首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryopreservation of hepatocytes: a review of current methods for banking   总被引:15,自引:0,他引:15  
Cryopreservation, the freezing of hepatocytes in liquid nitrogen for storage, has been investigated for many years, as a method of long-term storage for hepatocytes. Unfortunately an agreed acceptable protocol has been elusive, in part due to the susceptibility of hepatocytes to the freeze thaw process involved. A method for long-term storage (months, possibly years) of human hepatocytes, in particular, is desirable for the development of a clinically applicable bioartificial liver, hepatocyte transplantation and for pharmacotoxicological research. The sources of human liver tissue from which hepatocytes can be derived are limited. Many groups have modified and improved the process of cryopreservation and many new techniques have been published, including the incorporation of such cryopreserved cells in clinically based studies. Further evaluation is still required to develop a universally acceptable protocol. This article reviews the difficulties involved in cryopreserving hepatocytes for banking and examines recent technical advances within this field.  相似文献   

2.

Background

Tumor necrosis factor alpha (TNF) is able to kill cancer cells via receptor-mediated cell death requiring adenosine triphosphate (ATP). Clinical usage of TNF so far is largely limited by its profound hepatotoxicity. Recently, it was found in the murine system that specific protection of hepatocytes against TNF''s detrimental effects can be achieved by fructose-mediated ATP depletion therein. Before employing this quite attractive selection principle in a first clinical trial, we here comprehensively investigated the interdependence between ATP depletion and TNF hepatotoxicity in both in vitro and ex vivo experiments based on usage of primary patient tissue materials.

Methods

Primary human hepatocytes, and both non-tumorous and tumorous patient-derived primary liver tissue slices were used to elucidate fructose-induced ATP depletion and TNF-induced cytotoxicity.

Results

PHH as well as tissue slices prepared from non-malignant human liver specimen undergoing a fructose-mediated ATP depletion were both demonstrated to be protected against TNF-induced cell death. In contrast, due to tumor-specific overexpression of hexokinase II, which imposes a profound bypass on hepatocytic-specific fructose catabolism, this was not the case for human tumorous liver tissues.

Conclusion

Normal human liver tissues can be protected transiently against TNF-induced cell death by systemic pretreatment with fructose used in non-toxic/physiologic concentrations. Selective TNF-targeting of primary and secondary tumors of the liver by transient and specific depletion of hepatocytic ATP opens up a new clinical avenue for the TNF-based treatment of liver cancers.  相似文献   

3.
Isolated human primary hepatocytes are an essential in vitro model for basic and clinical research. For successful application as a model, isolated hepatocytes need to have a good viability and be available in sufficient yield. Therefore, this study aims to identify donor characteristics, intra-operative factors, tissue processing and cell isolation parameters that affect the viability and yield of human hepatocytes. Remnant liver pieces from tissue designated as surgical waste were collected from 1034 donors with informed consent. Human hepatocytes were isolated by a two-step collagenase perfusion technique with modifications and hepatocyte yield and viability were subsequently determined. The accompanying patient data was collected and entered into a database. Univariate analyses found that the viability and the yield of hepatocytes were affected by many of the variables examined. Multivariate analyses were then carried out to confirm the factors that have a significant relationship with the viability and the yield. It was found that the viability of hepatocytes was significantly decreased by the presence of fibrosis, liver fat and with increasing gamma-glutamyltranspeptidase activity and bilirubin content. Yield was significantly decreased by the presence of liver fat, septal fibrosis, with increasing aspartate aminotransferase activity, cold ischemia times and weight of perfused liver. However, yield was significantly increased by chemotherapy treatment. In conclusion, this study determined the variables that have a significant effect on the viability and the yield of isolated human hepatocytes. These variables have been used to generate an algorithm that can calculate projected viability and yield of isolated human hepatocytes. In this way, projected viability can be determined even before isolation of hepatocytes, so that donors that result in high viability and yield can be identified. Further, if the viability and yield of the isolated hepatocytes is lower than expected, this will highlight a methodological problem that can be addressed.  相似文献   

