首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Zhu  M Zhu  P Lance 《Experimental cell research》2012,318(19):2520-2530
COX-2 is a major inflammatory mediator implicated in colorectal inflammation and cancer. However, the exact origin and role of COX-2 on colorectal inflammation and carcinogenesis are still not well defined. Recently, we reported that COX-2 and iNOS signalings interact in colonic CCD18Co fibroblasts. In this article, we investigated whether activation of COX-2 signaling by IL1β in primary colonic fibroblasts obtained from normal and cancer patients play a critical role in regulation of proliferation and invasiveness of human colonic epithelial cancer cells. Our results demonstrated that COX-2 level was significantly higher in cancer associated fibroblasts than that in normal fibroblasts with or without stimulation of IL-1β, a powerful stimulator of COX-2. Using in vitro assays for estimating proliferative and invasive potential, we discovered that the proliferation and invasiveness of the epithelial cancer cells were much greater when the cells were co-cultured with cancer associated fibroblasts than with normal fibroblasts, with or without stimulation of IL1β. Further analysis indicated that the major COX-2 product, prostaglandin E(2), directly enhanced proliferation and invasiveness of the epithelial cancer cells in the absence of fibroblasts. Moreover, a selective COX-2 inhibitor, NS-398, blocked the proliferative and invasive effect of both normal and cancer associate fibroblasts on the epithelial cancer cells, with or without stimulation of IL-1β. Those results indicate that activation of COX-2 signaling in the fibroblasts plays a major role in promoting proliferation and invasiveness of the epithelial cancer cells. In this process, PKC is involved in the activation of COX-2 signaling induced by IL-1β in the fibroblasts.  相似文献   

2.
Zhu Y  Zhu M  Lance P 《Experimental cell research》2012,318(16):2116-2127
COX-2 and iNOS are two major inflammatory mediators implicated in colorectal inflammation and cancer. Previously, the role of colorectal fibroblasts involved in regulation of COX-2 and iNOS expression was largely ignored. In addition, the combined interaction of COX-2 and iNOS signalings and their significance in the progression of colorectal inflammation and cancer within the fibroblasts have received little investigation. To address those issues, we investigated the role of colonic fibroblasts in the regulation of COX-2 and iNOS gene expression, and explored possible mechanisms of interaction between COX-2 and iNOS signalings using a colonic CCD-18Co fibroblast line and LPS, a potential stimulator of COX-2 and iNOS. Our results clearly demonstrated that LPS activated COX-2 gene expression and enhanced PGE(2) production, stimulated iNOS gene expression and promoted NO production in the fibroblasts. Interestingly, activation of COX-2 signaling by LPS was not involved in activation of iNOS signaling, while activation of iNOS signaling by LPS contributed in part to activation of COX-2 signaling. Further analysis indicated that PKC plays a major role in the activation and interaction of COX-2 and iNOS signalings induced by LPS in the fibroblasts.  相似文献   

3.
In localized tumors, basement membrane (BM) prevents invasive outgrowth of tumor cells into surrounding tissues. When carcinomas become invasive, cancer cells either degrade BM or reprogram stromal fibroblasts to breach BM barrier and lead invasion of cancer cells into surrounding tissues in a process called fibroblast‐led invasion. However, tumor‐derived factors orchestrating fibroblast‐led invasion remain poorly understood. Here it is shown that although early‐stage primary colorectal adenocarcinoma (SW480) cells are themselves unable to invade Matrigel matrix, they secrete exosomes that reprogram normal fibroblasts to acquire de novo capacity to invade matrix and lead invasion of SW480 cells. Strikingly, cancer cells follow leading fibroblasts as collective epithelial‐clusters, thereby circumventing need for epithelial to mesenchymal transition, a key event associated with invasion. Moreover, acquisition of pro‐invasive phenotype by fibroblasts treated with SW480‐derived exosomes relied on exosome‐mediated MAPK pathway activation. Mass spectrometry‐based protein profiling reveals that cancer exosomes upregulate fibroblasts proteins implicated in focal adhesion (ITGA2/A6/AV, ITGB1/B4/B5, EGFR, CRK), regulators of actin cytoskeleton (RAC1, ARF1, ARPC3, CYFIP1, NCKAP1, ICAM1, ERM complex), and signalling pathways (MAPK, Rap1, RAC1, Ras) important in pro‐invasive remodeling of extracellular matrix. Blocking tumor exosome‐mediated signaling to fibroblasts therefore represents an attractive therapeutic strategy in restraining tumors by perturbing stroma‐driven invasive outgrowth.  相似文献   

