首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Histamine produces contractions of the guinea pig vas deferens. The present investigation was undertaken to characterize the nature of histaminergic receptors in this tissue. Histamine (1.6 X 10(-6) M to 3.2 X 10(-5) M) produced dose-related contractions of guinea pig vas deferens (GPVD). Mepyramine (5.3 X 10(-8) M and 1 X 10(-9) M) blocked the responses to histamine competitively. Metiamide (1.23 X 10(-5) M) did not block the responses to histamine significantly. Specific H1 and H2 receptor agonists, namely 2-(2'-pyridyl)ethylamine (PEA) (2.55 X 10(-6) M to 3.0 X 10(-5) M) and 4-methylhistamine (4-MH) (2.52 X 10(-5) M to 3.0 X 10(-4) M), respectively, produced dose-related contractions of GPVD. The responses to PEA were blocked competitively by mepyramine, whereas the responses to 4-MH were blocked by metiamide. Reserpine pretreatment (5 mg/kg, i.p., 24 h) did not alter the responses to histamine and PEA. Our data suggest the presence of both H1 and H2 receptors in the GPVD which are excitatory in nature.  相似文献   

2.
Histamine (10-7 to 10-4 M) concentration-dependently stimulated the production of IL-18 and IFN-gamma and inhibited the production of IL-2 and IL-10 in human PBMCs. Histamine in the same concentration range did not induce the production of IL-12 at all. The stimulatory or inhibitory effects of histamine on cytokine production were all antagonized by H2 receptor antagonists ranitidine and famotidine in a concentration-dependent manner, but not by H1 and H3 receptor antagonists. Selective H2 receptor agonists, 4-methylhistamine and dimaprit, mimicked the effects of histamine on five kinds of cytokine production. The EC50 values of histamine, 4-methylhistamine, and dimaprit for the production of IL-18 were 1.5, 1.0, and 3.8 microM, respectively. These findings indicated that histamine caused cytokine responses through the stimulation of H2 receptors. All effects of histamine on cytokine responses were also abolished by the presence of either anti-IL-18 Ab or IL-1beta-converting enzyme/caspase-1 inhibitor, indicating that the histamine action is dependent on mature IL-18 secretion and that IL-18 production is located upstream of the cytokine cascade activated by histamine. The addition of recombinant human IL-18 to the culture concentration-dependently stimulated IL-12 and IFN-gamma production and inhibited the IL-2 and IL-10 production. IFN-gamma production induced by IL-18 was inhibited by anti-IL-12 Ab, showing the marked contrast of the effect of histamine. Thus histamine is a very important modulator of Th1 cytokine production in PBMCs and is quite unique in triggering IL-18-initiating cytokine cascade without inducing IL-12 production.  相似文献   

3.
J Bugajski  Z Janusz 《Life sciences》1983,33(12):1179-1189
In conscious rats histamine, the H1-receptor agonist 2-pyridylethylamine (PEA), and the H2-receptor agonists dimaprit and impromidine given intracerebroventriculary (i.c.v.) increased the hypophyseal-adrenocortical response, evaluated indirectly through the corticosterone concentration in the blood serum. On a molar basis histamine was the most potent drug whereas its agonists were less potent in inducing an increased corticosterone response. Impromidine however, was far more active than dimaprit and PEA. The effect of histamine was significantly yet not totally antagonized by either mepyramine, a H1-receptor antagonist, or cimetidine, a H2-receptor blocker. The combination of mepyramine and cimetidine caused a considerably stronger inhibition than that induced by either antagonist given separately. Mepyramine impaired the corticosterone response to PEA, and the responses to impromidine and dimaprit were significantly diminished by cimetidine. The results suggest that i.c.v. histamine increases the pituitary-adrenocortical activity via both H1- and H2-receptors, and there seems to be no significant prevalence of either of these receptors in mediating this action of histamine.  相似文献   

