首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xtr is present exclusively in early embryonic and germline cells. We have previously shown that loss-of-function of the Xtr in embryos causes arrest of karyokinesis progression. Since Xtr contains plural tudor domains, which are known to associate with target proteins directly, we examined Xtr-interacting proteins by immunoprecipitation with an anti-Xtr monoclonal antibody and detected a few RNA-binding proteins such as FRGY2, a component of messenger ribonucleoprotein (mRNP) particle. The coexistence of Xtr with FRGY2 by constituting an mRNP particle was further confirmed by gel filtration assay. Search of mRNAs in the immunoprecipitate with Xtr suggested that the Xtr-associated molecules included several mRNAs, of which translational products were known to play crucial roles in karyokinesis progression (RCC1, XRHAMM, and so on) and in germ cell development (XDead end). Immunohistochemical observation clearly showed the co-localization of Xtr with FRGY2 also in germ plasm, in which XDead end mRNA has been shown to be localized specifically. Taken together, we proposed the possible role of Xtr in translational activation of the maternal mRNAs repressed in mRNP particle.  相似文献   

2.
3.
XGef was isolated in a screen for proteins interacting with CPEB, a regulator of mRNA translation in early Xenopus development. XGef is a Rho-family guanine nucleotide exchange factor and activates Cdc42 in mammalian cells. Endogenous XGef (58 kDa) interacts with recombinant CPEB, and recombinant XGef interacts with endogenous CPEB in Xenopus oocytes. Injection of XGef antibodies into stage VI Xenopus oocytes blocks progesterone-induced oocyte maturation and prevents the polyadenylation and translation of c-mos mRNA; injection of XGef rescues these events. Overexpression of XGef in oocytes accelerates progesterone-induced oocyte maturation and the polyadenylation and translation of c-mos mRNA. Overexpression of a nucleotide exchange deficient version of XGef, which retains the ability to interact with CPEB, no longer accelerates oocyte maturation or Mos synthesis, suggesting that XGef exchange factor activity is required for the influence of overexpressed XGef on oocyte maturation. XGef overexpression continues to accelerate c-mos polyadenylation in the absence of Mos protein, but does not stimulate MAPK phosphorylation, MPF activation, or oocyte maturation, indicating that XGef may function through the Mos pathway to influence oocyte maturation. These results suggest that XGef may be an early acting component of the progesterone-induced oocyte maturation pathway.  相似文献   

4.
Protein synthesis of cyclin B by translational activation of the dormant mRNA stored in oocytes is required for normal progression of maturation. In this study, we investigated the involvement of Xenopus Pumilio (XPum), a cyclin B1 mRNA-binding protein, in the mRNA-specific translational activation. XPum exhibits high homology to mammalian counterparts, with amino acid identity close to 90%, even if the conserved RNA-binding domain is excluded. XPum is bound to cytoplasmic polyadenylation element (CPE)-binding protein (CPEB) through the RNA-binding domain but not to its phosphorylated form in mature oocytes. In addition to the CPE, the XPum-binding sequence of cyclin B1 mRNA acts as a cis-element for translational repression. Injection of anti-XPum antibody accelerated oocyte maturation and synthesis of cyclin B1, and, conversely, over-expression of XPum retarded oocyte maturation and translation of cyclin B1 mRNA, which was accompanied by inhibition of poly(A) tail elongation. The injection of antibody and the over-expression of XPum, however, had no effect on translation of Mos mRNA, which also contains the CPE. These findings provide the first evidence that XPum is a translational repressor specific to cyclin B1 in vertebrates. We propose that in cooperation with the CPEB-maskin complex, the master regulator common to the CPE-containing mRNAs, XPum acts as a specific regulator that determines the timing of translational activation of cyclin B1 mRNA by its release from phosphorylated CPEB during oocyte maturation.  相似文献   

5.
6.
During meiotic maturation of Spisula oocytes, maternal mRNAs undergo changes in translation and in the length of their poly(A) tails. In general, those mRNAs that are translationally activated, i.e., unmasked become polyadenylated, while deactivated mRNAs lose their poly(A) tails. The activated class of mRNAs encode ribonucleotide reductase, cyclins A and B and histone H3, while the proteins that stop being made include tubulin and actin. Previously, we demonstrated that mRNA-specific unmasking can be brought about in vitro by preventing the interaction of protein(s) with central portions of the 3′ noncoding regions (masking regions) of ribonucle-otide reductase and cyclin A mRNAs. In this report, we show that clam egg extracts are capable of sequence-specific polyadenylation of added RNAs since the 3′ untranslated regions (UTRs) of ribonu-cleotide reductase and histone H3 mRNAs are polyadenylated, while that of actin mRNA is not. In contrast, oocyte extracts, as in vivo, are essentially devoid of polyadenylation activity. We present an initial characterisation of the cis-acting sequences in the 3′ UTR of ribonucleotide reductase mRNA required for polyadenylation. The results suggest that the sequences for cytoplasmic polyadenylation are more complex and extensive than those determined in vertebrates and that they may partly overlap with the masking regions. © 1993 Wiley-Liss, Inc.  相似文献   