4.
It is widely accepted that the model of choice for pharmacotoxicological studies are human hepatocytes. There is therefore a demand for these cells, but quality must be maintained for their widespread use. We present a retrospective review of the isolation of hepatocytes from both surgically resected tissue and livers rejected for transplantation, and evaluated patient, operative and isolation variables to ascertain which may affect the viability and yield of cells. Seven clinically rejected whole livers and 60 surgically resected specimens (from two distinct operating centres) were isolated. For surgically resected tissue we found that decreasing age, securing the perfusing cannulae with suture rather than reforming Glissons capsule with glue and steatotic livers improved viability. No significant correlation could be found with pre-operative blood results, disease, type of operation, presence or absence of Pringle manoeuvre, weight of tissue isolated, time of digestion with collagenase and cold ischaemic time. There was a reduction in mean yield and viability when hepatocyte isolations were performed in livers rejected for transplant, compared to surgically resected tissue although this did not reach significance. Human hepatocytes can be successfully and consistently isolated from surgically resected tissue and appear to be superior to those isolated from rejected for transplant livers. From our study, there are few parameters that significantly affect the quality of isolated hepatocytes, which increases the possible pool of tissue that hepatocytes can be isolated from.  相似文献   

5.
Recent advances in the study of human hepatocytes derived from induced pluripotent stem cells (iPSC) represent new promises for liver disease study and drug discovery. Human hepatocytes or hepatocyte-like cells differentiated from iPSC recapitulate many functional properties of primary human hepatocytes and have been demonstrated as a powerful and efficient tool to model human liver metabolic diseases and facilitate drug development process. In this review, we summarize the recent progress in this field and discuss the future perspective of the application of human iPSC derived hepatocytes.  相似文献   

6.
In vitro drug metabolism by cultured rat, rabbit and human adult hepatocytes has been studied, using ketotifen (ZADITEN) as a model substrate because it is biotransformed in vivo by various metabolic pathways in man and animals. The major in vivo pathways were demonstrated in vitro, namely oxidation in rat hepatocytes, oxidation, glucuronidation and sulfation in rabbit hepatocytes, reduction and glucuronidation in human hepatocytes. Human hepatocytes were the most stable in culture, displaying ketotifen biotransformation for at least one week. These results clearly demonstrated that cultured hepatocytes retain their in vivo specific drug metabolizing activities, including inter-species polymorphism, for a few days. Therefore, pure hepatocyte cultures represent a useful system suitable for drug metabolism studies.  相似文献   

7.
Human StarD5 belongs to the StarD4 subfamily of START (for steroidogenic acute regulatory lipid transfer) domain proteins. We previously reported that StarD5 is located in the cytosolic fraction of human liver and binds cholesterol and 25-hydroxycholesterol. After overexpression of the gene encoding StarD5 in primary rat hepatocytes, free cholesterol accumulated in intracellular membranes. These findings suggested StarD5 to be a directional cytosolic sterol transporter. The objective of this study was to determine the localization of StarD5 in human liver. Western blot analysis confirmed StarD5's presence in the liver but not in human hepatocytes. Immunohistochemistry studies showed StarD5 localized within sinusoidal lining cells in the human liver and colocalized with CD68, a marker for Kupffer cells. Western blot analyses identified the presence of StarD5 in monocytes and macrophages as well as mast cells, basophils, and promyelocytic cells, but not in human hepatocytes, endothelial cells, fibroblasts, osteocytes, astrocytes, or brain tissue. Cell fractionation and immunocytochemistry studies on THP-1 macrophages localized StarD5 to the cytosol and supported an association with the Golgi. The presence of this cholesterol/25-hydroxycholesterol-binding protein in cells related to inflammatory processes provides new clues to the role of this protein in free sterol transport in the cells and in lipid-mediated atherogenesis.  相似文献   

8.
Human hepatocytes are the gold standard for toxicological studies but they have several drawbacks, like scarce availability, high inter-individual variability, a short lifetime, which limits their applicability. The aim of our investigations was to determine, whether HepaRG cells could replace human hepatocytes in uptake experiments for toxicity studies. HepaRG is a hepatoma cell line with most hepatic functions, including a considerable expression of uptake transporters in contrast to other hepatic immortalized cell lines. We compared the effect of cholestatic drugs (bosentan, cyclosporinA, troglitazone,) and bromosulfophthalein on the uptake of taurocholate and estrone-3-sulfate in human and rat hepatocytes and HepaRG cells. The substrate uptake was significantly slower in HepaRG cells than in human hepatocytes, still, in the presence of drugs we observed a concentration dependent decrease in uptake. In all cell types, the culture time had a significant impact not only on the uptake process but on the inhibitory effect of drugs too. The most significant drug effect was measured at 4 h after seeding. Our report is among the first concerning interactions of the uptake transporters in the HepaRG, at the functional level. Results of the present study clearly show that concerning the inhibition of taurocholate uptake by cholestatic drugs, HepaRG cells are closer to human hepatocytes than rat hepatocytes. In conclusion, we demonstrated that HepaRG cells may provide a suitable tool for hepatic uptake studies.  相似文献   