4.
5.
Recurrent respiratory papillomas are epithelial tumors of the airway caused by human papillomaviruses. We previously reported that the epidermal growth factor receptor (EGFR) is overexpressed in papilloma cells, that cyclooxygenase-2 (COX-2) is induced, and that COX-2 expression in primary papilloma cells requires activation of the EGFR but not Erk. Rac1, a member of the Rho family of GTPases, is a key signaling element that is known to control multiple pathways downstream of the EGFR. Here we report that Rac1 is overexpressed in papilloma cells compared with normal laryngeal epithelial cells and that the increased levels of Rac1 are mediated by EGFR activation. Transfecting cells with Rac1-specific siRNA suppressed COX-2 expression. Surprisingly, Rac1 mediated phosphorylation of p38 mitogen-activated kinase in papilloma cells but not normal cells, and inhibition of p38 with the specific inhibitor SB202190 suppressed COX-2 expression in papilloma cells but had no effect on low-level COX-2 expression in normal cells. Thus, the signaling cascades that regulate COX-2 expression are different in HPV-infected papilloma cells, with a significant contribution by the EGFR-- Rac1-->p38 pathway.  相似文献   

6.
The parameters of cell population kinetics of symmetrical 1,2-dimethylhydrazine-induced colonic neoplasms and their adjacent colonic mucosa in the mouse were analyzed using the fraction labeled-mitoses curve method and compared with those of three groups of epithelial cells in the crypt of the descending colon of normal mouse. The analysis of three groups of epithelial cells in the crypt of normal mouse indicates that differentiation of epithelial cells was associated not only with a smaller proliferative pool of cells but also with a shortening of the duration of G2 phase and a prolongation of mitotic time. Other parameters of cell cycle did not change significantly. The mean cell cycle time of neoplastic cells in chemically induced colonic neoplasms was similar to that of epithelial cells in normal colon, but the variance was much greater in neoplastic cells. In neoplastic cells, the proliferative pool was greater, the G1 phase prlonged, and the S phase and the mitotic time became shorter as compared to epithelial cells in normal colon. The duration of G2 phase of neoplastic cells fell between the values of presumptive stem cells and differentiating cells in normal colon, compatible with the hypothesis that neoplastic cells are transformed stem cells defective in cellular differentiation. In the colonic mucosa immediately adjacent to neoplasms, the fraction-labeled-mitoses curve showed a flat second wave, indicating that the group of cells initially labeled by the pulse became a mixture of cells, some continuing the proliferative cycle normally, some going out of cycle, some slowing down in their passage from S through G2 to M, and some being arrested in mitotic phase. Such heterogeneous behavior of cells may be closely related to expansion of neoplasms. With some assumptions, however, cell cycle parameters of those normally cycling cells were estimated: the cell cycle time and the duration of G1 phase and mitotic phase were prolonged as compared to neoplastic cells and epithelial cells of normal colon.  相似文献   

