首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sucrose that leaked from maize scutellum slices upon transfer of slices from a hexose or hexitol solution to water or upon placing the slices in a buffered EDTA solution was considered to be cytoplasmic in origin; residual (after leakage) tissue sucrose was considered to be stored in the vacuoles. This paper presents a study of the movement of sucrose across the tonoplast between the vacuoles and the cytoplasmic compartment. It is concluded that; (a) sucrose transport into the vacuoles is directly linked to sucrose synthesis in such a way that free sucrose is not an intermediate in the coupled process, (b) cytoplasmic sucrose is not (cannot be?) stored, (c) sucrose transport out of the vacuoles is linked to the metabolic demand for sugar, and (d) the transport process removing sucrose from the vacuoles does not release free sucrose into the cytoplasm. The sucrose fluxes at the plasmalemma and at the tonoplast are calculated, and the transport processes at the two membranes are compared.  相似文献   

2.
Since hexoses readily diffuse from maize scutellum cells, it should be possible to detect them if they are produced during sucrose transport at the tonoplast or the plasmalemma. To test this idea, scutellum slices were placed in dinitrophenol (DNP) (which inhibits hexose utilization while greatly increasing utilization of vacuolar sucrose), and the utilization, uptake and leakage of sugars were measured. Only negligible amounts of hexose appeared in the DNP solution during a 5-hr incubation during which the slices metabolized 72μmol of sucrose. Glucose and fructose, added at a concentration of 2 mM, were taken up by the slices at rates 33% and 14% (respectively) of the rate of vacuolar sucrose utilization. It is suggested, therefore, that sucrose transport at the tonoplast does not release free hexose into the cytoplasm. Sucrose transport at the plasmalemma was studied using DNP- and mannose-treated slices. During incubation of these slices in sucrose, the disappearance of sucrose resulted in the appearance of significant quantities of glucose and fructose in the bathing solution. Evidence is presented that sucrose is split into glucose and fructose during transport across the plasmalemma. It is concluded that free hexose is not normally a product of this splitting but is a result of an uncoupling in the transport system caused by the DNP or mannose treatments.  相似文献   

3.
Maize scutellum slices accumulated sucrose during incubation in glucose, fructose or sucrose. Sucrose was accumulated in two compartments, tentatively  相似文献   

4.
Abstract During incubation of maize scutellum slices in fructose, there was an efflux of sucrose. Efflux was constant for at least 4 h at fructose concentrations of 70 or 100 mol m?3. Efflux was increased by EDTA, and decreased by Ca2+. Efflux was independent of pH after EDTA treatment, but increased from untreated slices when the pH was lowered from 7 to 4. Uranyl ion and PCMBS (p-chloro-mercuribenzenesulfonic acid) abolished sucrose uptake, but were only weak inhibitors of sucrose efflux. These results are consistent with efflux occurring by simple diffusion through aqueous pores, but they do not rule out facilitated diffusion. Rates of sucrose export from the scutellum to the root shoot axis were estimated from measurements of axis respiration and dry weight gain. Sucrose efflux from scutellum slices was only 14-22% of the export rate. Sucrose efflux from the whole scutellum was only 3-4% of the export rate. It is concluded that the observed efflux is from leaky cells and does not represent sucrose on the way to the phloem along a path that includes the apoplast. These results support the idea that the path for sucrose from parenchyma cell to sieve tube in the maize scutellum is entirely symplastic.  相似文献   