7.
Little information exists about single N-acetylglucosamine modifications on proteins in growth and developmental model systems. To explore these phenomena, Xenopus laevis oocytes from stages I-VI of oogenesis were isolated and proteins analyzed on SDS-PAGE. The proteins were probed with antibodies specific for O-GlcNAc. Levels of the O-GlcNAc protein modification were highest in stages I and II, while decreasing in stages III-VI. The reduction in amount of O-GlcNAc-modified proteins was correlated to increases in apparent O-GlcNAcase (streptozotocin-inhibitable neutral hexosaminidase), activity involved in removing protein monoglycosylations. The O-GlcNAc modification was also characterized during progesterone-stimulated oocyte maturation. Although O-GlcNAcase activity appeared relatively constant between quiescent and matured stage VI oocytes, a small decrease in the levels of both total and specific O-GlcNAc-modified proteins was observed. Investigating the function of O-GlcNAc during maturation, oocytes were incubated with compounds known to modulate the levels of the O-GlcNAc protein modification and then stimulated to mature. Oocytes treated with compounds known to increase O-glycosylation consistently matured slower than non-treated controls, while oocytes treated with compounds that decrease O-glycosylation matured slightly faster than controls. The O-GlcNAc modification may play important roles in both the developmental and cell division processes of X. laevis oocytes.  相似文献   

8.
The dynamics of the Aurora B protein kinase during Xenopus oocyte meiotic maturation were examined. Resting G2 oocytes express inactive Aurora B that is not associated with other subunits of the chromosome passenger complex (CPC). Activity increases near the time of germinal vesicle breakdown in progesterone-treated oocytes, and this increase is correlated with the synthesis of inner centromere protein (INCENP) and survivin, components of the CPC. Ablation of INCENP synthesis led to the failure of progesterone treatment to activate Aurora B, but biochemical progression through the meiosis I-to-II transition and arrest at metaphase II were not affected. At fertilization, Aurora B was deactivated in concert with the degradation of INCENP, and the levels of Aurora B kinase activity and INCENP oscillated in subsequent embryonic cell cycles. Prevention of the decrease in Aurora B activity at fertilization by expression of ectopic wild-type INCENP, but not kinase-dead Aurora B INCENP, blocked calcium-induced exit from metaphase arrest in egg extracts.  相似文献   

9.
10.
During Xenopus development, the synthesis of ribosomal proteins is regulated at the translational level. To identify the region of the ribosomal protein mRNAs responsible for their typical translational behavior, we constructed a fused gene in which the upstream sequences (promoter) and the 5' untranslated sequence (first exon) of the gene coding for Xenopus ribosomal protein S19 were joined to the coding portion of the procaryotic chloramphenicol acetyltransferase (CAT) gene deleted of its own 5' untranslated region. This fused gene was introduced in vivo by microinjection into Xenopus fertilized eggs, and its activity was monitored during embryogenesis. By analyzing the pattern of appearance of CAT activity and the distribution of the S19-CAT mRNA between polysomes and messenger ribonucleoproteins, it was concluded that the 35-nucleotide-long 5' untranslated region of the S19 mRNA is able to confer to the fused S19-CAT mRNA the translational behavior typical of ribosomal proteins during Xenopus embryo development.  相似文献   

11.
12.
Full-length cDNAs encoding three forms of vitellogenin (Vg) were obtained from a liver cDNA library of estrogen-treated red seabream, Pagrus major. Two of the three Vg sequences had high homology with type-A and -B Vgs (VgA and VgB) of other teleosts. The third red seabream Vg was classified as a type-C or phosvitinless (Pvl) Vg due to its lack of a phosvitin (Pv) domain. Two Vg preparations (610 and 340 kDa) from blood serum of estradiol-treated fish were biochemically characterized. Analyses of precursor-product relationships by examination of N-terminal amino acid sequences verified cleavage of the 610 kDa Vg into a 540 kDa lipovitellin (Lv) and a 32 kDa beta'-component. Each of these yolk preparations comprising both VgA- and VgB-derived polypeptides. The 340 kDa Vg, which was immunologically verified to be a PvlVg, was accumulated by vitellogenic oocytes with no alterations to its native molecular mass. During oocyte maturation, the VgA- and VgB-derived yolk proteins were differentially processed, presumably to generate a pool of free amino acids for oocyte hydration or for allocation of specific types of nutrients, amino acids, and proteins, to the developing embryo. Conversely, the 340 kDa Vg-derived yolk protein is unlikely to contribute to oocyte hydration or diffusible nutrients since the molecule underwent only minor proteolytic nicking during oogenesis. The present study elucidates for the first time specific functions of three different forms of Vg and their product yolk proteins in a higher taxonomic group of marine teleosts that spawn pelagic eggs.  相似文献   