9.
Hepatocyte transplantation (HTX) could be an attractive treatment for patients with liver failure and liver-based metabolic disease. Human primary hepatocytes are ideal in this modality, but the shortage of human livers available for hepatocyte isolation severely limits the use of this form of therapy. A tightly regulated human hepatocyte cell line that grows economically in culture and exhibits differentiated liver functions would be an attractive alternative to the primary human hepatocytes. To test the feasibility, human hepatocytes were immortalized by a retroviral vector expressing simian virus 40 large T antigen and herpes simplex virus-thymidine kinase. A highly differentiated immortal hepatocyte line NKNT-3 was established. NKNT-3 cells grew in chemically defined serum-free medium, retained highly differentiated liver functions, and were sensitivity to ganciclovir as a prodrug. Essentially unlimited availability of NKNT-3 cells may be clinically useful for HTX and bioartificial liver.  相似文献   

10.
Two-step perfusion is considered the gold standard method for isolating hepatocytes from human liver tissue. As perfusion may require a large tissue specimen, which is encapsulated and has accessible vessels for cannulation, only a limited number of tissue samples may be suitable. Therefore, the aim of this work was to develop an alternative method to isolate hepatocytes from non-encapsulated and small samples of human liver tissue. Healthy tissue from 44 human liver resections were graded for steatosis and tissue weights between 7.8 and 600 g were used for hepatocyte isolations. Tissue was diced and underwent a two-step digestion (EDTA and collagenase). Red cell lysis buffer was used to prevent red blood cell contamination and toxicity. Isolated hepatocyte viability was determined by trypan blue exclusion. Western blot and biochemical analyses were undertaken to ascertain cellular phenotype and function. Liver tissue that weighed ≥50 g yielded significantly higher (P < 0.01) cell viability than tissue <50 g. Viable cells secreted urea and displayed the phenotypic hepatocyte markers albumin and cytochrome P450. Presence of steatosis in liver tissue or intra-hepatocellular triglyceride content had no effect on cell viability. This methodology allows for the isolation of viable primary human hepatocytes from small amounts of “healthy” resected liver tissue which are not suitable for perfusion. This work provides the opportunity to increase the utilisation of resection surplus tissue, and may ultimately lead to an increased number of in vitro cellular studies being undertaken using the gold-standard model of human primary hepatocytes.  相似文献   

11.
12.
Guanine nucleotide regulatory proteins (G-proteins) are central to normal hepatocyte function and are implicated in hepatic disease initiation and progression. Regulators of G-protein signaling (RGS) are critical to defining G-protein-dependent signal fidelity, yet the role of RGS proteins in the liver is poorly defined. The aims of this study were to determine RGS17 expression in normal and transformed hepatic tissue and cells, and address the function of RGS17 in hepatic tumorgenicity. RGS17 expression was determined in human and rat HCC tissue and cell lines. Molecular approaches were used to alter RGS17 expression in HCC cells, effects on cell function measured, and RGS17 association with specific Gα-subunits determined. Using these approaches RGS17 mRNA, but not protein, was detectable in human and rat HCC tissue and cells. Conversely, RGS17 mRNA was not detected in normal tissue, isolated hepatocytes, or non-tumorigenic hepatic cells. Subsequent studies using transfected cells demonstrated that RGS17 proteins were not post-translationally modified in HCC cells, and RGS17 expression is governed by protein degradation and not via miRNAs. Notwithstanding inherently low RGS17 protein levels, altering RGS17 expression profoundly affected HCC cell mitogenesis and migration. Analysis of RGS17-G-protein interaction demonstrated RGS17 associates with both Giα- and Gqα-subunits in HCC cells of human and rat origin. In conclusion, these data demonstrate that, despite difficulties in measuring endogenous RGS protein expression, RGS17 is differentially expressed in HCC and plays a central role in regulating transformed hepatocyte tumorgenicity.  相似文献   