5.
Abstract The kinetics of sucrose uptake into maize scutellum slices showed that the uptake mechanism had a saturable component with a Km of l.5mol m?3 sucrose. Nevertheless, uptake rate was constant (zero order) over extended periods of time until the bathing solution was nearly depleted of sucrose. It is concluded that these anomalous uptake kinetics reflect sucrose influx across the plasmalemma because of the following results: (a) Efflux of sucrose into buffer was negligible compared with uptake rate, (b) When slices were incubated in fructose, sucrose was synthesized and there was a net release of sucrose to the bathing solution until a steady-state was reached when influx and efflux were equal in magnitude. After the steady-state was reached, efflux of sucrose from the slices was nearly the same in magnitude as the estimated rate of uptake that would have occurred from bathing solutions initially containing the steady-state sucrose concentration, (c) Exchange of sucrose between bathing solution and slices was negligible compared with uptake rate, (d) Pretreatment of slices with uranyl nitrate abolished sucrose uptake, but uptake rate was re-established in these slices after treatment with HCl (pH 2). Uptake rate was set by the initial sucrose concentration of the bathing solution, and was not influenced by the level of endogenous sucrose or by the rate at which the sucrose concentration of the bathing solution declined. Abrupt increases in sucrose concentration during the uptake period increased the rate of uptake only if the concentration was increased above that at the start of the uptake period. Following abrupt decreases in sucrose concentration, there was a lag of about 30 min before uptake rate decreased greatly. If slices were washed and replaced in a fresh sucrose solution during the uptake period, a new uptake rate was set to correspond to the new initial sucrose concentration. It is suggested that the sucrose carrier has a transport site with a relatively low Km (much below 1.5mol m?3) and that the measured Km (1.5mol m?3) is that of a site that binds sucrose and thereby controls the rate of uptake. The low Km suggested for the transport site would explain the zero order kinetics but a model of the uptake mechanism that includes the control site cannot, as yet, be constructed from the data.  相似文献   

6.
The release of photosynthate from leaf slices of soybean [ Glycine max (L.) Merr. cv. Ransom II], to a bathing medium was studied to ascertain how p -chloromercuribenzenesulfonic acid (PCMBS) can both stimulate and inhibit sucrose release. Soybean leaf slices released photosynthate to a bathing medium at a rate that was approximately linear with time. The photosynthate released was about 20% ionic and 80% non-ionic, and sucrose represented about 75% of the total. Removal of Ca2+ from the medium increased the rate of release of all fractions, but amino acid release showed the largest increase. Sucrose was released at a rate estimated to be about 20% of the normal transport rate in intact leaves. The rate of sucrose uptake from 5 m M sucrose into soybean leaf slices was optimum at pH 6.3, and the rate of sucrose release was lowest at the same pH. However, sucrose uptake was found to be insignificant during release experiments. Sucrose release, but not amino acid release, was inhibited 75% by 1 m M PCMBS.
The data support two components of sucrose release in leaves. The first is insensitive to the addition of PCMBS. This component probably represents leakage from phloem tissue. The second component is inhibited by PCMBS and probably represents release from the mesophyll. By comparing sucrose release from leaf slices of 12 different species of plants, 2 groups were found. In the first group, sucrose release was inhibited between 60 and 80% by PCMBS, and in the second group between 0% and 40%. The difference in the two groups can be explained by a relative difference in the size of the two components of sucrose release for each species.  相似文献   

7.
The in vivo amounts of UDPG, UTP, UDP and UMP, metabolites known to influence the activity of sucrose phosphate synthase (SPS) and sucrose synthase (SS), were measured throughout 5 hr incubations of scutellum slices in fructose or water, i.e. under conditions of sucrose synthesis or breakdown. Cytosolic concentrations were estimated assuming that these metabolites were confined to the cytosol. Within the estimated in vivo concentration ranges, UDPG, UTP and UDP had little effect on the in vitro SS activity, but glucose (100 mM) inhibited SS in the synthesis direction by 63–70% and in the breakdown direction by 86–93%. Glucose inhibition of SS was considerably less when saturating levels of substrates were used. Sucrose did not inhibit SS. It is concluded that during germination the glucose produced from starch breakdown in the maize endosperm enters the scutellum and inhibits SS, preventing a futile cycle and limiting SS participation in sucrose synthesis.  相似文献   

8.
The inhibitory effects of sucrose on rates of sucrose synthesis by sucrose phosphate synthase (SPS) from the maize scutellum and on net rates of sucrose production in maize scutellum slices from added glucose or fructose were studied. Scutellum extracts were prepared by freezing and thawing scutellum slices in buffer. The extracts contained SPS and sucrose phosphate phosphatase, but were free of sucrose synthase. SPS activity was calculated from measurement of UDP formation in the presence of UDPG, fructose-6-P and sucrose. The ranges of metabolite concentrations used were those estimated to be in scutellum slices after incubation in water or fructose for periods up to 5 hr. UDPG and fructose-6-P also were added at concentrations that saturated SPS. At saturating substrate levels, sucrose inhibition of SPS was less than that when tissue levels of substrates were used. With tissue levels of substrates and sucrose concentrations up to ca 166 mM, sucrose inhibitions of sucrose synthesis in vitro by SPS were similar to those observed in vivo. However, as the sucrose concentration rose above 166 mM, SPS activity was not inhibited further, whereas there was a further sharp decline in sucrose production by the slices. It is concluded that sucrose synthesis in vivo is controlled by sucrose inhibition of SPS over a considerable range of internal sucrose concentrations.  相似文献   