4.
Histamine has been shown to mediate features of pulmonary allergic reactions including increased tracheobronchial blood flow. To determine whether the increase in blood flow was due to stimulation of H1- or H2-histamine receptors, we gave histamine base (0.1 micrograms/kg iv) or histamine dihydrochloride as an aerosol (10 breaths of 0.5% "low dose" or 5% "high dose") before and after H1- or H2-receptor antagonists. Blood velocity in the common bronchial branch of the bronchoesophageal artery (Vbr) was continuously measured using a chronically implanted Doppler flow probe. Pretreatment with H2-receptor antagonists cimetidine, ranitidine, or metiamide did not affect the increase in Vbr induced by intravenous histamine [106 +/- 45% (SD)]. Addition of the H1-receptor antagonists diphenhydramine or chlorpheniramine, however, reduced the Vbr response to 16 +/- 22, 21 +/- 28, 23 +/- 23, and 37 +/- 32% of the unblocked responses (P less than 0.05) when intravenous histamine was given at 3, 10, 20, and 30 min, respectively, after the H1 antagonist. At 40, 50, and 60 min the H1-receptor blockade appeared to attenuate, but subsequent continuous infusion of chlorpheniramine (2 mg.kg-1.min-1) then blocked the histamine response for 60 min. Low-dose histamine aerosol did not change mean arterial or pulmonary arterial pressures, cardiac output, or arterial blood gases but increased Vbr transiently from 15.2 +/- 3.4 to 37.6 +/- 8.4 (SE) cm/s. After chlorpheniramine, the Vbr response to histamine, 16.3 +/- 2.2 to 22.6 +/- 3.6 cm/s, was significantly reduced (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Histamine increases the permeability of capillaries and venules but little is known of its precapillary actions on the control of tissue perfusion. Using gene ablation and pharmacological interventions, we tested whether histamine could increase muscle blood flow through stimulating nitric oxide (NO) release from microvascular endothelium. Vasomotor responses to topical histamine were investigated in second-order arterioles in the superfused cremaster muscle of anesthetized C57BL6 mice and null platelet endothelial cell adhesion molecule-1 (PECAM-1-/-) and null endothelial NO synthase (eNOS-/-) mice aged 8-12 wk. Neither resting (17 +/- 1 microm) nor maximum diameters (36 +/- 2 microm) were different between groups, nor was the constrictor response (approximately 5 +/- 1 microm) to elevating superfusate oxygen from 0 to 21%. For arterioles of C57BL6 and PECAM-1-/- mice, cumulative addition of histamine to the superfusate produced vasodilation (1 nM-1 microM; peak response, 9 +/- 1 microm) and then vasoconstriction (10-100 microM; peak response, 12 +/- 2 microm). In eNOS-/- mice, histamine produced only vasoconstriction. In C57BL6 and PECAM-1-/- mice, vasodilation was abolished with Nomega-nitro-l-arginine (30 microM); in all mice, vasoconstriction was abolished with nifedipine (1 microM). Vasomotor responses were eliminated with pyrilamine (1 microM; H1 receptor antagonist) yet remained intact with cimetidine (1 microM; H2 receptor antagonist). These findings illustrate that the biphasic vasomotor response of mouse cremaster arterioles to histamine is mediated through H1 receptors on endothelium (NO-dependent vasodilation) as well as smooth muscle (Ca2+ entry and constriction). Thus histamine can increase as well as decrease muscle blood flow, according to local concentration. However, when NO production is compromised, only vasoconstriction and flow reduction occur.  相似文献   

6.
The effects of histamine and several H1 and H2 receptor agents on Na+/H+ and Cl-/HCO-3 exchange systems of isolated gastric mucosal surface cells were studied. The cells were acid-loaded by the NH4Cl prepulse technique and the spontaneous Na+- and HCO-3-induced dissipation of the intracellular proton gradient (pHi) was followed using the metachromatic dye acridine orange. Histamine (10(-2-5) M) stimulates HCO-3-induced dissipation of the pHi but has no effect on Na+-induced or spontaneous dissipation. The H1 agonist 2-(2-aminoethyl)pyridine and the H2 agonist dimaprit also have no effect on Na+-induced or spontaneous pHi dissipation. However, both of these agents mimic the effect of histamine on HCO-3-induced dissipation, but only at a higher concentration (10(-3) M). The combination of 2-(2-aminoethyl)pyridine and dimaprit produces a histamine-like effect at lower concentrations (10(-5) and 10(-4) M). The effects of histamine are blocked by either the H1 antagonists diphenhydramine and pyrilamine or the H2 antagonists cimetidine and SKF 93479. The results suggest that the effect of histamine on HCO-3-induced dissipation of a pHi in gastric mucosal surface cells is mediated through a coordinated mechanism involving both H1 and H2 receptor sites.  相似文献   