13.
Aldehyde dehydrogenase was measured in primary cultures of hepatocytes obtained with a two-step collagenase perfusion either from human hepatic tissue or from livers of Fisher rats. Basal enzyme activity declines gradually as a function of time in culture, but remains at all times higher when measured with propionaldehyde and NAD (P/NAD) than with benzaldehyde and NADP (B/NADP). Treatment of the cultures with 2 M of 3-methylcholanthrene for four days significantly increased the B-NADP activity of human and rat hepatocytes (tenfold and eightfold respectively). In human hepatocytes 3-methylcholanthrene increases also the P/NAD activity, but to a lesser extent (twofold), compared to the B/NADP activity. Due to the significant enhancement of B/NADP activity in cultures of human and rat hepatocytes after application of 3-methylcholanthrene, the initial difference in the basal activity levels between the P/NAD and B/NADP forms diminishes or, in the case of human hepatocytes, is even inverted. These results show for the first time that aldehyde dehydrogenase activity is increased in cultured human hepatocytes. This biochemical property is preserved in human and rat hepatocyte cultures, despite the rather quick loss of the basal aldehyde dehydrogenase activity.Abbreviations ALDH aldehyde dehydrogenase - B benzaldehyde - p-p-DDT 1,1,1,-trichlo-2,2,bis(p-chlorophenyl)ethane - DMSO dimethylsulfoxide - 3-MC 3-methylcholanthrene - MEM Minimal Essential Medium - P proprionaldehyde - TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin  相似文献   

14.

Background

Hypoxia and hypoxia-reoxygenation (H-R) are pathogenic factors in many liver diseases that lead to hepatocyte death as a result of reactive oxygen species (ROS) accumulation. The tumor necrosis factor super-family member CD154 can also induce hepatocyte apoptosis via activation of its receptor CD40 and induction of autocrine/paracrine Fas Ligand/CD178 but the relationship between CD40 activation, ROS generation and apoptosis is poorly understood. We hypothesised that CD40 activation and ROS accumulation act synergistically to drive human hepatocyte apoptosis.

Methods

Human hepatocytes were isolated from liver tissue and exposed to an in vitro model of hypoxia and H-R in the presence or absence of CD154 and/or various inhibitors. Hepatocyte ROS production, apoptosis and necrosis were determined by labelling cells with 2′,7′-dichlorofluorescin, Annexin-V and 7-AAD respectively in a three-colour reporter flow cytometry assay.

Results

Exposure of human hepatocytes to recombinant CD154 or platelet-derived soluble CD154 augments ROS accumulation during H-R resulting in NADPH oxidase-dependent apoptosis and necrosis. The inhibition of c-Jun N-terminal Kinase and p38 attenuated CD154-mediated apoptosis but not necrosis.

Conclusions

CD154-mediated apoptosis of hepatocytes involves ROS generation that is amplified during hypoxia-reoxygenation. This finding provides a molecular mechanism to explain the role of platelets in hepatocyte death during ischemia-reperfusion injury.  相似文献   

15.
The type III interferon (IFN) receptor is preferentially expressed by epithelial cells. It is made of two subunits: IFNLR1, which is specific to IFN-lambda (IFN-λ) and IL10RB, which is shared by other cytokine receptors. Human hepatocytes express IFNLR1 and respond to IFN-λ. In contrast, the IFN-λ response of the mouse liver is very weak and IFNLR1 expression is hardly detectable in this organ. Here we investigated the IFN-λ response at the cellular level in the mouse liver and we tested whether human and mouse hepatocytes truly differ in responsiveness to IFN-λ. When monitoring expression of the IFN-responsive Mx genes by immunohistofluorescence, we observed that the IFN-λ response in mouse livers was restricted to cholangiocytes, which form the bile ducts, and that mouse hepatocytes were indeed not responsive to IFN-λ. The lack of mouse hepatocyte response to IFN-λ was observed in different experimental settings, including the infection with a hepatotropic strain of influenza A virus which triggered a strong local production of IFN-λ. With the help of chimeric mice containing transplanted human hepatocytes, we show that hepatocytes of human origin readily responded to IFN-λ in a murine environment. Thus, our data suggest that human but not mouse hepatocytes are responsive to IFN-λ in vivo. The non-responsiveness is an intrinsic property of mouse hepatocytes and is not due to the mouse liver micro-environment.  相似文献   

16.
17.
Human acellular dermal matrices (ADMs) are used successfully in a variety of procedures, including sports medicine related, wound repair, and breast reconstructions, but the mechanism of repair is still not fully understood. An opportunity to explore this mechanism presented itself when a patient experienced a rerupture of the native tendon due to a fall that occurred 2 months after undergoing an Achilles tendon repair using Matracell treated ADM. The ADM was removed and an extensive histology analysis was performed on the tissue. Additionally, a literature review was conducted to determine the mechanism of ADM integration into the tendon structure and explore if differences in this mechanism exist for different types of human ADMS. The histology analysis demonstrated that the healing process during a tendon reconstruction procedure is similar to that of wound healing. Furthermore, the literature review showed that differences exist in the mechanism for integration among various human ADMs and that these differences may be due to variances in the methods and technologies that manufactures use to process human ADMs.  相似文献   

18.