13.
At the end of oogenesis, Xenopus laevis stage VI oocytes are arrested at the G2/M transition (prophase) waiting for progesterone to release the block and begin maturation. Progesterone triggers a cascade of phosphorylation events such as a decrease of pK(a) and an increase of maturating-promoting factor activity. Progression through meiosis was controlled by the sequential synthesis of several proteins. For instance, the MAPK kinase kinase c-Mos is the very first protein to be produced, whereas cyclin B1 appears only after meiosis I. After the meiotic cycles, the oocyte arrests at metaphase of meiosis II with an elevated c-Mos kinase activity (cytostatic factor). By using a two-hybrid screen, we have identified maskin, a protein involved in the control of mRNA sequential translation, as a binding partner of Aurora-A, a protein kinase necessary for oocyte maturation. Here we showed that, in vitro, Aurora-A directly binds to maskin and that both proteins can be co-immunoprecipitated from oocyte extracts, suggesting that they do associate in vivo. We also demonstrated that Aurora-A phosphorylates maskin on a Ser residue conserved in transforming acidic coiled coil proteins from Drosophila to human. When the phosphorylation of this Ser was inhibited in vivo by microinjection of synthetic peptides that mimic the maskin-phosphorylated sequence, we observed a premature maturation. Under these conditions, proteins such as cyclin B1 and Cdc6, which are normally detected only in meiosis II, were massively produced in meiosis I before the occurrence of the nuclear envelope breakdown. This result strongly suggests that phosphorylation of maskin by Aurora-A prevents meiosis II proteins from being produced during meiosis I.  相似文献   

14.
Symplekin is a dual location protein that has been localized to the cytoplasmic plaques of tight junctions but also occurs in the form of interchromatin particles in the karyoplasm. Here we report the identification of two novel and major symplekin-containing protein complexes in both the karyo- and the cytoplasm of Xenopus laevis oocytes. Buffer-extractable fractions from the karyoplasm of stage IV-VI oocytes contain an 11S particle, prepared by immunoselection and sucrose gradient centrifugation, in which symplekin is associated with the subunits of the cleavage and polyadenylation specificity factor (CPSF). Moreover, in immunofluorescence microscopy nuclear symplekin colocalizes with protein CPSF-100 in the "Cajal bodies." However, symplekin is also found in cytoplasmic extracts of enucleated oocytes and egg extracts, where it occurs in 11S as well as in ca. 65S particles, again in association with CPSF-100. This suggests that, in X. laevis oocytes, symplekin is possibly involved in both processes, 3'-end processing of pre-mRNA in the nucleus and regulated polyadenylation in the cytoplasm. We discuss the possible occurrence of similar symplekin-containing particles involved in mRNA metabolism in the nucleus and cytoplasm of other kinds of cells, also in comparison with the nuclear forms of other dual location proteins in nuclei and cell junctions.  相似文献   

15.
L Dale  G Matthews  L Tabe    A Colman 《The EMBO journal》1989,8(4):1057-1065
Vg1 is a maternal mRNA localized in the vegetal cortex of Xenopus laevis oocytes, that encodes a protein homologous to the mammalian growth factor TGF-beta. Using a polyclonal antibody to a T7-Vg1 fusion protein, we have identified the native protein. We find that a single protein of Mr 40 kd is immunoprecipitated following in vitro translation of oocyte poly(A)+ RNA, whilst two proteins of Mr 45 and 43.5 kd are immunoprecipitated from oocyte and embryo extracts. Synthesis of at least the 40 kd, in vitro, and 45 kd, in vivo, proteins is specifically inhibited following treatment of the respective systems with antisense Vg1 (but not histone H4) oligodeoxynucleotides. Tunicamycin treatment reveals the in vivo proteins to be glycosylated versions of a 40 kd protein, modified by the addition of either two or three N-linked oligosaccharide side chains. Both proteins are sensitive to digestion by the enzyme endoglycosidase-H, and are segregated within a membrane fraction from which they can be released by high pH treatment. Their synthesis is first detectable in stage IV oocytes and continues throughout early embryogenesis until the late gastrula. During embryogenesis the relative proportions of the two proteins change, the 45 kd protein being predominant in early embryogenesis and the 43.5 kd protein in late embryogenesis. Synthesis only occurs in the vegetal hemisphere at all stages; however, in the large oocyte diffusion of both proteins into the animal hemisphere occurs.  相似文献   