7.
Prostaglandins (PGs), bioactive lipid molecules produced by cyclooxygenase enzymes (COX-1 and COX-2), have diverse biological activities, including growth-promoting actions on gastrointestinal mucosa. They are also implicated in the growth of colonic polyps and cancers. However, the precise mechanisms of these trophic actions of PGs remain unclear. As activation of the epidermal growth factor receptor (EGFR) triggers mitogenic signaling in gastrointestinal mucosa, and its expression is also upregulated in colonic cancers and most neoplasms, we investigated whether PGs transactivate EGFR. Here we provide evidence that prostaglandin E2 (PGE2) rapidly phosphorylates EGFR and triggers the extracellular signal-regulated kinase 2 (ERK2)--mitogenic signaling pathway in normal gastric epithelial (RGM1) and colon cancer (Caco-2, LoVo and HT-29) cell lines. Inactivation of EGFR kinase with selective inhibitors significantly reduces PGE2-induced ERK2 activation, c-fos mRNA expression and cell proliferation. Inhibition of matrix metalloproteinases (MMPs), transforming growth factor-alpha (TGF-alpha) or c-Src blocked PGE2-mediated EGFR transactivation and downstream signaling indicating that PGE2-induced EGFR transactivation involves signaling transduced via TGF-alpha, an EGFR ligand, likely released by c-Src-activated MMP(s). Our findings that PGE2 transactivates EGFR reveal a previously unknown mechanism by which PGE2 mediates trophic actions resulting in gastric and intestinal hypertrophy as well as growth of colonic polyps and cancers.  相似文献   

8.
The profile of cyclooxygenase and lipoxygenase products in normal rat colonic epithelium and subepithelium was examined. Colons were thoroughly perfused to eliminate contamination with blood. Two preparations of colonic epithelium were employed. The first consisted of intact colonic crypts and epithelial sheets. The second yielded single cell suspensions of superficial versus proliferative epithelial cells. Lipoxygenase product formation by colonic epithelium as measured by hydroxyeicosatetraenoic acid (HETE) and leukotriene B4 (LTB4) production (5-HETE greater than 12-HETE greater than 15-HETE greater than LTB4) accounted for 58% of the total colonic production of these moieties, whereas epithelium accounted for only 20% of total colonic protein. By contrast, prostaglandin (PG) E2 and PGF2 alpha production occurred predominantly (greater than 97%) in the subepithelial layers. The present studies also demonstrate markedly higher levels of accumulation of lipoxygenase products in proliferative versus superficial epithelial cells, whereas prostaglandin accumulation was greater in superficial cells. Previous studies have supported a role for lipoxygenase and cyclooxygenase products in the control of colonic secretion, inflammatory cell infiltration and proliferative activity. The present results raise the possibility that the striking differences in the sites of production of these products within the colon has functional implications.  相似文献   

9.
Leptin plays a key role regulating food intake, body weight and fat mass. These critical parameters are associated with an increased risk for digestive and mammary gland cancer in the Western population. Here we determined whether leptin contributes to the invasive phenotype of colonic and kidney epithelial cells at various stages of the neoplastic progression. First, leptin potently (EC50 = 10-30 ng/ml) induces invasion of collagen gels by premalignant familial adenomatous colonic cells PC/AA/C1 and nontumorigenic MDCK kidney epithelial cells, their src-transformed counterparts, and the human adenocarcinoma colonic cells LoVo and HCT-8/S11. Leptin and its Ob-Rb receptors were consistently identified by RT-PCR and immunoblotting in these cell lines, as well as in human colonic epithelial crypts, polyps, colonic tumor resections, and adjacent mucosa. Leptin-induced invasion was effectively blocked by pharmacological inhibitors of several downstream signaling pathways involved in cell transformation, namely, JAK2 tyrosine kinase (AG490), phosphoinositide PI3'-kinase (wortmannin and LY294002), mTOR kinase (rapamycin), and protein kinases C (GF109203X, G?6976). Accordingly, leptin induces transient elevation of the PI3'-kinase lipid products in JAK2 immunoprecipitates prepared from parental MDCK cells. The leptin effect on invasion was potentiated by the activated form of the small GTPase RhoA and was abrogated by dominant negative mutants of RhoA, Rac1, and the p110alpha of PI3'-K. Our data indicate that leptin may exert a local and beneficial effect on migration of normal colonic epithelial cells and reparation of the inflamed or wounded digestive mucosa. We also emphasize a new role for leptin, linking the nutritional and body fat status to digestive cancer susceptibility by stimulating the invasive capacity of colonic epithelial cells at early stages of neoplasia. This finding has potential clinical implications for colon cancer progression and management of obesity.  相似文献   