7.
Mast cells, visualized with toluidine blue staining and the Falck-Hillarp fluorescence technique, were mainly located around large blood vessels in the hilus region of the ovary in adult rats and in immature rats treated with PMSG. Histamine concentration in the rat ovary was significantly reduced after the LH surge in PMSG-treated animals, corresponding to a reduced number of ovarian mast cells. No marked change in the number of mast cells and histamine concentration was found in adult rats during the oestrous cycle. Histamine as well as the H1-agonist, 2-methylhistamine, and the H2-agonist, 4-methylhistamine, induced ovulations in the isolated perfused rat ovary. Ovulation rates were significantly lower than those evoked by LH. The histamine liberator, Compound 48/80, induced ovulations which were blocked by the combined effect of the H1- and H2-histamine receptor antagonists, cimetidine and pyrilamine. The anti-degranulating agent, disodium cromoglycate, did not block ovulations induced by Compound 48/80. The results show that the level of ovarian histamine, which is primarily stored in mast cells, can be influenced by PMSG treatment, and that the amine is able to induce ovulations in gonadotrophin-primed rats by an effect mediated by both H1 and H2 receptors.  相似文献   

8.
The effect of histamine on the isolated rat common carotid, renal and cranial mesenteric arteries was examined. Histamine (10(-8)-10(-4) M) caused concentration-dependent relaxations of the arteries during contractions induced with phenylephrine (10(-8)-10(-7) M). Removal of the vascular endothelium inhibited the histamine-induced relaxations. Pyrilamine (6 X 10(-6) M), but not metiamide (10(-6) M), abolished the relaxant effect of histamine. Moreover, pyrilamine (6 X 10(-6) M) did not affect endothelium-dependent relaxations of the arteries produced with acetylcholine. These results indicate that histamine causes endothelium-dependent relaxations of the rat peripheral large conduit arteries, which appeared to be mediated via H1-histaminergic receptors.  相似文献   

9.
第三脑室注射组胺及其受体激动剂对五肽促胃液素诱导...   总被引:7,自引:4,他引:3  
王竹立  卢光启 《生理学报》1992,44(3):261-268
The present study shows the dual effects of intraventricularly injected histamine (0.25-2.0 micrograms/5 microliters) on pentagastrin-induced gastric acid secretion. Male Wistar rats weighing 200-300 g were anesthetized with intraperitoneal sodium pentobarbital. Gastric acid was continuously washed out with 37 degrees C saline solution by means of a perfusion pump. On the background of continuous intravenous infusion of pentagastrin [7.5 micrograms/(kg.h),] histamine (0.25 microgram/5 microliters) or 2-pyridylethylamine (PEA, 10 micrograms/5 microliters), a H1-receptor agonist, was injected into the third ventricle through a chronically implanted canula. The acid output decreased 10 min after injection and did not recover at 90 min. When the dose of histamine was increased to 1.0 micrograms or 2.0 micrograms, dual effects appeared. The acid output decreased respectively in 73% or 50% of the animals, while in the rest 27% and 50% of the animals, the acid output increased. H2-receptor agonist dimaprit (10 micrograms/5 microliters, i.c.v.) or impromidine (0.1 micrograms/5 microliters, i.c.v.) had no pronounced effect on pentagastrin-induced acid secretion. Pretreatment with diphenhydramine (16 micrograms/0.2 ml or 32 micrograms/0.2 ml, i.m.) abolished the inhibitory effect of histamine and PEA on acid secretion. These results suggest that histamine may be involved in the central regulation of gastric acid secretion, and the inhibitory effect may be mediated by H1-receptors in the brain. The mechanism underlying the production of the dual effects of histamine is unknown.  相似文献   