Background

The liver stages of malaria parasites are inhibited by cytokines such as interferon-γ or Interleukin (IL)-6. Binding of these cytokines to their receptors at the surface of the infected hepatocytes leads to the production of nitric oxide (NO) and radical oxygen intermediates (ROI), which kill hepatic parasites. However, conflicting results were obtained with TNF-α possibly because of differences in the models used. We have reassessed the role of TNF-α in the different cellular systems used to study the Plasmodium pre-erythrocytic stages.

Methods and Findings

Human or mouse TNF-α were tested against human and rodent malaria parasites grown in vitro in human or rodent primary hepatocytes, or in hepatoma cell lines. Our data demonstrated that TNF-α treatment prevents the development of malaria pre-erythrocytic stages. This inhibitory effect however varies with the infecting parasite species and with the nature and origin of the cytokine and hepatocytes. Inhibition was only observed for all parasite species tested when hepatocytes were pre-incubated 24 or 48 hrs before infection and activity was directed only against early hepatic parasite. We further showed that TNF-α inhibition was mediated by a soluble factor present in the supernatant of TNF-α stimulated hepatocytes but it was not related to NO or ROI. Treatment TNF-α prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified.

Conclusions

Treatment TNF-α prevents the development of human and rodent malaria pre-erythrocytic stages through the activity of a mediator that remains to be identified. However, the nature of the cytokine-host cell-parasite combination must be carefully considered for extrapolation to the human infection.  相似文献   

19.
Induction of cytochrome-P450 in cryopreserved rat and human hepatocytes.   总被引:4,自引:0,他引:4  
Our laboratory has been routinely using suspended and cultured human hepatocytes for predicting drug metabolism and enzyme induction by drug candidates to aid drug discovery. Increasing limitation and irregular availability of human tissue has indicated the need for maximizing the use of this valuable resource. Cryopreservation of surplus hepatocytes after isolation would greatly increase the potential of this model. However, cryopreservation of hepatocytes by various methods has resulted in cells with poor metabolic activity and unacceptably low survival rates in culture. Recently, Zaleski et al. (Biochem. Pharmacol. 46 (1993) 111-116) reported that cryopreserved rat hepatocytes retained metabolic capacity similar to fresh hepatocytes when the cells were preincubated for 30 min at 37 degrees C in Krebs Ringer bicarbonate buffer prior to freezing. To further explore this methodology, both the functional capacity of the cells in culture as well as their ability to retain CYP inducibility were investigated with thawed cryopreserved hepatocytes. Although human hepatocytes were used in this study the initial work focused on rat hepatocytes as a cell model. Our results showed that while the preincubation step did not appear to effect the initial viability of cryopreserved hepatocytes, survival of the cells in culture was greatly enhanced. Plating efficiencies for nonpreincubated cryopreserved hepatocytes were decreased to approximately 15% of fresh cells after 48 h in culture. In contrast, cells that had been preincubated prior to freezing had an excellent plating efficiency (approximately 60%) and responded to classical CYP inducers dexamethasone, beta-naphthoflavone and phenobarbital in a manner indistinguishable from that of fresh hepatocytes. Experiments with human hepatocytes have also demonstrated similar results. This is the first time to our knowledge that cryopreserved hepatocytes from both rat and human have been shown to reproducibly respond to CYP inducers in culture.  相似文献   

20.
Human hepatocytes, suitable for treatment of patients with liver failure, for the creation of bioartificial (BAL) devices, or for studies for toxicity and metabolization studies in the pharmaceutical industry, are in short supply due to the lack of donor organs. Therefore, methods that allow ex vivo expansion of hepatocytes with mature function are being pursued. One cell source, believed to be a possible inexhaustible source of hepatocytes, is pluripotent stem cells (PSCs). However, directed differentiation of PSCs to cells with features of adult hepatocytes is not yet possible. Differentiated progeny remains mixed and PSC progeny does not have a number of the functional features of mature hepatocytes. In this review article, we will address tools being developed that allow for the identification of mature hepatocytes, in a non-invasive manner; to perform lineage tracing of PSC progeny; and novel culture systems being created for the in vitro differentiation of PSCs to hepatocyte like cells, and for the maintenance of primary liver derived hepatocytes or PSC-derived hepatic progeny in culture. As conventional two-dimensional (2D) static culture conditions poorly recapitulate the in vivo cellular environment, we will discuss bioreactor systems for liver tissue engineering, both macro-scale and micro-scale culture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号