procedure was developed, which enabled us to measure very accurately the amount of DNA present in the three DNA fractions. The quantitative changes of each fraction of DNA with dose could be fitted to a straightforward statistical model, which described the dose-dependent formation of the different types of breaks and from which the D37-values of single-strand, potential single-strand and double-strand breaks could be calculated to be 0.42 +/- 0.02, 1.40 +/- 0.25 and 57 +/- 36 Gy respectively. Potential double-strand breaks were not formed significantly under our conditions. In addition the maximum distance between two independently introduced single-strand breaks in opposite strands resulting in a double-strand break could be determined. The values before and after heat treatment are shown to be 29 +/- 6 and 102 +/- 13 nucleotides, respectively.  相似文献   

4.
We have examined the use of pulsed-field gel electrophoresis (PFGE) to measure DNA double-strand breaks induced in CHO cells by ionizing radiation. The PFGE assay provides a simple method for the measurement of DNA double-strand breaks for doses as low as 3-4 Gy ionizing radiation, and appears applicable for the measurement of damage produced by any agent producing double-strand breaks. The conditions of transverse alternating field electrophoresis determined both the sensitivity of the assay and the ability to resolve DNA fragments with different sizes. For example, with 0.8% agarose and a 1-min pulse time at 250 V for 18 h of electrophoresis, 0.39% of the DNA per gray migrated into the gel, and only molecules less than 1500 kb could be resolved. With 0.56% agarose and a 60-min pulse time at 40 V for 6 days of electrophoresis, 0.55-0.90% of the DNA per gray migrated into the gel, and molecules between 1500 and 7000 kb could be resolved.  相似文献   

5.
Bacillus subtilis Marburg TI (thy,trpC2) has at least four endonuclease activities as assayed by measuring the conversion of single-stranded circular f1 DNA to the linear form by agarose gel electrophoresis. One of them, which is specific for single-stranded DNA (named endonuclease MII), was purified about 320 times by two chromatographic steps and gel filtration, thereby eliminating exonuclease and phosphomonoesterase activities. This activity requires divalent cations but does not require ATP. The molecular weight estimated by gel filtration was about 57,000 daltons. The cleavage products have 5'-phosphoryl termini. At low concentrations, double-stranded DNA is not split to any detectable extent. At high concentrations, however, double-stranded superhelical DNA is attacked to yield open-circular and linear DNA's. The activity of the enzyme towards single-stranded circular DNA relative to that towards double-stranded linear DNA was calculated to be approximately 5,000:1 by comparing the initial rates of introducing single-strand breaks into the DNA's.  相似文献   

6.
M K Mathew  C L Smith  C R Cantor 《Biochemistry》1988,27(26):9204-9210
Pulsed-field gel electrophoresis (PGF) subjects DNA alternately to two electrical fields to resolve DNA ranging from 10,000 base pairs (10 kb) to 10,000 kb in size. The separations are quite sensitive to a variety of experimental variables. This makes it critical to have a wide range of reliable size standards. A technique is described for preparing mixtures of bacteriophage DNA oligomers that span a size range from monomer to more than 30-mer. The relationship between size and mobility of oligomers of different bacteriophage DNA monomers is generally self-consistent. Thus, these samples can serve as primary length standards for DNAs ranging from 10 kb to more than 1500 kb. They have been used to estimate the size of the chromosomal DNAs from various Saccharomyces cerevisiae strains and to test the effect of gel concentration and temperature on PFG. DNA resolution during PFG is slightly improved in agarose gels with small pore sizes, in contrast to continuous electrophoresis where the opposite is observed. PFG mobility is surprisingly sensitive to changes in the running temperature.  相似文献   

7.
Conventional agarose gel electrophoresis separates DNA using a static electric field. The maximum size limit for separation of DNA by this method is about 20 kilobase pairs (kb). A number of new electrophoretic techniques which employ periodic reorientation of electric fields permit separation of DNA well beyond this size limit. We sought to determine whether the use of very fast (millisecond) field switching could improve separation of DNA in the size range of 1 to 50 kb. Additionally, we have compared the resolution obtained with each of the different field switching regimens for DNA in this size range. Switching intervals of from 0.2 to 900 ms were used with unidirectional pulsing of a single electric field, with pulsed field gels, and with field inversion gel electrophoresis. Plotting the mobility of DNA as a function of size demonstrates that under the conditions used, each of these techniques offers comparable resolution. We also have examined the separation obtained when field inversion gels are run with forward and reverse fields of equal voltage and different durations, versus using fields of equal duration and different voltages. Field inversion which uses forward and reverse fields of different voltages yields resolution which is superior to the other methods examined.  相似文献   