10.
Pulmonary vasomotor actions of histamine and the possible relationship of histamine to hypoxic pulmonary vasconstriction were studied in anaesthetized cats with one lobe of lung perfused at constant flow and in isolated perfused rat and ferret lungs. In the cat histamine caused dilatation, biphasic responses and constriction with increasing doses. Histamine induced dilatation was better demonstrated during hypoxic vasoconstriction and was reduced by an H2 histamine antagonist; constriction with histamine was abolished by an H1 antagonist. Histamine also caused both vasodilatation and vasoconstriction in ferret lungs. A mast cell stabilizing agent had no effect on hypoxic pulmonary vasoconstriction in cats or rats. This response was unaffected in cats but greatly reduced in rats and ferrets by cyproheptadine, a combined histamine and 5-hydroxy-tryptamine inhibitor. It was unaffected in cats but abolished in ferrets an H1 histamine inhibitor. It was again unaffected in cats but greatly reduced in rats and ferrets by an H2 histamine inhibitor. These species differences may reflect differences in mechanism but more probably reflect non-specific effects of the inhibitors in certain circumstances. However, when drugs nearly abolished hypoxic vasoconstriction, ATP still caused vasoconstriction.  相似文献   

11.
Experiments were conducted in anesthetized dogs to determine the nature of receptors mediating vascular actions of histamine. In the perfused gracilis muscle histamine caused vasodilatation that was attenuated in part by mepyramine, an H1-receptor blocker. Metiamide, an H2 blocker, given alone had no effect on dilatation. However, the combination of mepyramine and metiamide resulted in a large attenuation of dilatation. Histamine caused constriction of the perfused saphenous vein that was totally blocked by mepyramine suggesting that venoconstriction by histamine involves only H1 receptors. Histamine infusion caused a fall in arterial pressure and a large reduction in peripheral resistance. Mepyramine attenuated the fall in pressure but not the reduction in resistance. Combined H1- and H2-receptor blockade largely eliminated the effects of histamine infusion further documenting the existence of H1 and H2 receptors. The effects of H1 and H2 antihistamines on a variety of physiological vasodilator responses were examined. Evidence was obtained to indicate that H1- and H2-histamine receptors are involved in the active component of baroreceptor-mediated reflex vasodilatation, poststimulation vasodilatation, sympathetic vasodilatation in the guanethidine-treated dog, and vasodilator responses following compound 48/80. No evidence for the participation of either H1- or H2-histamine receptors in reactive hyperemia or the dilatation accompanying exercise was found. It is concluded that in the dog both endogenously-released and exogenous histamine exert vascular effects by activation of both H1 and H2 receptors.  相似文献   

