首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The PPARγ nuclear receptor orchestrates fatty acid storage and glucose metabolism by coordinating the expression of genes involved in lipid uptake, adipogenesis and inflammation. It is a target for the insulin-sensitising thiazolidinediones (TZDs) which have been used to treat diabetes since the late nineties. Adverse secondary effects of TZDs have underpinned continued investigations into the molecular details governing PPARγ regulation and new therapeutic approaches which represent the focus of this article. Recent findings position Cdk5 as a lead conductor of PPARγ. Cdk5 regulates PPARγ directly, via phosphorylation, and may also inhibit it indirectly, via phosphorylation and activation of phospholipase D2 (PLD2) which generates the endogenous inhibitor cyclic phosphatidic acid (CPA). Whilst the multifunctional nature of Cdk5 precludes it from therapeutic targeting all is not lost as selective PPARγ modulators (SPPARMs) have shown promising preclinical and clinical results heralding a new generation of drugs to conduct a more refined PPARγ program.  相似文献   

2.
Peroxisome proliferator-activated receptor γ (PPARγ) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPARγ in CGZ-induced cell death was examined. At concentrations of greater than 30 μM, CGZ, a synthetic PPARγ agonist, activated caspase-3 and induced apoptosis in T98G cells. Treatment of T98G cells with less than 30 μM CGZ effectively induced cell death after pretreatment with 30 μM of the PPARγ antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPARγ was down-regulated cells by siRNA, lower concentrations of CGZ (<30 μM) were sufficient to induce cell death, although higher concentrations of CGZ (≥30 μM) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPARγ. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPARγ in glioma cells, by down-regulating Akt activity and inducing MMP collapse.  相似文献   

3.
4.
5.
Obese white adipose tissue is hypoxic but is incapable of inducing compensatory angiogenesis. Brown adipose tissue is highly vascularized, facilitating delivery of nutrients to brown adipocytes for heat production. In this study, we investigated the mechanisms by which white and brown adipocytes respond to hypoxia. Brown adipocytes produced lower amounts of hypoxia-inducible factor 1α (HIF-1α) than white adipocytes in response to low O(2) but induced higher levels of hypoxia-associated genes. The response of white adipocytes to hypoxia required HIF-1α, but its presence alone was incapable of inducing target gene expression under normoxic conditions. In addition to the HIF-1α targets, hypoxia also induced many inflammatory genes. Exposure of white adipocytes to a peroxisome proliferator-activated receptor γ (PPARγ) ligand (troglitazone) attenuated induction of these genes but enhanced expression of the HIF-1α targets. Knockdown of PPARγ in mature white adipocytes prevented the usual robust induction of HIF-1α targets in response to hypoxia. Similarly, knockdown of PPARγ coactivator (PGC) 1β in PGC-1α-deficient brown adipocytes eliminated their response to hypoxia. These data demonstrate that the response of white adipocytes requires HIF-1α but also depends on PPARγ in white cells and the PPARγ cofactors PGC-1α and PGC-1β in brown cells.  相似文献   

6.
7.
Phosphatidylinositol (PtdIns) is phosphorylated at D-3, D-4, and/or D-5 of the inositol ring to produce seven distinct lipid second messengers known as phosphoinositides (PIs). The PI level is temporally and spatially controlled at the cytosolic face of the cellular membrane. Effectors containing PI-binding domains (e.g., PH, PX, FYVE, ENTH, FERM) associate with specific PIs. This process is crucial for the localization of a variety of cell-signaling proteins, thereby regulating intracellular membrane trafficking, cell growth and survival, cytoskeletal organization, and so on. However, quantitative assessments of protein–PI interactions are generally difficult due to insolubility of PIs in aqueous solution. Here we incorporated PIs into a lipid–protein nanoscale bilayer (nanodisc), which is applied for studying the protein–PI interactions using pull-down binding assay, fluorescence polarization, and nuclear magnetic resonance studies, each facilitating fast, quantitative, and residue-specific evaluation of the protein–PI interactions. Therefore, the PI-incorporated nanodisc could be used as a versatile tool for studying the protein–lipid interactions by various biochemical and biophysical techniques.  相似文献   

8.
Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3–3xPPRE–tata-luc or pGL4–3xPPRE–tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ12,14-prostaglandin J2. The potency to induce luciferase decreased in the following order: rosiglitazone > troglitazone = pioglitazone > netoglitazone > ciglitazone. A concentration-dependent decrease in the response to 50 nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.  相似文献   

9.
10.
11.
12.
Abstract

PPARγ is an isoform of peroxisome proliferator-activated receptor (PPAR) belonging to a super family of nuclear receptors and is a primary target of the effective drug to treat the type II diabetes. The experiments found that Lyso-phosphatidylcholines (LPC) could bind to PPARγ, but the binding modes remain unknown. We used the Molecular Docking and Molecular Dynamic (MD) simulations to study the binding of four LPC ligands (LPC16:0, LPC18:0, LPC18:1-1 and LPC18:1-2) to PPARγ. The two-step MD simulations were employed to determine the final binding modes. The 20?ns MD simulations for four final LPC-PPARγ complexes were performed to analyze their structures, the binding key residues, and agonism activities. The results reveal that three LPC ligands (LPC16:0, LPC18:0 and LPC18:1-1) bind to Arm II and III regions of the Ligand Binding Domain (LBD) pocket, whereas they do not interact with Tyr473 of Helix 12 (H12). In contrast, LPC18:1-2 can form the hydrogen bonds with Tyr473 and bind into Arm I and II regions. Comparing with the paradigm systems of the full agonist (Rosiglitazone–PPARγ) and the partial agonist (MRL24–PPARγ), our results indicate that LPC16:0, LPC18:0 and LPC18:1-1 could be the potential partial agonists and LPC18:1-2 could be a full agonist. The in-depth analysis of the residue fluctuations and structure alignment confirm the present prediction of the LPC agonism activities.