9.
Maize scutellum slices incubated in water utilized sucrose at a maximum rate of 0.12,μmol/min per g fr. wt of slices. When slices were incubated in DNP, there was a three-fold increase in the rate of sucrose utilization. Sucrose breakdown in higher plants can be achieved by pathways starting with either invertase or sucrose synthase (SS). Invertase activity in scutellum homogenates was found only in the cell wall fraction, indicating that SS was responsible for sucrose breakdown in vivo. SS in crude scutellum extracts broke down sucrose to fructose and UDPG at 0.39,μmol/min per g fresh wt of slices. The UDPG formed was not converted to UDP + glucose, UMP + glucose-1-P, UDP + glucose-1-P or broken down by any other means by the crude extract in the absence of PPi. In the presence of PPi, UDPG was broken down by UDPG pyrophosphorylase which had a maximum activity of 26 μmol/min per g fr. wt of slices. Levels of PPi in the scutellum could not be measured using the UDPG pyrophosphorylase: phosphoglucomutase: glucose-6-P dehydrogenase assay because they were too low relative to glucose-6-P which interferes in the assay. An active inorganic pyrophosphatase was present in the scutellum extract which could prevent the accumulation of PPi in the cytoplasm. ATP pyrophosphohydrolase, which hydrolyses ATP to AMP and PPi, was found in the soluble portion of the scutellum extract. The enzyme activity was increased by fructose-2,6-bisP and Ca2+. In the presence of both activators, enzyme activity was 1.1 μmol/min per g fr. wt of slices, a rate sufficient to supply PPi for the breakdown of UDPG. These results indicate that sucrose breakdown in maize scutellum cells occurs via the SS: UDPG pyrophosphorylase pathway.  相似文献   

10.
Sucrose was markedly superior to fructose and glucose in promoting growth of plantlets from immature maize embryos. The elongation of roots is shown to be more sucrose dependent than that of shoots. On the other hand, the exogenous sucrose was less effective than fructose as substrate for carbohydrate catabolism and for the synthesis of alcohol-insoluble compounds at the beginning of embryo cultivation. The absorbed fructose was found to be rapidly converted to sucrose and the level of endogenous sucrose derived from sugar supplied to the medium was higher in fructosethan in sucrose-fed embryos. The preferential utilization of fructose over sucrose, however, declined with the progress of germination which may be related to the decrease in proportion of scutellum in total mass and physiological activity of the embryo.  相似文献   

11.
Sucrose efflux from maize scutellum slices was promoted by high pH and by K+, Na+ or Rb+. Incubation in mannose (which drastically reduces the ATP level) caused high rates of sucrose efflux only when KCl was present at pH 8. The effects of triphenylmethylphosphonium ion (TPMP+, a lipid soluble cation) on sucrose efflux were similar to those of mannose plus KCl. Mannose and TPMP+ caused release of stored sucrose into the cytoplasm, but pH8 and KCl (mannose) or pH 8 (TPMP+) in the bathing solution were necessary for rapid efflux of sucrose. Rb+ uptake took place during sucrose efflux. In mannose, rates of Rb+ uptake and sucrose efflux were low at pH 5.6 and high at pH 8.0, although the time courses for uptake and efflux were different. It is concluded that sucrose efflux is electrogenic and that it occurs as sucrose-H+ symport. A scheme for sucrose transport across plasmalemma and tonoplast is presented.  相似文献   