16.
In Xenopus species, the early stages of oogenesis take place in the developing tadpole ovary when the oocytes are in a period critical for the organization of the germ plasm (believed to be a determinant of germ-cell fate) and the initial stages of localization of RNAs involved in germ plasm functions. We constructed a cDNA library from the ovaries of stage 64 Xenopus tadpoles with the idea that it will be enriched for oogonia and pre-stage I and stage I oocytes and thus, RNAs involved in oocyte development and germ plasm formation and function. From this cDNA library, we cloned a new maternal localized mRNA which we named centroid. This RNA codes for the protein belonging to the DEAD-box RNA helicase family. Some of the members of this protein family are components of the messenger ribonucleoprotein (mRNP) particles stored in the germ plasm in oocytes of Xenopus, Drosophila and Caenorhabditis species and are believed to play a role in translational activation of stored mRNPs and sorting of mRNPs into the germ plasm. We found that centroid mRNA is localized in Xenopus oocytes by a combination of early and late pathways, a pattern of localization that is very similar to the intermediate pathway localization of fatvg mRNA, another germ-plasm-localized RNA in Xenopus oocytes. Also, centroid mRNA is present in the mitochondrial cloud and in the germ plasm at the surface of germinal granules. This suggests that centroid is involved in the regulation of germ plasm-stored mRNPs and/or germ plasm function.  相似文献   

17.
We have performed a differential screen of a Xenopus egg cDNA library and selected two clones (Cl1 and Cl2) corresponding to mRNA which are specifically adenylated and recruited into polysomes after fertilization. Sequence analysis of Cl1 reveals that the corresponding protein is 67.5% identical (83% similar) to the product of the Saccharomyces cerevisiae SUP45 (also called SUP1 or SAL4) gene. This gene, when mutated, is an omnipotent suppressor of nonsense codons. When expressed in a sup45 mutant, the Xenopus Cl1 cDNA was able to suppress sup45-related phenotypes, showing that the structural homology reflects a functional homology. Our discovery of a structural and functional homolog in Xenopus cells implies that the function of SUP45 is not restricted to lower eukaryotes and that the SUP45 protein may perform a crucial cellular function in higher eukaryotes.  相似文献   

18.
19.
Cisplatin (cis-diaminedichloroplatin (II), CDDP) is part of the standard therapy for a number of solid tumors including Non-Small-Cell Lung Cancer (NSCLC). The initial response observed is in most cases only transient and tumors quickly become refractory to the drug. Tumor cell resistance to CDDP relies on multiple mechanisms, some of which still remain unknown. In search for such mechanisms, we examined the impact of CDDP on mRNA translation in a sensitive and in a matched resistant NSCLC cell line. We identified a set of genes whose mRNAs are differentially translated in CDDP resistant vs. sensitive cells. The translation of the mRNA encoding the Ubiquitin-Specific Peptidase 1 (USP1), a Ubiquitin peptidase with important function in multiple DNA repair pathways, is inhibited by CDDP exposure in the sensitive cells, but not in the resistant cells. This lack of down-regulation of USP1 expression at the translational level plays a primary role in CDDP resistance since inhibition of USP1 expression or activity by siRNA or the small molecule inhibitor ML323, respectively is sufficient to re-sensitize resistant cells to CDDP. We involved the USP1 mRNA translation as a major mechanism of CDDP resistance in NSCLC cells and suggest that USP1 could be evaluated as a candidate predictive marker and as a therapeutic target to overcome CDDP resistance. More generally, our results indicate that analysis of gene expression at the level of mRNA translation is a useful approach to identify new determinants of CDDP resistance.  相似文献   

20.
NIRF,a novel RING finger protein,is involved in cell-cycle regulation   总被引:2,自引:0,他引:2  
Through database mining, we found a novel PEST-containing nuclear protein (PCNP). To characterize PCNP, we carried out yeast two-hybrid screening for PCNP-interacting factors. A novel Np95/ICBP90-like RING finger protein (NIRF), which possessed a ubiquitin-like domain, a PHD finger, a YDG/SRA domain and a RING finger, was identified. Interaction between PCNP and NIRF was clarified by mammalian two-hybrid system, GST pull-down assay, and nuclear co-localization. RT-PCR showed that NIRF expression is high in proliferating phase but significantly low in G0/G1 phase in normal TIG-7 and WI-38 cells, while consistently high in tumoral HT-1080 and HepG2 cells, suggesting that NIRF is involved in cell-cycle regulation. The NIRF gene resides in 9p23-24.1 that is altered in numerous types of tumors at the top of frequency. Furthermore, the NIRF gene is just within small amplicons in some tumors, suggesting that PCNP and NIRF might be involved in some aspects of tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号