Communicated by Ramaswamy H. Sarma  相似文献   

13.
Journal of Bioenergetics and Biomembranes - Liver ischemia and reperfusion could cause serious damage to liver tissues. Abnormal liver function could induce serious damage and threaten human...  相似文献   

14.
15.

Background

All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats.

Methods

Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied.

Results

The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1.

Conclusion

We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation.  相似文献   

16.
《Biomarkers》2013,18(6):493-501
Abstract

Context: Breast cancer (BC) risk has been differentially associated with urinary levels of some phthalate metabolites.

Objective: To investigate whether PPARγ and PPARGC1B polymorphisms modulate these associations.

Materials and methods: 208 BC cases were age-matched with 220 population controls. Phthalate metabolites were determined by HPLC-MS. PPARγ Pro12Ala (rs1801281) and PPARGC1B Ala203Pro (rs7732671) and Val279Ile (rs17572019) were genotyped.

Results: The association between mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and BC risk was positively modified in PPARγ Pro12Ala C carriers. The association with mono-iso-butyl phthalate (MiBP) in PPARGC1B Ala203Pro G carriers was negatively modified.

Conclusion. PPARγ and PPARGC1B polymorphisms modulate the association between phthalate exposure and BC risk.  相似文献   

17.
In our search for a novel class of non-TZD, non-carboxylic acid peroxisome proliferator-activated receptor (PPAR) γ agonists, we explored alternative lipophilic templates to replace benzylpyrazole core of the previously reported agonist 1. Introduction of a pentylsulfonamide group into arylpropionic acids derived from previous in-house PPARγ ligands succeeded in the identification of 2-pyridyloxybenzene-acylsulfonamide 2 as a lead compound. Docking studies of compound 2 suggested that a substituent para to the central benzene ring should be incorporated to effectively fill the Y-shaped cavity of the PPARγ ligand-binding domain (LBD). This strategy led to significant improvement of PPARγ activity. Further optimization to balance in vitro activity and metabolic stability allowed the discovery of the potent, selective and orally efficacious PPARγ agonist 8f. Structure-activity relationship study as well as detailed analysis of the binding mode of 8f to the PPARγ-LBD revealed the essential structural features of this series of ligands.  相似文献   

18.
19.
The drug resistance and tumor metastasis have been the main obstacles for the longer-term therapeutic effects of tamoxifen (TAM) on estrogen receptor-positive (ER+) breast cancer, but the mechanisms underlying the TAM resistance are still unclear. Here, we demonstrated that the membrane-associated estrogen receptor ER-α36 signaling, but not the G protein-coupled estrogen receptor 1 (GPER1) signaling, might be involved in the TAM resistance and metastasis of breast cancer cells. In this study, a model of ER+ breast cancer cell MCF-7 that involves the up-regulated expression of ER-α36 and unchanged expression of ER-α66 and GPER1 was established via the removal of insulin from the cell culture medium. The mechanism of TAM resistance in the ER+ breast cancer cell line MCF-7 was investigated, and the results showed that the stimulating effect of insulin on susceptibility of MCF-7 to TAM was mediated by ER-α36 and that the expression level of ER-α36 in TAM-resistant MCF-7 cells was also significantly increased. Both TAM and estradiol (E2) could promote the migration of triple negative (ER-α66?/PR?/HER2?) and ER-α36+/GPER1+ breast cancer cells MDA-MB-231. The migration of MDA-MB-231 cells was inhibited by the down-regulated intracellular expression of ER-α36 by transient transfection of specific small interfering RNA, whereas no effect of GPER1 down-regulation was observed. Meanwhile, the effect of TAM on the migration of ER-α36-down-regulated MDA-MB-231 cells was also reduced. Furthermore, it was found that TAM enhanced the distribution of integrin β1 on the cell surface but did not affect the expression of integrin β1 in MDA-MB-231 cells. Collectively, these data suggested that ER-α36 signaling might play critical roles in acquired and de novo TAM resistance and metastasis of breast cancer, and ER-α36 might present a potential biomarker of TAM resistance in the clinical diagnosis and treatment of ER+ breast cancer.  相似文献   

20.
Evodiamine, a quinolone alkaloid, is one of the major bioactive compounds of Evodia rutaecarpa Bentham (Rutaceae). It exhibits excellent biological activities, especially the anticancer activity. This study aims to investigate the effect of evodiamine on the proliferation of leukemia cell line K562 and to explore the underlying mechanism. The effect of evodiamine on K562 cells proliferation was analyzed by trypan blue dye exclusion assay and MTT assay. The expression levels of peroxisome proliferators-activated receptor gamma (PPARγ), cyclin D1, and p21 were detected by western blot assay. The results demonstrated that evodiamine inhibited the proliferation and decreased the viability of K562 cells in a dose- and time-dependent manner. 2-Chloro-5-nitro-N-phenylbenzamide (GW9662) and/or PPARγ-siRNA pretreatment alleviated the cell growth suppression triggered by evodiamine. Meanwhile, evodiamine intervention elevated the expression of PPARγ in K562 cells, while pretreatment with GW9662 attenuated the enhanced upregulation of PPARγ expression induced by evodiamine. In addition, GW9662 and PPARγ-siRNA pretreatment also significantly attenuated the downregulation of the cell cycle control protein cyclin D1 and the upregulation of cyclin-dependent kinase inhibitor p21 induced by evodiamine. In conclusion, PPARγ signaling pathway may involve in the proliferation inhibition of evodiamine on K562 cells via inhibiting cylcin D1 and stimulating of p21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号