12.
When maize scutellum slices were incubated in solutions of sucrose or maltose, there was a release of glucose into the bathing solution. The pH optima for glucose release were 2.5 for sucrose and 3.5 for maltose. From measurement of rates of glucose uptake into slices in the presence or absence of sucrose, it is calculated that glucose uptake will introduce errors of 3–9%, depending on the sucrose concentration, in estimates of free-space sucrose-hydrolase activity at pH 2.5. At their respective pH optima, maltose was hydrolysed at a rate 2.5 times that of sucrose. When frozen-thawed slices were used the same pH optima were obtained, but rates of hydrolysis were increased. Raffinose and melezitose also were hydrolysed with pH optima of 2.5 and 3.5, respectively. α-Methyl glucose was not hydrolysed. A 60-min HCl treatment (pH 2) of scutellum slices destroyed 69% of the sucrose-hydrolase activity and 100% of the maltose-hydrolase activity. In contrast, sucrose uptake and sucrose synthesis from exogenous fructose were not affected by HCl treatment. It is concluded that there are two hydrolases, acid invertase and maltase; that they are either on or outside the plasmalemma (in the free space); and that they are not necessary to the disaccharide uptake processes either by supplying exogenous hexose or by acting as transporters.  相似文献   

13.
A phosphatase (ATPase) was demonstrated on the surface of the maize scutellum cell by showing that (1) when exogenous ATP was hydrolysed by intact scutellum cells, ADP, AMP and Pi appeared in the bathing solution in stoichiometric amounts, (2) the rate of hydrolysis was sensitive to bathing solution pH; (3) exogenous Mg2+ increased the rate of hydrolysis and (4) when the ATPase reaction was carried out in the presence of lead nitrate, TEM photographs showed lead phosphate deposits located almost exclusively in the plasmalemma. The ATPase was tightly bound to the plasmalemma and was not destroyed by freezing and thawing scutellum slices, a treatment which disrupted the plasmalemma. Acid treatment (10 mM HCl) of fresh or frozen-thawed scutellum slices destroyed acid phosphatase activity but had little effect on ATPase activity at pH 6.5. Following acid treatment of the scutellum slice preparations, a definite Mg2+ requirement for ATPase activity could be demonstrated.  相似文献   

14.
14C-labelled sugars (sucrose, glucose, and fructose) were suppliedto the cambial surface of bark strips of willow, and in conjunctionwith the aphid stylet technique (Weatherley, Peel, and Hill,1959), the movement into and distribution of activity in thesieve tube sap was examined. As well as sucrose, free hexosesand sugar phosphates were found to contain the 14C-label, andrapid interconversions occurred between these compounds somewherealong the entry route. Sucrose entry into the sieve elementswas accompanied by at least a partial breakdown into its componenthexoses, and the involvement of a sugar phosphate pool was alsodemonstrated. Possible transformation sites on the entry routebetween the solution bathing the cambial surface and the sieveelement vacuole are discussed.  相似文献   

15.
Species of Coreidae (Heteroptera) cause ‘water soaked’ lesions in their food plants. Such insects typically feed from parenchyma in and surrounding vascular tissues and also cause acropetal wilting and necrosis of small diameter shoots. Feeding byMictis profana (Fabr.) in South Australia on the shoots ofAcacia iteaphylla F. Muell. ex Benth. was found to cause a local, concurrent increase in both water content and free amino acid concentration, consistent with phloem unloading. Coreids, unlike other groups of phytophagous Heteroptera, secrete a salivary sucrase (α-D-glucohydrolase, EC 3.2.1.48) as probably the sole salivary carbohydrase, and tissues attacked byM. profana showed more sucrose hydrolysing activity than unattacked. The salivary enzyme is postulated to cause unloading of solutes into the apoplast due to the osmotic effects of conversion of endogenous sucrose to glucose and fructose, allowing the insect to suck the leaked contents of many cells from a single locus. The term ‘osmotic pump feeding’ is proposed for such a process. In demonstrations of its feasibility, infiltration of shoots with mixtures of glucose and fructose stoichiometrically equivalent to isosmotic sucrose increased the amounts of tissue sap and amino acid that could be sucked from the tissues; similarly, invertase and 1 M sugars forced into the extracellular space of stem sections increased the amino acids offloaded into the bathing solutions.  相似文献   

16.
Sucrose uptake by Corynebacterium glutamicum involves a phosphoenolpyruvate-dependent sucrose phosphotransferase (PTS), but in the absence of fructokinase, further metabolism of the liberated fructose requires efflux of the fructose and reassimilation via the fructose PTS. Mutant strains lacking detectable fructose-transporting PTS activity accumulated fructose extracellularly but consumed sucrose at rates comparable to those of the wild-type strain.  相似文献   