10.
Proteinase-activated receptor (PAR)(2), a G protein-coupled receptor activated by serine proteinases, has been implicated in both intestinal inflammation and epithelial proliferation. Cyclooxygenase (COX)-2 is overexpressed in the gut during inflammation as well as in colon cancer. We hypothesized that PAR(2) drives COX-2 expression in intestinal epithelial cells. Treatment of Caco-2 colon cancer cells with the PAR(2)-activating peptide 2-furoyl-LIGRLO-NH(2) (2fLI), but not by its reverse-sequence PAR(2)-inactive peptide, for 3 h led to an increase in intracellular COX-2 protein expression accompanied by a COX-2-dependent increase in prostaglandin E(2) production. 2fLI treatment for 30 min significantly increased metalloproteinase activity in the culture supernatant. Increased epidermal growth factor receptor (EGFR) phosphorylation was observed in cell lysates following 40 min of treatment with 2fLI. The broad-spectrum metalloproteinase inhibitor marimastat inhibited both COX-2 expression and EGFR phosphorylation. The EGFR tyrosine kinase inhibitor PD153035 also abolished 2fLI-induced COX-2 expression. Although PAR(2) activation increased ERK MAPK phosphorylation, neither ERK pathway inhibitors nor a p38 MAPK inhibitor affected 2fLI-induced COX-2 expression. However, inhibition of either Src tyrosine kinase signaling by PP2, Rho kinase signaling by Y27632, or phosphatidylinositol 3 (PI3) kinase signaling by LY294002 prevented 2fLI-induced COX-2 expression. Trypsin increased COX-2 expression through PAR(2) in Caco-2 cells and in an EGFR-dependent manner in the noncancerous intestinal epithelial cell-6 cell line. In conclusion, PAR(2) activation drives COX-2 expression in Caco-2 cells via metalloproteinase-dependent EGFR transactivation and activation of Src, Rho, and PI3 kinase signaling. Our findings provide a mechanism whereby PAR(2) can participate in the progression from chronic inflammation to cancer in the intestine.  相似文献   

11.
Cells within the normal human colonic epithelium undergo a dynamic cycle of growth, differentiation, and death. The organotypic culture system of human fetal colonic epithelial cells seeded on top of collagen gels with embedded colonic fibroblasts allowed prolonged culture of the colonic epithelial cells (Kalabis J, Patterson MJ, Enders GM, Marian B, Iozzo RV, Rogler G, Gimotty PA, Herlyn M. FASEB J 17: 1115-1117, 2003). Herein, we have evaluated the role of endothelin-3 (ET3) and both cognate endothelin receptors (ETRA, ETRB) for human colonic epithelial cell growth and survival. ET3 was produced continuously by the fibroblasts as a result of adenovirus-mediated gene transfer. The presence and function of the endothelin receptors (ETRs) in epithelial cells was evaluated by [(3)H]thymidine incorporation using primary epithelial cells in monoculture and by immunohistochemistry on human fetal and adult paraffin-embedded tissues. In organotypic culture, ET3 increased the number of goblet cells but not of enteroendocrine cells. The increase in goblet cells was caused by prolonged cell survival and differentiation. The inhibition of both ETRA and ETRB significantly decreased the number of goblet cells and proliferation in epithelial cells, whereas the number of enteroendocrine cells remained unchanged. ET3 induced activation of IkappaB and MAPK in the epithelial cells, suggesting that these signaling pathways mediate its proproliferation and prosurvival activities. Our results demonstrate that ET3 is involved in regulating human colonic epithelial cell proliferation and survival, particularly for goblet cells, and may be an important component of colonic homeostasis.  相似文献   