12.
We have previously demonstrated a depression of airway H2-receptor function in sheep allergic to Ascaris suum antigen. To investigate whether this is a generalized defect, we studied the H1- and H2- histamine receptor functions in the pulmonary and systemic circulations of allergic and nonallergic sheep. Pulmonary arterial pressure, and cardiac output were measured for calculation of pulmonary vascular resistance (PVR) and systemic vascular resistance (SVR) before and immediately after a rapid intrapulmonary infusion of histamine (10 micrograms/kg), with and without pretreatment with H1- (chlorpheniramine) and H2- (metiamide) antagonists. Histamine alone increased mean PVR to 435 and 401% of base line and decreased mean SVR by 51 and 54% in the nonallergic and allergic sheep, respectively (P less than 0.001). In the nonallergic sheep following pretreatment with chlorpheniramine (selective H2 stimulation) or metiamide (selective H1 stimulation), histamine decreased SVR by 18 and 36%, respectively, suggesting that approximately two-thirds of the vasodepressor response was mediated by H1-receptors and one-third by H2-receptors. Combined H1- and H2-antagonists completely blocked the histamine response. In allergic sheep the histamine-induced decrease in SVR was primarily mediated by H1-receptors, because the response was blocked by H1-antagonist, chlorpheniramine, and the H2-antagonist, metiamide, had no effect. In the pulmonary circulation selective H1-stimulation caused a similar increase in PVR in allergic (365%) and nonallergic sheep (424%), whereas selective H2-stimulation caused a significant decrease in PVR in the nonallergic group (14%) but not in the allergic group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study of newborn (3-10 day old) and juvenile (6-8 mo old) in situ isolated lamb lungs was undertaken to determine whether 1) histamine receptor blockade accentuates hypoxic pulmonary vasoconstriction more in newborns than in juveniles, 2) histamine infusion causes a decrease in both normoxic pulmonary vascular resistance and hypoxic pulmonary vasoconstriction in newborns, and 3) the H1-mediated dilator response to infused histamine in newborns is due to enhanced dilator prostaglandin release. Pulmonary arterial pressure (Ppa) was determined at baseline and in response to histamine (infusion rates of 0.1-10.0 micrograms.kg-1 min-1) in control, H1-blocked, H2-blocked, combined H1- and H2-blocked, and cyclooxygenase-inhibited H2-blocked lungs under "normoxic" (inspired O2 fraction 0.28) and hypoxic (inspired O2 fraction 0.04) conditions. In newborns, H1-receptor blockade markedly accentuated baseline hypoxic Ppa, and H2-receptor blockade caused an increase in baseline normoxic Ppa. In juveniles, neither H1 nor H2 blockade altered baseline normoxic or hypoxic Ppa. Histamine infusion caused both H1- and H2-mediated decreases in Ppa in normoxic and hypoxic newborn lungs. In juvenile lungs, histamine infusion also caused H2-mediated decreases in Ppa during both normoxia and hypoxia. During normoxia, histamine infusion caused an H1-mediated increase in normoxic Ppa in juveniles as previously seen in mature animals; however, during hypoxia there was an H1-mediated decrease in Ppa at low doses of histamine followed by an increase in Ppa. Combined histamine-receptor blockade markedly reduced both dilator and pressor responses to histamine infusion. Indomethacin failed to alter the H1-mediated dilator response to histamine in newborns.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Acid back diffusion into the rat stomach mucosa leads to gastric vasodilation. We hypothesized that histamine, if released from the rat mucosa under such conditions, is mast cell derived and involved in the vasodilator response. Gastric blood flow (GBF) and luminal histamine were measured in an ex vivo chamber. Venous histamine was measured from totally isolated stomachs. Mucosal mast cells (MMC), submucosal connective tissue mast cells (CTMC), and chromogranin A-immunoreactive cells (CgA IR) were assessed morphometrically. After mucosal exposure to 1.5 M NaCl, the mucosa was subjected to saline at pH 5.5 (control) or pH 1.0 (H(+) back diffusion) for 60 min. H(+) back diffusion evoked a marked gastric hyperemia, increase of luminal and venous histamine, and decreased numbers of MMC and CTMC. CgA IR cells were not influenced. Depletion of mast cells with dexamethasone abolished (and stabilization of mast cells with ketotifen attenuated) both hyperemia and histamine release in response to H(+) back diffusion. GBF responses to H(+) back diffusion were attenuated by H(1) and abolished by H(3) but not H(2) receptor blockers. Our data conform to the idea that mast cells are involved in the gastric hyperemic response to acid back diffusion via release of histamine.  相似文献   

15.
Effects of iv and ia administration of histamine and its H1 and H2 blockers (diphenhydramine and metiamide) on systemic arterial pressure, heart rate, and uterine and iliac blood flows were investigated in unanesthetized, chronically instrumented nonpregnant ewes. Intravenous histamine produced tachycardia, hypotension, and decreased iliac and uterine blood flows. In contrast, ia injections produced a significant increase in blood flows in these vascular beds which was dose-dependent. Evidence is presented to show that some of the circulatory actions of histamine may be related to stimulation of H1 while others may be related to H2 receptors. The peripheral circulatory action produced by iv histamine is probably secondary to its effects on reducing cardiac output. The uterine and iliac vascular beds contain mostly H1 receptors since their response to histamine can be blocked almost totally by Benadryl and not by H2 antagonist metiamide.  相似文献   