17.
We studied the efflux of radioactive photosynthetic products from the central vacuole into the cytosol of protoplasts isolated from the mesophyll tissue of the sugar beet (Beta vulgaris L.) after their darkening and subsequent cessation of photosynthesis. Among the products accumulated in the vacuole were the 14C-labelled sugars malate and alanine, small amounts of citric, glutamic, and aspartic acids, and some other amino acids. During the initial 20–30 min of darkness, there was no substantial utilization of photoassimilates accumulated in the vacuole during the preceding light period. An efflux of assimilates occurred later, after 30–40 min of darkness. A decrease in the vacuolar 14C-sucrose occurred not only due to its exit into the cytosol but also because of its conversion into 14C-monosaccharides by the vacuolar invertase. In fact, this decrease in the sucrose content correlated well with the accumulation of monosaccharides. Immediately after photosynthesis ceased, the chloroplastic 14C-starch was utilized for the maintenance of cytoplasmic metabolism. After 30-min darkness, the content of starch in the chloroplasts decreased by several times. We believe that the vacuoles of sugar-beet mesophyll cells are transient reservoirs for assimilates and the products of their conversion (glucose and fructose), which can rapidly leave the vacuole to maintain homeostasis in the cytosol under varying environmental conditions.  相似文献   

18.
Considerable amounts of information is available on the complex carbohydrates that are mobilized and utilized by the seed to support early seedling development. These events occur after radicle has protruded from the seed. However, scarce information is available on the role of the endogenous soluble carbohydrates from the embryo in the first hours of germination. The present work analysed how the soluble carbohydrate reserves in isolated maize embryos are mobilized during 6-24 h of water imbibition, an interval that exclusively embraces the first two phases of the germination process. It was found that sucrose constitutes a very significant reserve in the scutellum and that it is efficiently consumed during the time in which the adjacent embryo axis is engaged in an active metabolism. Sucrose transporter was immunolocalized in the scutellum and in vascular elements. In parallel, a cell-wall invertase activity, which hydrolyses sucrose, developed in the embryo axis, which favoured higher glucose uptake. Sucrose and hexose transporters were active in the embryo tissues, together with the plasma membrane H(+)-ATPase, which was localized in all embryo regions involved in both nutrient transport and active cell elongation to support radicle extension. It is proposed that, during the initial maize germination phases, a net flow of sucrose takes place from the scutellum towards the embryo axis and regions that undergo elongation. During radicle extension, sucrose and hexose transporters, as well as H(+)-ATPase, become the fundamental proteins that orchestrate the transport of nutrients required for successful germination.  相似文献   

19.
A model originally developed for transport of neutral substrates in bacterial systems was tested for its suitability for depicting sucrose transport across the plasmalemma of the maize scutellum cell. The model contains a sucrose—proton symporter, a negatively-charged free carrier and a neutral sucrose—proton—carrier complex. Sucrose transport is driven by the sucrose gradient and by a proton electrochemical gradient set up by a proton-translocating ATPase. The results of experiments on sucrose uptake in scutellum slices are in accord with predictions based on the model. Evidence was obtained for an electrogenic proton pump in the plasmalemma, for sucrose—proton symport and for a sucrose transport mechanism driven by both electrical potential and pH gradients. It was found that treatments (dinitrophenol, N-ethylmaleimide or HCl) causing a net proton influx into the slices also caused an efflux of sucrose. Interpretations of these results compatible with the model are given.  相似文献   

20.
Experiments with carbon-labeled glucose and fructose and organsof wheat and barley seedlings suggest that glucose is absorbedfrom the endosperm by the scutellum in germinating grain, simultaneouslyconverted to sucrose, and transported in this form to the seedling.The main lines of evidence which support these conclusions are(1) the level of sucrose in the scutellum is high and that ofthe free hexose low; the reverse is true of the endosperm and,to a lesser extent, of the root and shoot,(2) both isolatedand attached scutella absorb hexose readily and convert it largelyto sucrose under a variety of condition; roots and shoots behavedifferently, (3) more 14C is accumulated into sucrose by isolatedscutella than by those attached to seedlings, (4) the presenceof enzymes which can effect conversion of hexose to sucrosehas been demonstrated in scutellum extracts. This last bodyof evidence has also supported the view that sucrose synthesisin plants occurs by the pathway mediated by uridine diphosphateglucose as all the relevant enzymes have been detected in asingle extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号