12.
Periostin is a unique extracellular matrix protein, deposition of which is enhanced by mechanical stress and the tissue repair process. Its significance in normal and neoplastic colon has not been fully clarified yet. Using immunohistochemistry and immunoelectron microscopy with a highly specific monoclonal antibody, periostin deposition was observed in close proximity to pericryptal fibroblasts of colonic crypts. The pericryptal pattern of periostin deposition was decreased in adenoma and adenocarcinoma, preceding the decrease of the number of pericryptal fibroblasts. Periostin immunoreactivity appeared again at the invasive front of the carcinoma and increased along the appearance of cancer-associated fibroblasts. ISH showed periostin signals in cancer-associated fibroblasts but not in cancer cells. Ki-67-positive epithelial cells were significantly decreased in the colonic crypts of periostin-/- mice (approximately 0.6-fold) compared with periostin+/+ mice. In three-dimensional co-culture within type I collagen gel, both colony size and number of human colon cancer cell line HCT116 cells were significantly larger ( approximately 1.5-fold) when cultured with fibroblasts derived from periostin+/+ mice or periostin-transfected NIH3T3 cells than with those from periostin-/- mice or periostin-non-producing NIH3T3 cells, respectively. Periostin is secreted by pericryptal and cancer-associated fibroblasts in the colon, both of which support the growth of epithelial components.  相似文献   

13.
Acrolein is a highly reactive alpha, beta-unsaturated aldehyde, and a product of lipid peroxidation reactions. Acrolein is also an environmental pollutant and a key component of cigarette smoke, and has been implicated in multiple respiratory diseases. Lung tissue is a primary target for acrolein toxicity in smokers and may lead to chronic lung inflammation and lung cancer. Chronic inflammation, associated with expression of cyclooxygenase-2 (COX-2) and prostaglandins, are predisposing factors for malignancy. In this study, we investigated the induction of COX-2 by acrolein in rat lung epithelial cells and its related signaling cascade. Induction of COX-2 by acrolein was significant at 6 h post-treatment and was dependent upon NFκB activation. The activation of NFκB by acrolein was induced as a result of degradation of IκBα over the time of treatment. In addition, the upstream signaling cascade involved Raf-1/ERK activation by acrolein in the COX-2 induction and was inhibited by GW5074 (a Ras/Raf-1/ERK inhibitor), thereby providing evidence for the role of this cascade in this process. The results of these studies offer an explanation for the mechanism of COX-2 induction by acrolein in rat lung epithelial cells.  相似文献   

14.
15.
A tissue-protective effect of interleukin-11 (IL-11) for the intestinal mucosa has been postulated from animal models of inflammatory bowel disease (IBD). Despite the fact that the clinical usefulness of the anti-inflammatory effects of this cytokine is presently investigated in patients with IBD, there are no data available regarding the target cells of IL-11 action and the mechanisms of tissue protection within the human colonic mucosa. IL-11 responsiveness is restricted to cells that express the interleukin-11 receptor alpha-chain (IL-11Ralpha) and an additional signal-transducing subunit (gp130). In this study, we identified the target cells for IL-11 within the human colon with a new IL-11Ralpha monoclonal antibody and investigated the functional expression of the receptor and downstream effects of IL-11-induced signaling. Immunohistochemistry revealed expression of the IL-11Ralpha selectively on colonic epithelial cells. HT-29 and colonic epithelial cells (CEC) constitutively expressed IL-11Ralpha mRNA and protein. Co-expression of the signal-transducing subunit gp130 was also demonstrated. IL-11 induced signaling through triggering activation of the Jak-STAT pathway without inducing anti-inflammatory or proliferative effects in colonic epithelial cells. However, IL-11 stimulation resulted in a dose-dependent tyrosine phosphorylation of Akt, a decreased activation of caspase-9, and a reduced induction of apoptosis in cultured CEC. In HLA-B27 transgenic rats treated with IL-11, a reduction of apoptotic cell numbers was found. This study demonstrates functional expression of the IL-11Ralpha restricted on CEC within the human colonic mucosa. IL-11 induced signaling through triggering activation of the Jak-STAT pathway, without inducing anti-inflammatory or proliferative effects. The beneficial effects of IL-11 therapy are likely to be mediated by CEC via activation of the Akt-survival pathway, mediating antiapoptotic effects to support mucosal integrity.  相似文献   