16.
Adrenal steroidogenesis is closely correlated with increases in adrenal blood flow. Many reports have studied the regulation of adrenal blood flow in vivo and in perfused glands, but until recently few studies have been conducted on isolated adrenal arteries. The present study examined vasomotor responses of isolated bovine small adrenal cortical arteries to histamine, an endogenous vasoactive compound, and its mechanism of action. In U-46619-precontracted arteries, histamine (10(-9)-5 x 10(-6) M) elicited concentration-dependent relaxations. The relaxations were blocked by the H(1) receptor antagonists diphenhydramine (10 microM) or mepyramine (1 microM) (maximal relaxations of 18 +/- 6 and 22 +/- 6%, respectively, vs. 55 +/- 5% of control) but only partially inhibited by the H(2) receptor antagonist cimetidine (10 microM) and the H(3) receptor antagonist thioperamide (1 microM). Histamine-induced relaxations were also blocked by the nitric oxide synthase inhibitor N-nitro-L-arginine (L-NA, 30 microM; maximal relaxation of 13 +/- 7%) and eliminated by endothelial removal or L-NA combined with the cyclooxgenase inhibitor indomethacin (10 microM). In the presence of adrenal zona glomerulosa (ZG) cells, histamine did not induce further relaxations compared with histamine alone. Histamine (10(-7)-10(-5) M) concentration-dependently increased aldosterone production by adrenal ZG cells. Compound 48/80 (10 microg/ml), a mast cell degranulator, induced significant relaxations (93 +/- 0.6%), which were blocked by L-NA plus indomethacin or endothelium removal, partially inhibited by the combination of the H(1), H(2), and H(3) receptor antagonists, but not affected by the mast cell stabilizer sodium cromoglycate (1 mM). These results demonstrate that histamine causes direct relaxation of small adrenal cortical arteries, which is largely mediated by endothelial NO and prostaglandins via H(1) receptors. The potential role of histamine in linking adrenal vascular events and steroid secretion requires further investigation.  相似文献   

17.
Using histamine and the H3 receptor antagonist thioperamide, the roles of histamine receptors in NMDA-induced necrosis were investigated in rat cultured cortical neurons. Within 3 h of intense NMDA insult, most neurons died by necrosis. Histamine reversed the neurotoxicity in a concentration-dependent manner and showed peak protection at a concentration of 10(-7) m. This protection was antagonized by the H2 receptor antagonists cimetidine and zolantidine but not by the H1 receptor antagonists pyrilamine and diphenhydramine. In addition, the selective H2 receptor agonist amthamine mimicked the protection by histamine. This action was prevented by cimetidine but not by pyrilamine. 8-Bromo-cAMP also mimicked the effect of histamine. In contrast, both the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purine-6-amine and the cAMP-dependent protein kinase inhibitor N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide reversed the protection by histamine. Thioperamide also attenuated NMDA-induced excitotoxicity, which was reversed by the H3 receptor agonist (R)-alpha-methylhistamine but not by pyrilamine and cimetidine. In addition, the protection by thioperamide was inhibited by the GABA(A) receptor antagonists picrotoxin and bicuculline. Further study demonstrated that the protection by thioperamide was due to increased GABA release in NMDA-stimulated samples. These results indicate that not only the H2 receptor/cAMP/cAMP-dependent protein kinase pathway but also the H3 receptor/GABA release pathway can attenuate NMDA-induced neurotoxicity.  相似文献   

18.
S S Yen  W Kreutner 《Life sciences》1979,25(6):507-514
The presence and function of histamine H2-receptors in guinea pig lung was studied using lung strips as an in vitro model of peripheral airway smooth muscle. The lung strips were incubated in Krebs-Henseleit solution in the absence or presence of specific antagonists for 20 min prior to the addition of either histamine or dimaprit added in a half-log cumulative fashion. Changes in isometric tension were recorded. Histamine at low concentrations (10?7?10?6M) caused a slight relaxation which was potentiated by the histamine H1-antagonist chlorpheniramine (10?7 or 10?6M) and abolished by the histamine H2-antagonist metiamide (10?4M). Higher concentrations of histamine produced a dose-related contraction which was antagonized competitively by chlorpheniramine or potentiated by metiamide. Dimaprit, a histamine H2-agonist, produced only a relaxant response over the concentration range of 10?7 ? 10?3M. This relaxation was reduced by metiamide but not by the beta adrenergic antagonist propranolol. These results indicate the presence of both histamine H2 and H1-receptors in guinea pig peripheral airway smooth muscle which mediate the relaxant and contractile effects of histamine respectively.  相似文献   