8.
B Birren  E Lai 《Nucleic acids research》1994,22(24):5366-5370
Pulsed field gel electrophoresis (PFGE) is capable of resolving a wide size range of DNA molecules which would all co-migrate in conventional agarose gels. We describe pulsed field gel conditions which permit DNA fragments of up to 250 kilobases (kb) to be separated in only 3.5 h. The separations, which employ commercially available gel boxes, are achieved using conditions which deviate significantly from traditional pulsed field conditions. PFGE separations have been thought to require reorientation angles greater than 90 degrees to be effective. However, reorientation angles of 90 degrees and even less will resolve DNA fragments a few hundred kb and smaller approximately 5 x faster than with standard pulsed field conditions. The mobility of DNA fragments separated with 90 degrees reorientation angles is switch time-dependent, as is seen for DNA run with the commonly used reorientation angle of 120 degrees. With DNA fragments of several hundred kb and smaller, higher field strengths may be used, resulting in still greater increases in separation speed. The conditions described allow DNA from large insert bacterial clones, such as those using cosmid, Fosmid, P1, bacterial artificial chromosome (BAC), or P1-derived artificial chromosome (PAC) vectors, to be prepared, digested and analyzed on gels within a single working day.  相似文献   

9.
An experimental setup using static-field gel electrophoresis (SFGE) was developed to determine radiation-induced DNA double-strand breaks (DSBs) in CHO-K1 cells after exposure to X-rays or heavy charged particles. The fraction of DNA eluted into the gel matrix depends on the quantity of DSBs introduced. In agreement with a recent report, SFGE and pulsed-field electrophoresis were found to be equally sensitive in DSB detection. With radiolabeled DNA from cell cultures, the absolute amount of DNA migrating out of agarose plugs into the gel was quantified by determining the radioactivity in the gel lane. Alternatively, relative measurements of the amount of DNA released into the gel were achieved with a standardized protocol for both SFGE and a subsequent densitometric scanning of photographic negatives from gels stained with ethidium bromide. After calibration with the radioactive method, the fractions of DNA retained could be calculated directly from the data obtained with the densitometric assay to set up classical dose-effect curves. This procedure was validated for its application with heavy ions using an 500 MeV/u lead beam.  相似文献   

10.
Oriented agarose gels were prepared by applying an electric field to molten agarose while it was solidifying. Immediately afterwards, DNA samples were applied to the gel and electrophoresed in a constant unidirectional electric field. Regardless of whether the orienting field was applied parallel or perpendicular to the eventual direction of electrophoresis, the mobilities of linear and supercoiled DNA molecules were either faster (80% of the time) or slower (20% of the time) than observed in control, unoriented gels run simultaneously. The difference in mobility in the oriented gel (whether faster or slower) usually increased with increasing DNA molecular weight and increasing voltage applied to orient the agarose matrix. In perpendicularly oriented gels linear DNA fragments traveled in lanes skewed toward the side of the gel; supercoiled DNA molecules traveled in straight lanes. If the orienting voltage was applied parallel to the direction of electrophoresis, both linear and supercoiled DNA molecules migrated in straight lanes. These effects were observed in gels cast from different types of agarose, using various agarose concentrations and two different running buffers, and were observed both with and without ethidium bromide incorporated in the gel. Similar results were observed if the agarose was allowed to solidify first, and the orienting electric field was then applied to the gel for several hours before the DNA samples were added and electrophoresed. The results suggest that the agarose matrix can be oriented by electric fields applied to the gel before and probably during electrophoresis, and that orientation of the matrix affects the mobility and direction of migration of DNA molecules. The skewed lanes observed in the perpendicularly oriented gels suggest that pores or channels can be created in the matrix by application of an electric field. The oriented matrix becomes randomized with time, because DNA fragments in oriented and unoriented gels migrated in straight lanes with identical velocities 24 hours later.  相似文献   