16.
17.
18.
Environmental factors, including dietary fats, are implicated in colonic carcinogenesis. Dietary fats modulate secondary bile acids including deoxycholic acid (DCA) concentrations in the colon, which are thought to contribute to the nutritional-related component of colon cancer risk. Here we demonstrate, for the first time, that DCA differentially regulated the site-specific phosphorylation of focal adhesion kinase (FAK). DCA decreased adhesion of HCA-7 cells to the substratum and induced dephosphorylation of FAK at tyrosine-576/577 (Tyr-576/577) and Tyr-925. Tyrosine phosphorylation of FAK at Tyr-397 remained unaffected by DCA stimulation. Interestingly, we found that c-Src was constitutively associated with FAK and DCA actually activated Src, despite no change in FAK-397 and an inhibition of FAK-576 phosphorylation. DCA concomitantly and significantly increased association of tyrosine phosphatase ShP2 with FAK. Incubation of immunoprecipitated FAK, in vitro, with glutathione-S-transferase-ShP2 fusion protein resulted in tyrosine dephosphorylation of FAK in a concentration-dependent manner. Antisense oligodeoxynucleotides directed against ShP2 decreased ShP2 protein levels and attenuated DCA-induced FAK dephosphorylation. Inhibition of FAK by adenoviral-mediated overexpression of FAK-related nonkinase and gene silencing of Shp2 both abolished DCA's effect on cell adhesion, thus providing a possible mechanism for inside-out signaling by DCA in colon cancer cells. Our results suggest that DCA differentially regulates focal adhesion complexes and that tyrosine phosphatase ShP2 has a role in DCA signaling.  相似文献   

19.
The aspartyl-protease cathepsin D (cath-D) is overexpressed and hypersecreted by epithelial breast cancer cells and stimulates their proliferation. As tumor epithelial-fibroblast cell interactions are important events in cancer progression, we investigated whether cath-D overexpression affects also fibroblast behavior. We demonstrate a requirement of cath-D for fibroblast invasive growth using a three-dimensional (3D) coculture assay with cancer cells secreting or not pro-cath-D. Ectopic expression of cath-D in cath-D-deficient fibroblasts stimulates 3D outgrowth that is associated with a significant increase in fibroblast proliferation, survival, motility, and invasive capacity, accompanied by activation of the ras-MAPK pathway. Interestingly, all these stimulatory effects on fibroblasts are independent of cath-D proteolytic activity. Finally, we show that pro-cath-D secreted by cancer cells is captured by fibroblasts and partially mimics effects of transfected cath-D. We conclude that cath-D is crucial for fibroblast invasive outgrowth and could act as a key paracrine communicator between cancer and stromal cells, independently of its catalytic activity.  相似文献   

20.
The myofibroblast has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Recent evidence suggests that TNF-α is a central regulator of multiple inflammatory signaling cascades. One important target of TNF-α may be the signaling pathway downstream of the epidermal growth factor receptor (EGFR), which has been associated with many human cancers. Here, we show that long-term exposure of 18Co cells, a model of human colonic myofibroblasts, with TNF-α led to a striking increase in cell surface EGFR expression, an effect that was completely inhibited by cycloheximide. Subsequent EGFR binding by EGF and heparin binding (HB)-EGF was associated with enhanced EGFR tyrosine kinase activity, prolonged ERK activation, and a significant increase in cyclooxygenase-2 (COX-2) expression compared with 18Co cells treated with EGF and HB-EGF alone. TNF-α also increased EGFR expression and signaling in primary myofibroblasts isolated from human colon tissue. TNF-α-induced upregulation of EGFR may be a plausible mechanism to explain the exaggerated cellular responsiveness that characterizes inflammatory bowel disease and that may contribute to a microenvironment that predisposes to colitis-associated cancer through enhanced COX-2 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号