19.
Intravenous administration of histamine causes an increase in choroidal blood flow and retinal vessel diameter in healthy subjects. The mechanism underlying this effect remains to be elucidated. In the present study, we hypothesized that H2 receptor blockade alters hemodynamic effects of histamine in the choroid and retina. Eighteen healthy male nonsmoking volunteers were included in this randomized, double-masked, placebo-controlled two-way crossover study. Histamine (0.32 microg.kg(-1).min(-1) over 30 min) was infused intravenously in the absence (NaCl as placebo) or presence of the H2 blocker cimetidine (2.3 mg/min over 50 min). Ocular hemodynamic parameters, blood pressure, and intraocular pressure were measured before drug administration, after infusion of cimetidine or placebo, and after coinfusion of histamine. Subfoveal choroidal blood flow and fundus pulsation amplitude were measured with laser-Doppler flowmetry and laser interferometry, respectively. Retinal arterial and venous diameters were measured with a retinal vessel analyzer. Retinal blood velocity was assessed with bidirectional laser-Doppler velocimetry. Histamine increased subfoveal choroidal blood flow (+14 +/- 15%, P < 0.001), fundus pulsation amplitude (+11 +/- 5%, P < 0.001), retinal venous diameter (+3.0 +/- 3.6%, P = 0.002), and retinal arterial diameter (+2.8 +/- 4.2%, P < 0.01) but did not change retinal blood velocity. The H2 antagonist cimetidine had no significant effect on ocular hemodynamic parameters. In addition, cimetidine did not modify effects of histamine on choroidal blood flow, fundus pulsation amplitude, retinal venous diameter, and retinal arterial diameter compared with placebo. The present data confirm that histamine increases choroidal blood flow and retinal vessel diameters in healthy subjects. This ocular vasodilator effect of histamine is, however, not altered by administration of an H2 blocker. Whether the increase in blood flow is mediated via H1 receptors or other hitherto unidentified mechanisms remains to be elucidated.  相似文献   

20.
The effects of exogenous histamine (H) on prostaglandin (PG) generation and release in uteri isolated from diestrous rats and the influences of H2-receptors blockers (cimetidine and metiamide) on the output of uterine PGs, were explored. Moreover, the action of H on the uterine 9-keto-reductase, was also studied. Histamine (10(-4) M) failed to alter the basal output of PGE1 but reduced significantly the generation and release of PGE2 and augmented the output of PGF2 alpha. On the other hand, cimetidine (10(-5) M) enhanced the basal release of PGE2 but had no action on the outputs of PGs E1 or F2 alpha. The enhancing effect of H on the production and release of PGF2 alpha was abolished in the presence of cimetidine. Also, the antagonist reversed the influence of H on the output of PGE2. Metiamide, another H2-receptor antagonist, did not alter the basal control generation and release of uterine PGs, but antagonized the augmenting influence of H on PGF2 alpha uterine output, as much as cimetidine did, and prevented the depressive action of H on the release of PGE2 from uteri. Histamine (10(-4) M) significantly stimulated uterine formation of cyclic-adenosine monophosphate, an action which was antagonized by the presence of cimetidine (10(-5) M), a blocker of H2 receptors. Also, histamine (10(-5) M) and dibutyrylcyclic-adenosine monophosphate (DB-cAMP) at 10(-3) M, enhanced significantly the formation 3H-PGF2 alpha from 3H-PGE2. Results presented herein demonstrate that H is able to diminish the generation of PGE2 in uteri from rats at diestrus augmenting the synthesis of PGF2 alpha, apparently via the activation of H2-receptors, enhancing adenylate-cyclase. These effects appear to increase uterine 9-keto-reductase activity which transforms PGE2 into PGF2 alpha. Relationships between the foregoing results and those evoked by estradiol, are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号