11.
Quantitation of UV-induced DNA damages in nanogram quantities of non-radiactive DNA from irradiated plants by gel electrophoresis requires a prompt, efficient, high-yield method of isolating DNA yielding high-molecular-weight, enzymatically digestible DNA. To meet these criteria we devised a high-yield method for isolating from plant tissue, DNA whose single-strand molecular length is greater than about 170 kb. Leaf tissue is embedded in agarose plugs, digested with Proteinase K in the presence of detergent, and treated with phenylmethylsulfonyl fluoride (PMSF). The agarose plugs are then soaked with buffer appropriate to the desired enzyme treatment. Evaluation of the DNA on neutral and alkaline gels indicates its high molecular length and low frequency of single-strand breaks. The DNA can be digested with damage-specific and other endonucleases. The method is especially suitable for DNA damage quantitation, as tissue processing is carried out immediately after harvesting (allowing DNA lesion measurement at precisely known times after irradiation), and many samples can be easily handled at once. It should also be useful for molecular analysis of large numbers of plant samples available only in small quantities. We here use this method to quantitate DNA damage induced by 297 and 365 nm radiation, and calculate the relative damaging effects of these wavebands in today's solar spectrum.  相似文献   

12.
Novel polymers have been prepared for high performance electrophoretic separations of double-stranded DNA (dsDNA). These materials are part of a family of HydroLink high performance electrophoresis polymers. A comparison of the resolving capabilities of dsDNA HydroLink gels to agarose and polyacrylamide separations has been described in an accompanying paper. In this study, we demonstrate that dsDNA HydroLink gels possess ten times the loading capacity of comparable polyacrylamide or agarose gels without compromise to resolution or biological integrity of the separated DNA. A simplified procedure for recovery of separated components is also described.  相似文献   

13.
We describe a novel system for two dimensional electrophoresis at neutral and alkaline pH for determining the double-stranded and single-stranded lengths of DNA. With this system we analysed the mode of micrococcal nuclease digestion of DNA in cellular and SV40 viral chromatin and of supercoiled SV40 DNA. The enzyme reaction occurred in two steps : the enzyme first introduced single-strand breaks, then converted these to double-strand breaks by an adjacent cleavage on the opposite strand. Digestion of cellular chromatin DNA occurred by a similar mechanism. Chromatin fragments produced by limited micrococcal nuclease action contained many single-strand breaks, which may be important when this method is used to prepare chromatin fragments for biochemical and biophysical studies. Nucleosome monomer to tetramer produced at later stages of digestion contained few if any single-strand breaks.  相似文献   

14.
Capillary electrophoresis (CE) is a convenient, fast and non-radioactive method with possibilities for automatization. To analyse single-stranded DNA molecules in a more automated way, we developed a heating device to melt double-stranded DNA fragments in the capillary during electrophoresis. In this study we used this device to obtain single-stranded DNA, necessary for the detection of point mutations in DNA using the single-strand conformation polymorphism technique. Results show that double-stranded DNA molecules can be melted on-line into single-stranded DNA molecules, although not for 100%. In an attempt to find universal electrophoretic conditions for the analysis of single-stranded DNA, we investigated the influence of several parameters on the yield of single-stranded DNA molecules and on the resolution of the single-stranded DNA peaks. We demonstrate that this heating device is a technical adjustment of CE which contributes to more automated analyses of DNA fragments.  相似文献   

15.
B W Birren  M I Simon    E Lai 《Nucleic acids research》1990,18(6):1481-1487
We have previously shown that asymmetric-voltage field inversion electrophoresis produces more uniform separation for fragments between 1 and 50 kilobases (kb) than other modes of pulsed field gel electrophoresis. We now report on the basis of this phenomenon. As in conventional electrophoresis, the pulsed field mobility of DNAs between 1 and 50 kb varies with voltage in a size dependent manner. The complex migration pattern obtained with asymmetric-voltage field inversion electrophoresis reflects the difference between the mobilities of each sized fragment under the conditions used for the forward and reverse fields. We have applied this technique to DNA sequencing gels and find improvement in resolution for single-stranded fragments in polyacrylamide gels.  相似文献   

