首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regeneration of alveolar epithelia following severe pulmonary damage is critical for lung function. We and others have previously shown that Scgb1a1-expressing cells, most likely Clara cells, can give rise to newly generated alveolar type 2 cells (AT2s) in response to severe lung damage induced by either influenza virus infection or bleomycin treatment. In this study, we have investigated cellular pathway underlying the Clara cell to AT2 differentiation. We show that the initial intermediates are bronchiolar epithelial cells that exhibit Clara cell morphology and express Clara cell marker, Scgb1a1, as well as the AT2 cell marker, pro-surfactant protein C (pro-SPC). These cells, referred to as pro-SPC+ bronchiolar epithelial cells (or SBECs), gradually lose Scgb1a1 expression and give rise to pro-SPC+ cells in the ring structures in the damaged parenchyma, which appear to differentiate into AT2s via a process sharing some features with that observed during alveolar epithelial development in the embryonic lung. These findings suggest that SBECs are intermediates of Clara cell to AT2 differentiation during the repair of alveolar epithelia following severe pulmonary injury.  相似文献   

3.
4.
5.
6.
Tissue in situ hybridization has been used on sections of developing rat lung to follow the cellular sites of mRNA expression for a protein identified only in bronchiolar Clara cells. The mRNA for this Clara cell protein (CCP) was first detected on gestational day 16 in only one of the two types of tubules existing in the lung at this developmental stage. During the next 2 days CCP mRNA expression increased uniformly only in the epithelium lining the respiratory tubules. By gestational day 19, CCP mRNA expression became limited to secretory epithelial cells lining the bronchi, and terminal bronchioles. By neonatal day 1, an intense hybridization signal was observed along all of the conducting airways, but it was irregular due to the fact that expression of the CCP gene was limited to the secretory epithelial cells. In adult rats, CCP mRNA was expressed not only in secretory cells of the intrapulmonary airways at all anatomical levels, but also in secretory epithelial cells lining the trachea and its glands, as well as in specific alveolar cells thought to be type II pneumocytes. These findings demonstrate that the regulation of the CCP gene during lung development is a complicated process and that the expression of CCP mRNA does not parallel exactly the sequential development of the airways.  相似文献   

7.
8.
Clara cells are non-ciliated, secretory bronchiolar epithelial cells that serve to detoxify harmful inhaled substances. Clara cells also function as stem/progenitor cells for repair in the bronchioles. Clara cell secretory protein (CCSP) is specifically expressed in pulmonary Clara cells and is widely used as a Clara cell marker. In addition CCSP promoter is commonly used to direct gene expression into the lung in transgenic models. The discovery of CCSP immunoreactivity in plasma membranes of airway lining cells prompted us to explore the possibility of enriching Clara cells by flow cytometry. We established a novel and simple method for the isolation of CCSP-expressing cell Clara cells using a combination of mechanical and enzymatic dissociation followed by flow cytometry sorting technology. We showed that ~25% of dissociated cells from whole lung expressed CCSP. In the resulting preparation, up to 98% of cells expressed CCSP. Notably, we found that several common stem cell markers including CD44, CD133, Sca-1 and Sox2 were expressed in CCSP(+) cells. Moreover, CCSP(+) cells were able to form spheroid colonies in vitro with 0.97‰ efficiency. Parallel studies in vivo confirmed that a small population of CCSP(-)expressing cells in mouse airways also demonstrates stem cell-like properties such as label retention and harboring rare bronchioalveolar stem cells (BASCs) in terminal bronchioles (TBs). We conclude that CCSP(+) cells exhibit a number of stem cell-like features including stem cell marker expression, bronchosphere colony formation and self-renewal ability. Clara cell isolation by flow cytometry sorting is a useful method for investigating the function of primary Clara cells in stem cell research and mouse models.  相似文献   

9.
10.
Airway epithelial cells secrete proinflammatory mediators in response to LPS, but cytokine production by a prominent nonciliated bronchiolar epithelial cell, the Clara cell, specifically, is unknown. To investigate Clara cell cytokine production in response to LPS, we used a transformed murine Clara cell line, C22, and isolated Clara cells from C57Bl/6 mice. Stimulation of both cell types with LPS resulted in significant upregulation of keratinocyte-derived chemokine (KC) and monocyte chemoattractant protein-1, but did not induce TNF-alpha production. To determine whether LPS induces cytokine production by Clara cells in vivo, LPS was instilled intratracheally into mice. KC was expressed by Clara cells, alveolar type 2 cells, and alveolar macrophages, 2 h after LPS administration, as determined by in situ hybridization. TNF-alpha, although not expressed in airway epithelial cells, was expressed primarily in alveolar macrophages in response to LPS. To assess the impact of Clara cells on KC and TNF-alpha production in the lung in the early response to LPS, mice were treated with naphthalene to selectively induce Clara cell injury before LPS stimulation. KC expression in the airways and the lung periphery, and KC and TNF-alpha levels in the bronchoalveolar lavage fluid, were significantly reduced in naphthalene-treated vs. vehicle-treated mice after LPS stimulation. Furthermore, transwell cocultures of C22 cells and RAW264.7 macrophages indicated that C22 cells released a soluble factor(s) in response to LPS that enhanced macrophage production of TNF-alpha. These results indicate that Clara cells elaborate cytokines and modulate the lung innate immune response to LPS.  相似文献   