16.
A systematic study of agarose gel electrophoresis of double-stranded RNA in the kilobase range of sizes was performed. The dsRNA to dsDNA relative mobility was found to depend on gel concentration: in low density gels RNA moves slower and in high density gels - faster than DNA of the same molecular size. The electrophoretic differences were interpreted within the reptation theory to be mainly due to the molecular stiffness differences. The dsRNA persistence length was roughly estimated to be about twice as great as that of DNA.  相似文献   

17.
When an aqueous solution of double-stranded DNA of bacteriophage PM2 containing phenylalanine and saturated with N2O is irradiated with gamma-rays, radiation-induced phenylalanine radicals are bound covalently. Under the conditions used, about 25 phenylalanine molecules may be bound per lethal hit. For single-stranded PM2 DNA, most of the phenylalanine radicals bound are non-lethal. Evidence is presented that, in double-stranded DNA, an appreciable fraction of the single-strand breaks is induced by phenylalanine radicals. Radiation products of phenylalanine and the phenylalanine bound to the DNA decrease the sensitivity of the DNA to the induction of single-strand breaks. There are indications that the high efficiency of protection by radiation products of phenylalanine is due to their positive charge, which will result in a relatively high concentrations fo these compounds in the vicinity of the negatively-charged DNA molecules.  相似文献   

18.
The instantaneous position and velocity of bands of linear, double-stranded DNA were measured during 120° pulsed-field electrophoresis in 1% agarose gels, using a video micrometer capable of simultaneous measurements in two dimensions. When the direction of the field was switched, the band initially retraced the last portion of its path during the preceding pulse. The distance the band moved backward increased with DNA length: 48.5 kb (kilobase pair) DNA moved backward only 0.2 μm, but 1110 kb DNA moved backward 24 μm, before setting off in a positive direction. The velocity of the DNA band was particularly rapid during the backward movement: the magnitude of the velocity spike increased with M, reaching 2.4 μm/s for 1110 kb DNN, which was about 5 times the steady-state velocity. The velocity in the y direction, perpendicular to the mean drift direction, allowed an even larger transient spike, which also increased with M. Simulation of the dynamics of long DNA chins undergoing gel electrophoresis by a dynamic Monte Carlo method gave instantaneous xy position and velocity in excellent agreement with experiment. The simulation included extensional motions of the DNA within the tube of interconnected agarose pores as well as the possibility of loops (hernias) that escape laterally from the tube. © 1995 John Wiley & Sons, Inc.  相似文献   

19.
Because of their low abundance and short length, telomeric single-stranded extensions have not traditionally been assessed by Southern blot analysis. Instead, most methods have relied on hybridizing radioactively labeled oligonucleotide probes to electrophoresed DNA within agarose gels. Here we describe a rapid and nonradioactive Southern blot-derived method to transfer and detect telomeric single-stranded G-rich overhangs (G-tails) under nondenaturing (native) conditions, using Saccharomyces cerevisiae DNA. Restriction enzyme-digested chromosomal DNA is separated by agarose gel electrophoresis, transferred onto a charged membrane by electroblotting under nondenaturing conditions, and probed with a digoxigenin (DIG)-labeled oligonucleotide. Compared with the prolonged film exposure required to detect radioactive probes, detection of short single-strand G-tails with this method takes mere minutes. Furthermore, following detection of the single-stranded G-tails, the DNA on the membrane can be denatured and reprobed using conventional hybridization and detection methods.  相似文献   

20.
Intracellular poliovirus-specific RNA species can be measured directly by electrophoresis of total cytoplasmic nucleic acids through 1% agarose gels, resulting in the separation of single- and double-stranded forms of poliovirus RNA from each other and from HeLa cell 28S ribosomal RNA. Single-stranded RNA molecules differing by only 15% in length are resolved in this gel system. RNA species can be visualized as fluorescen bands appearing after staining of the gels with ethidium bromide and observation under ultraviolet illumination. The total amount of RNA can be determined by densitometric quantitation of the fluorescent response. In this way, the amount of poliovirus-specific RNA within the cytoplasm of HeLa cells infected for various times has been estimated. At 170-min postinfection, there are 0.67 X 10(5) molecules of single-stranded poliovirus RNA per cell and at 230 min, the amount has increased to 3.7 X 10(5) molecules/cell. Poliovirus double-strnaded RNA reaches a maximum of 0.7 X 10(5) molecules/cell at 330 min after infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号