11.
12.
13.
GATA6 regulates differentiation of distal lung epithelium   总被引:8,自引:0,他引:8  
  相似文献   

14.
An activated form of beta-catenin [Catnb(Delta(ex3))] was expressed in respiratory epithelial cells of the developing lung. Although morphogenesis was not altered at birth, air space enlargement and epithelial cell dysplasia were observed in the early postnatal period and persisted into adulthood. The Catnb(Delta(ex3)) protein caused squamous, cuboidal, and goblet cell dysplasia in intrapulmonary conducting airways. Atypical epithelial cells that stained for surfactant pro protein C (pro-SP-C) and had morphological characteristics of alveolar type II cells were observed in bronchioles of the transgenic mice. Catnb(Delta(ex3)) inhibited expression of Foxa2 and caused goblet cell hyperplasia associated with increased staining for mucins and the MUC5A/C protein. In vitro, both wild type and activated beta-catenin negatively regulated the expression of the Foxa2 promoter. Catnb(Delta(ex3)) also caused pulmonary tumors in adult mice. Activation of beta-catenin caused ectopic differentiation of alveolar type II-like cells in conducting airways, goblet cell hyperplasia, and air space enlargement, demonstrating a critical role for the Wnt/beta-catenin signal transduction pathway in the differentiation of the respiratory epithelium in the postnatal lung.  相似文献   

15.
The non-ciliated bronchiolar epithelial cells (the Clara cells) are found most frequently in the distal conducting airways, but they are found throughout the tracheobronchial tree of different mammalian species. According to recent data, the main functions of the Clara cells can summarized as (1), the secretion of certain components of the extracellular bronchiolar lining layer (2), metabolism and detoxification of xenobiotics and other toxic compound (3) and participation in the renewal process of the bronchiolar epithelium. The main goal of this paper is to collect and discuss some of the general features of Clara cells from a functional-morphological point of view, and their possible role in pathological alterations of the lung especially in the pathogenesis of lung tumours originated from Clara cells.  相似文献   

16.
17.
The Notch/Notch-ligand pathway regulates cell fate decisions and patterning in various tissues. Several of its components are expressed in the developing lung, suggesting that this pathway is important for airway cellular patterning. Fringe proteins, which modulate Notch signaling, are crucial for defining morphogenic borders in several organs. Their role in controlling cellular differentiation along anterior-posterior axis of the airways is unknown. Herein, we report the temporal-spatial expression patterns of Lunatic fringe (Lfng) and Notch-regulated basic helix-loop-helix factors, Hes1 and Mash-1, during murine lung development. Lfng was only expressed during early development in epithelial cells lining the larger airways. Those epithelial cells also expressed Hes1, but at later gestation Hes1 expression was confined to epithelium lining the terminal bronchioles. Mash-1 displayed a very characteristic expression pattern. It followed neural crest migration in the early lung, whereas at later stages Mash-1 was expressed in lung neuroendocrine cells. To clarify whether Lfng influences airway cell differentiation, Lfng was overexpressed in distal epithelial cells of the developing mouse lung. Overexpression of Lfng did not affect spatial or temporal expression of Hes1 and Mash-1. Neuroendocrine CGRP and protein gene product 9.5 expression was not altered by Lfng overexpression. Expression of proximal ciliated (beta-tubulin IV), nonciliated (CCSP), and distal epithelial cell (SP-C, T1alpha) markers also was not influenced by Lfng excess. Overexpression of Lfng had no effect on mesenchymal cell marker (alpha-sma, vWF, PECAM-1) expression. Collectively, the data suggest that Lunatic fringe does not play a significant role in determining cell fate in fetal airway epithelium.  相似文献   

18.
19.
20.
The lung comprises an extensive surface of epithelia constantly exposed to environmental insults. Maintaining the integrity of the alveolar epithelia is critical for lung function and gaseous exchange. However, following severe pulmonary damage, what progenitor cells give rise to alveolar type I and II cells during the regeneration of alveolar epithelia has not been fully determined. In this study, we have investigated this issue by using transgenic mice in which Scgb1a1-expressing cells and their progeny can be genetically labeled with EGFP. We show that following severe alveolar damage induced either by bleomycin or by infection with influenza virus, the majority of the newly generated alveolar type II cells in the damaged parenchyma were labeled with EGFP. A large proportion of EGFP-expressing type I cells were also observed among the type II cells. These findings strongly suggest that Scgb1a1-expressing cells, most likely Clara cells, are a major cell type that gives rise to alveolar type I and II cells during the regeneration of alveolar epithelia in response to severe pulmonary damage in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号